Properties

Label 495.2.c.a.199.3
Level $495$
Weight $2$
Character 495.199
Analytic conductor $3.953$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,2,Mod(199,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.3
Root \(1.68614 - 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 495.199
Dual form 495.2.c.a.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.792287i q^{2} +1.37228 q^{4} +(2.18614 - 0.469882i) q^{5} -3.46410i q^{7} +2.67181i q^{8} +(0.372281 + 1.73205i) q^{10} +1.00000 q^{11} +2.74456 q^{14} +0.627719 q^{16} -5.04868i q^{17} -4.00000 q^{19} +(3.00000 - 0.644810i) q^{20} +0.792287i q^{22} +2.52434i q^{23} +(4.55842 - 2.05446i) q^{25} -4.75372i q^{28} -2.74456 q^{29} -2.37228 q^{31} +5.84096i q^{32} +4.00000 q^{34} +(-1.62772 - 7.57301i) q^{35} +11.0371i q^{37} -3.16915i q^{38} +(1.25544 + 5.84096i) q^{40} +2.74456 q^{41} +3.46410i q^{43} +1.37228 q^{44} -2.00000 q^{46} +6.63325i q^{47} -5.00000 q^{49} +(1.62772 + 3.61158i) q^{50} +3.16915i q^{53} +(2.18614 - 0.469882i) q^{55} +9.25544 q^{56} -2.17448i q^{58} -1.62772 q^{59} +10.7446 q^{61} -1.87953i q^{62} -3.37228 q^{64} +0.644810i q^{67} -6.92820i q^{68} +(6.00000 - 1.28962i) q^{70} -7.11684 q^{71} -6.92820i q^{73} -8.74456 q^{74} -5.48913 q^{76} -3.46410i q^{77} -12.7446 q^{79} +(1.37228 - 0.294954i) q^{80} +2.17448i q^{82} +6.63325i q^{83} +(-2.37228 - 11.0371i) q^{85} -2.74456 q^{86} +2.67181i q^{88} -4.37228 q^{89} +3.46410i q^{92} -5.25544 q^{94} +(-8.74456 + 1.87953i) q^{95} +4.10891i q^{97} -3.96143i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{4} + 3 q^{5} - 10 q^{10} + 4 q^{11} - 12 q^{14} + 14 q^{16} - 16 q^{19} + 12 q^{20} + q^{25} + 12 q^{29} + 2 q^{31} + 16 q^{34} - 18 q^{35} + 28 q^{40} - 12 q^{41} - 6 q^{44} - 8 q^{46} - 20 q^{49}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.792287i 0.560232i 0.959966 + 0.280116i \(0.0903729\pi\)
−0.959966 + 0.280116i \(0.909627\pi\)
\(3\) 0 0
\(4\) 1.37228 0.686141
\(5\) 2.18614 0.469882i 0.977672 0.210138i
\(6\) 0 0
\(7\) 3.46410i 1.30931i −0.755929 0.654654i \(-0.772814\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) 2.67181i 0.944629i
\(9\) 0 0
\(10\) 0.372281 + 1.73205i 0.117726 + 0.547723i
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 2.74456 0.733515
\(15\) 0 0
\(16\) 0.627719 0.156930
\(17\) 5.04868i 1.22448i −0.790671 0.612242i \(-0.790268\pi\)
0.790671 0.612242i \(-0.209732\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 3.00000 0.644810i 0.670820 0.144184i
\(21\) 0 0
\(22\) 0.792287i 0.168916i
\(23\) 2.52434i 0.526361i 0.964747 + 0.263180i \(0.0847714\pi\)
−0.964747 + 0.263180i \(0.915229\pi\)
\(24\) 0 0
\(25\) 4.55842 2.05446i 0.911684 0.410891i
\(26\) 0 0
\(27\) 0 0
\(28\) 4.75372i 0.898369i
\(29\) −2.74456 −0.509652 −0.254826 0.966987i \(-0.582018\pi\)
−0.254826 + 0.966987i \(0.582018\pi\)
\(30\) 0 0
\(31\) −2.37228 −0.426074 −0.213037 0.977044i \(-0.568336\pi\)
−0.213037 + 0.977044i \(0.568336\pi\)
\(32\) 5.84096i 1.03255i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) −1.62772 7.57301i −0.275135 1.28007i
\(36\) 0 0
\(37\) 11.0371i 1.81449i 0.420602 + 0.907245i \(0.361819\pi\)
−0.420602 + 0.907245i \(0.638181\pi\)
\(38\) 3.16915i 0.514104i
\(39\) 0 0
\(40\) 1.25544 + 5.84096i 0.198502 + 0.923537i
\(41\) 2.74456 0.428629 0.214314 0.976765i \(-0.431248\pi\)
0.214314 + 0.976765i \(0.431248\pi\)
\(42\) 0 0
\(43\) 3.46410i 0.528271i 0.964486 + 0.264135i \(0.0850865\pi\)
−0.964486 + 0.264135i \(0.914913\pi\)
\(44\) 1.37228 0.206879
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 6.63325i 0.967559i 0.875190 + 0.483779i \(0.160736\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 1.62772 + 3.61158i 0.230194 + 0.510754i
\(51\) 0 0
\(52\) 0 0
\(53\) 3.16915i 0.435316i 0.976025 + 0.217658i \(0.0698417\pi\)
−0.976025 + 0.217658i \(0.930158\pi\)
\(54\) 0 0
\(55\) 2.18614 0.469882i 0.294779 0.0633589i
\(56\) 9.25544 1.23681
\(57\) 0 0
\(58\) 2.17448i 0.285523i
\(59\) −1.62772 −0.211911 −0.105955 0.994371i \(-0.533790\pi\)
−0.105955 + 0.994371i \(0.533790\pi\)
\(60\) 0 0
\(61\) 10.7446 1.37570 0.687850 0.725853i \(-0.258555\pi\)
0.687850 + 0.725853i \(0.258555\pi\)
\(62\) 1.87953i 0.238700i
\(63\) 0 0
\(64\) −3.37228 −0.421535
\(65\) 0 0
\(66\) 0 0
\(67\) 0.644810i 0.0787761i 0.999224 + 0.0393880i \(0.0125408\pi\)
−0.999224 + 0.0393880i \(0.987459\pi\)
\(68\) 6.92820i 0.840168i
\(69\) 0 0
\(70\) 6.00000 1.28962i 0.717137 0.154139i
\(71\) −7.11684 −0.844614 −0.422307 0.906453i \(-0.638780\pi\)
−0.422307 + 0.906453i \(0.638780\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i −0.914121 0.405442i \(-0.867117\pi\)
0.914121 0.405442i \(-0.132883\pi\)
\(74\) −8.74456 −1.01653
\(75\) 0 0
\(76\) −5.48913 −0.629646
\(77\) 3.46410i 0.394771i
\(78\) 0 0
\(79\) −12.7446 −1.43388 −0.716938 0.697137i \(-0.754457\pi\)
−0.716938 + 0.697137i \(0.754457\pi\)
\(80\) 1.37228 0.294954i 0.153426 0.0329768i
\(81\) 0 0
\(82\) 2.17448i 0.240131i
\(83\) 6.63325i 0.728094i 0.931381 + 0.364047i \(0.118605\pi\)
−0.931381 + 0.364047i \(0.881395\pi\)
\(84\) 0 0
\(85\) −2.37228 11.0371i −0.257310 1.19714i
\(86\) −2.74456 −0.295954
\(87\) 0 0
\(88\) 2.67181i 0.284816i
\(89\) −4.37228 −0.463461 −0.231730 0.972780i \(-0.574439\pi\)
−0.231730 + 0.972780i \(0.574439\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.46410i 0.361158i
\(93\) 0 0
\(94\) −5.25544 −0.542057
\(95\) −8.74456 + 1.87953i −0.897173 + 0.192835i
\(96\) 0 0
\(97\) 4.10891i 0.417197i 0.978001 + 0.208598i \(0.0668902\pi\)
−0.978001 + 0.208598i \(0.933110\pi\)
\(98\) 3.96143i 0.400165i
\(99\) 0 0
\(100\) 6.25544 2.81929i 0.625544 0.281929i
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 10.3923i 1.02398i −0.858990 0.511992i \(-0.828908\pi\)
0.858990 0.511992i \(-0.171092\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.51087 −0.243878
\(107\) 6.63325i 0.641260i 0.947204 + 0.320630i \(0.103895\pi\)
−0.947204 + 0.320630i \(0.896105\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0.372281 + 1.73205i 0.0354956 + 0.165145i
\(111\) 0 0
\(112\) 2.17448i 0.205469i
\(113\) 16.0858i 1.51322i −0.653864 0.756612i \(-0.726853\pi\)
0.653864 0.756612i \(-0.273147\pi\)
\(114\) 0 0
\(115\) 1.18614 + 5.51856i 0.110608 + 0.514608i
\(116\) −3.76631 −0.349693
\(117\) 0 0
\(118\) 1.28962i 0.118719i
\(119\) −17.4891 −1.60323
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 8.51278i 0.770711i
\(123\) 0 0
\(124\) −3.25544 −0.292347
\(125\) 9.00000 6.63325i 0.804984 0.593296i
\(126\) 0 0
\(127\) 11.6819i 1.03660i −0.855198 0.518302i \(-0.826564\pi\)
0.855198 0.518302i \(-0.173436\pi\)
\(128\) 9.01011i 0.796389i
\(129\) 0 0
\(130\) 0 0
\(131\) −8.74456 −0.764016 −0.382008 0.924159i \(-0.624767\pi\)
−0.382008 + 0.924159i \(0.624767\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) −0.510875 −0.0441329
\(135\) 0 0
\(136\) 13.4891 1.15668
\(137\) 2.22938i 0.190469i −0.995455 0.0952346i \(-0.969640\pi\)
0.995455 0.0952346i \(-0.0303601\pi\)
\(138\) 0 0
\(139\) −18.2337 −1.54656 −0.773281 0.634064i \(-0.781386\pi\)
−0.773281 + 0.634064i \(0.781386\pi\)
\(140\) −2.23369 10.3923i −0.188781 0.878310i
\(141\) 0 0
\(142\) 5.63858i 0.473179i
\(143\) 0 0
\(144\) 0 0
\(145\) −6.00000 + 1.28962i −0.498273 + 0.107097i
\(146\) 5.48913 0.454283
\(147\) 0 0
\(148\) 15.1460i 1.24500i
\(149\) 11.4891 0.941226 0.470613 0.882340i \(-0.344033\pi\)
0.470613 + 0.882340i \(0.344033\pi\)
\(150\) 0 0
\(151\) 22.2337 1.80935 0.904676 0.426100i \(-0.140113\pi\)
0.904676 + 0.426100i \(0.140113\pi\)
\(152\) 10.6873i 0.866851i
\(153\) 0 0
\(154\) 2.74456 0.221163
\(155\) −5.18614 + 1.11469i −0.416561 + 0.0895342i
\(156\) 0 0
\(157\) 5.39853i 0.430850i −0.976520 0.215425i \(-0.930886\pi\)
0.976520 0.215425i \(-0.0691136\pi\)
\(158\) 10.0974i 0.803302i
\(159\) 0 0
\(160\) 2.74456 + 12.7692i 0.216977 + 1.00949i
\(161\) 8.74456 0.689168
\(162\) 0 0
\(163\) 3.46410i 0.271329i −0.990755 0.135665i \(-0.956683\pi\)
0.990755 0.135665i \(-0.0433170\pi\)
\(164\) 3.76631 0.294100
\(165\) 0 0
\(166\) −5.25544 −0.407901
\(167\) 22.3692i 1.73098i −0.500927 0.865490i \(-0.667007\pi\)
0.500927 0.865490i \(-0.332993\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 8.74456 1.87953i 0.670677 0.144153i
\(171\) 0 0
\(172\) 4.75372i 0.362468i
\(173\) 1.87953i 0.142898i 0.997444 + 0.0714489i \(0.0227623\pi\)
−0.997444 + 0.0714489i \(0.977238\pi\)
\(174\) 0 0
\(175\) −7.11684 15.7908i −0.537983 1.19368i
\(176\) 0.627719 0.0473161
\(177\) 0 0
\(178\) 3.46410i 0.259645i
\(179\) −15.8614 −1.18554 −0.592769 0.805373i \(-0.701965\pi\)
−0.592769 + 0.805373i \(0.701965\pi\)
\(180\) 0 0
\(181\) 6.88316 0.511621 0.255810 0.966727i \(-0.417658\pi\)
0.255810 + 0.966727i \(0.417658\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.74456 −0.497216
\(185\) 5.18614 + 24.1287i 0.381293 + 1.77398i
\(186\) 0 0
\(187\) 5.04868i 0.369196i
\(188\) 9.10268i 0.663881i
\(189\) 0 0
\(190\) −1.48913 6.92820i −0.108033 0.502625i
\(191\) 13.6277 0.986067 0.493034 0.870010i \(-0.335888\pi\)
0.493034 + 0.870010i \(0.335888\pi\)
\(192\) 0 0
\(193\) 23.3639i 1.68177i 0.541216 + 0.840883i \(0.317964\pi\)
−0.541216 + 0.840883i \(0.682036\pi\)
\(194\) −3.25544 −0.233727
\(195\) 0 0
\(196\) −6.86141 −0.490100
\(197\) 1.87953i 0.133911i 0.997756 + 0.0669554i \(0.0213285\pi\)
−0.997756 + 0.0669554i \(0.978671\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 5.48913 + 12.1793i 0.388140 + 0.861204i
\(201\) 0 0
\(202\) 4.75372i 0.334471i
\(203\) 9.50744i 0.667292i
\(204\) 0 0
\(205\) 6.00000 1.28962i 0.419058 0.0900710i
\(206\) 8.23369 0.573668
\(207\) 0 0
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −21.4891 −1.47937 −0.739686 0.672952i \(-0.765026\pi\)
−0.739686 + 0.672952i \(0.765026\pi\)
\(212\) 4.34896i 0.298688i
\(213\) 0 0
\(214\) −5.25544 −0.359254
\(215\) 1.62772 + 7.57301i 0.111009 + 0.516475i
\(216\) 0 0
\(217\) 8.21782i 0.557862i
\(218\) 7.92287i 0.536604i
\(219\) 0 0
\(220\) 3.00000 0.644810i 0.202260 0.0434731i
\(221\) 0 0
\(222\) 0 0
\(223\) 7.57301i 0.507126i 0.967319 + 0.253563i \(0.0816026\pi\)
−0.967319 + 0.253563i \(0.918397\pi\)
\(224\) 20.2337 1.35192
\(225\) 0 0
\(226\) 12.7446 0.847756
\(227\) 9.80240i 0.650608i −0.945609 0.325304i \(-0.894533\pi\)
0.945609 0.325304i \(-0.105467\pi\)
\(228\) 0 0
\(229\) −20.3723 −1.34624 −0.673119 0.739534i \(-0.735046\pi\)
−0.673119 + 0.739534i \(0.735046\pi\)
\(230\) −4.37228 + 0.939764i −0.288300 + 0.0619662i
\(231\) 0 0
\(232\) 7.33296i 0.481433i
\(233\) 17.0256i 1.11538i 0.830049 + 0.557691i \(0.188312\pi\)
−0.830049 + 0.557691i \(0.811688\pi\)
\(234\) 0 0
\(235\) 3.11684 + 14.5012i 0.203320 + 0.945955i
\(236\) −2.23369 −0.145401
\(237\) 0 0
\(238\) 13.8564i 0.898177i
\(239\) −3.25544 −0.210577 −0.105288 0.994442i \(-0.533577\pi\)
−0.105288 + 0.994442i \(0.533577\pi\)
\(240\) 0 0
\(241\) 5.25544 0.338532 0.169266 0.985570i \(-0.445860\pi\)
0.169266 + 0.985570i \(0.445860\pi\)
\(242\) 0.792287i 0.0509301i
\(243\) 0 0
\(244\) 14.7446 0.943924
\(245\) −10.9307 + 2.34941i −0.698337 + 0.150098i
\(246\) 0 0
\(247\) 0 0
\(248\) 6.33830i 0.402482i
\(249\) 0 0
\(250\) 5.25544 + 7.13058i 0.332383 + 0.450978i
\(251\) 4.88316 0.308222 0.154111 0.988054i \(-0.450749\pi\)
0.154111 + 0.988054i \(0.450749\pi\)
\(252\) 0 0
\(253\) 2.52434i 0.158704i
\(254\) 9.25544 0.580738
\(255\) 0 0
\(256\) −13.8832 −0.867697
\(257\) 23.9538i 1.49419i 0.664715 + 0.747097i \(0.268553\pi\)
−0.664715 + 0.747097i \(0.731447\pi\)
\(258\) 0 0
\(259\) 38.2337 2.37573
\(260\) 0 0
\(261\) 0 0
\(262\) 6.92820i 0.428026i
\(263\) 14.1514i 0.872610i −0.899799 0.436305i \(-0.856287\pi\)
0.899799 0.436305i \(-0.143713\pi\)
\(264\) 0 0
\(265\) 1.48913 + 6.92820i 0.0914762 + 0.425596i
\(266\) −10.9783 −0.673120
\(267\) 0 0
\(268\) 0.884861i 0.0540515i
\(269\) 11.4891 0.700504 0.350252 0.936655i \(-0.386096\pi\)
0.350252 + 0.936655i \(0.386096\pi\)
\(270\) 0 0
\(271\) −9.48913 −0.576423 −0.288212 0.957567i \(-0.593061\pi\)
−0.288212 + 0.957567i \(0.593061\pi\)
\(272\) 3.16915i 0.192158i
\(273\) 0 0
\(274\) 1.76631 0.106707
\(275\) 4.55842 2.05446i 0.274883 0.123888i
\(276\) 0 0
\(277\) 8.21782i 0.493761i −0.969046 0.246881i \(-0.920594\pi\)
0.969046 0.246881i \(-0.0794055\pi\)
\(278\) 14.4463i 0.866432i
\(279\) 0 0
\(280\) 20.2337 4.34896i 1.20919 0.259900i
\(281\) 23.4891 1.40124 0.700622 0.713533i \(-0.252906\pi\)
0.700622 + 0.713533i \(0.252906\pi\)
\(282\) 0 0
\(283\) 4.75372i 0.282579i −0.989968 0.141290i \(-0.954875\pi\)
0.989968 0.141290i \(-0.0451249\pi\)
\(284\) −9.76631 −0.579524
\(285\) 0 0
\(286\) 0 0
\(287\) 9.50744i 0.561207i
\(288\) 0 0
\(289\) −8.48913 −0.499360
\(290\) −1.02175 4.75372i −0.0599992 0.279148i
\(291\) 0 0
\(292\) 9.50744i 0.556381i
\(293\) 10.0974i 0.589894i 0.955514 + 0.294947i \(0.0953019\pi\)
−0.955514 + 0.294947i \(0.904698\pi\)
\(294\) 0 0
\(295\) −3.55842 + 0.764836i −0.207179 + 0.0445304i
\(296\) −29.4891 −1.71402
\(297\) 0 0
\(298\) 9.10268i 0.527304i
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 17.6155i 1.01366i
\(303\) 0 0
\(304\) −2.51087 −0.144009
\(305\) 23.4891 5.04868i 1.34498 0.289086i
\(306\) 0 0
\(307\) 28.1176i 1.60475i 0.596817 + 0.802377i \(0.296432\pi\)
−0.596817 + 0.802377i \(0.703568\pi\)
\(308\) 4.75372i 0.270868i
\(309\) 0 0
\(310\) −0.883156 4.10891i −0.0501599 0.233371i
\(311\) 17.4891 0.991717 0.495859 0.868403i \(-0.334853\pi\)
0.495859 + 0.868403i \(0.334853\pi\)
\(312\) 0 0
\(313\) 31.8217i 1.79867i −0.437260 0.899335i \(-0.644051\pi\)
0.437260 0.899335i \(-0.355949\pi\)
\(314\) 4.27719 0.241376
\(315\) 0 0
\(316\) −17.4891 −0.983840
\(317\) 3.51900i 0.197647i −0.995105 0.0988235i \(-0.968492\pi\)
0.995105 0.0988235i \(-0.0315079\pi\)
\(318\) 0 0
\(319\) −2.74456 −0.153666
\(320\) −7.37228 + 1.58457i −0.412123 + 0.0885804i
\(321\) 0 0
\(322\) 6.92820i 0.386094i
\(323\) 20.1947i 1.12366i
\(324\) 0 0
\(325\) 0 0
\(326\) 2.74456 0.152007
\(327\) 0 0
\(328\) 7.33296i 0.404895i
\(329\) 22.9783 1.26683
\(330\) 0 0
\(331\) 3.11684 0.171317 0.0856586 0.996325i \(-0.472701\pi\)
0.0856586 + 0.996325i \(0.472701\pi\)
\(332\) 9.10268i 0.499575i
\(333\) 0 0
\(334\) 17.7228 0.969749
\(335\) 0.302985 + 1.40965i 0.0165538 + 0.0770172i
\(336\) 0 0
\(337\) 12.5668i 0.684556i 0.939599 + 0.342278i \(0.111199\pi\)
−0.939599 + 0.342278i \(0.888801\pi\)
\(338\) 10.2997i 0.560232i
\(339\) 0 0
\(340\) −3.25544 15.1460i −0.176551 0.821409i
\(341\) −2.37228 −0.128466
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) −9.25544 −0.499020
\(345\) 0 0
\(346\) −1.48913 −0.0800559
\(347\) 29.2974i 1.57277i −0.617739 0.786383i \(-0.711951\pi\)
0.617739 0.786383i \(-0.288049\pi\)
\(348\) 0 0
\(349\) 7.48913 0.400884 0.200442 0.979706i \(-0.435762\pi\)
0.200442 + 0.979706i \(0.435762\pi\)
\(350\) 12.5109 5.63858i 0.668734 0.301395i
\(351\) 0 0
\(352\) 5.84096i 0.311324i
\(353\) 21.7244i 1.15627i −0.815941 0.578136i \(-0.803780\pi\)
0.815941 0.578136i \(-0.196220\pi\)
\(354\) 0 0
\(355\) −15.5584 + 3.34408i −0.825755 + 0.177485i
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 12.5668i 0.664175i
\(359\) 6.51087 0.343631 0.171815 0.985129i \(-0.445037\pi\)
0.171815 + 0.985129i \(0.445037\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 5.45343i 0.286626i
\(363\) 0 0
\(364\) 0 0
\(365\) −3.25544 15.1460i −0.170397 0.792779i
\(366\) 0 0
\(367\) 24.0087i 1.25324i 0.779324 + 0.626621i \(0.215563\pi\)
−0.779324 + 0.626621i \(0.784437\pi\)
\(368\) 1.58457i 0.0826016i
\(369\) 0 0
\(370\) −19.1168 + 4.10891i −0.993837 + 0.213612i
\(371\) 10.9783 0.569962
\(372\) 0 0
\(373\) 8.21782i 0.425503i 0.977106 + 0.212751i \(0.0682424\pi\)
−0.977106 + 0.212751i \(0.931758\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) −17.7228 −0.913984
\(377\) 0 0
\(378\) 0 0
\(379\) 6.37228 0.327322 0.163661 0.986517i \(-0.447670\pi\)
0.163661 + 0.986517i \(0.447670\pi\)
\(380\) −12.0000 + 2.57924i −0.615587 + 0.132312i
\(381\) 0 0
\(382\) 10.7971i 0.552426i
\(383\) 5.69349i 0.290924i −0.989364 0.145462i \(-0.953533\pi\)
0.989364 0.145462i \(-0.0464668\pi\)
\(384\) 0 0
\(385\) −1.62772 7.57301i −0.0829562 0.385957i
\(386\) −18.5109 −0.942179
\(387\) 0 0
\(388\) 5.63858i 0.286256i
\(389\) −9.86141 −0.499993 −0.249997 0.968247i \(-0.580429\pi\)
−0.249997 + 0.968247i \(0.580429\pi\)
\(390\) 0 0
\(391\) 12.7446 0.644520
\(392\) 13.3591i 0.674735i
\(393\) 0 0
\(394\) −1.48913 −0.0750210
\(395\) −27.8614 + 5.98844i −1.40186 + 0.301311i
\(396\) 0 0
\(397\) 23.3639i 1.17260i −0.810095 0.586299i \(-0.800584\pi\)
0.810095 0.586299i \(-0.199416\pi\)
\(398\) 6.33830i 0.317710i
\(399\) 0 0
\(400\) 2.86141 1.28962i 0.143070 0.0644810i
\(401\) −11.4891 −0.573740 −0.286870 0.957970i \(-0.592615\pi\)
−0.286870 + 0.957970i \(0.592615\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −8.23369 −0.409641
\(405\) 0 0
\(406\) −7.53262 −0.373838
\(407\) 11.0371i 0.547089i
\(408\) 0 0
\(409\) −4.51087 −0.223048 −0.111524 0.993762i \(-0.535573\pi\)
−0.111524 + 0.993762i \(0.535573\pi\)
\(410\) 1.02175 + 4.75372i 0.0504606 + 0.234770i
\(411\) 0 0
\(412\) 14.2612i 0.702597i
\(413\) 5.63858i 0.277457i
\(414\) 0 0
\(415\) 3.11684 + 14.5012i 0.153000 + 0.711837i
\(416\) 0 0
\(417\) 0 0
\(418\) 3.16915i 0.155008i
\(419\) 22.9783 1.12256 0.561280 0.827626i \(-0.310309\pi\)
0.561280 + 0.827626i \(0.310309\pi\)
\(420\) 0 0
\(421\) 31.4891 1.53469 0.767343 0.641237i \(-0.221578\pi\)
0.767343 + 0.641237i \(0.221578\pi\)
\(422\) 17.0256i 0.828791i
\(423\) 0 0
\(424\) −8.46738 −0.411212
\(425\) −10.3723 23.0140i −0.503130 1.11634i
\(426\) 0 0
\(427\) 37.2203i 1.80121i
\(428\) 9.10268i 0.439995i
\(429\) 0 0
\(430\) −6.00000 + 1.28962i −0.289346 + 0.0621910i
\(431\) −31.7228 −1.52803 −0.764017 0.645196i \(-0.776776\pi\)
−0.764017 + 0.645196i \(0.776776\pi\)
\(432\) 0 0
\(433\) 20.5446i 0.987308i −0.869658 0.493654i \(-0.835661\pi\)
0.869658 0.493654i \(-0.164339\pi\)
\(434\) −6.51087 −0.312532
\(435\) 0 0
\(436\) −13.7228 −0.657204
\(437\) 10.0974i 0.483022i
\(438\) 0 0
\(439\) 1.48913 0.0710721 0.0355360 0.999368i \(-0.488686\pi\)
0.0355360 + 0.999368i \(0.488686\pi\)
\(440\) 1.25544 + 5.84096i 0.0598506 + 0.278457i
\(441\) 0 0
\(442\) 0 0
\(443\) 15.0911i 0.717001i 0.933530 + 0.358500i \(0.116712\pi\)
−0.933530 + 0.358500i \(0.883288\pi\)
\(444\) 0 0
\(445\) −9.55842 + 2.05446i −0.453113 + 0.0973905i
\(446\) −6.00000 −0.284108
\(447\) 0 0
\(448\) 11.6819i 0.551919i
\(449\) −21.8614 −1.03170 −0.515852 0.856678i \(-0.672524\pi\)
−0.515852 + 0.856678i \(0.672524\pi\)
\(450\) 0 0
\(451\) 2.74456 0.129236
\(452\) 22.0742i 1.03828i
\(453\) 0 0
\(454\) 7.76631 0.364491
\(455\) 0 0
\(456\) 0 0
\(457\) 20.7846i 0.972263i 0.873886 + 0.486132i \(0.161592\pi\)
−0.873886 + 0.486132i \(0.838408\pi\)
\(458\) 16.1407i 0.754205i
\(459\) 0 0
\(460\) 1.62772 + 7.57301i 0.0758928 + 0.353094i
\(461\) 32.2337 1.50127 0.750636 0.660716i \(-0.229747\pi\)
0.750636 + 0.660716i \(0.229747\pi\)
\(462\) 0 0
\(463\) 20.1398i 0.935976i −0.883735 0.467988i \(-0.844979\pi\)
0.883735 0.467988i \(-0.155021\pi\)
\(464\) −1.72281 −0.0799796
\(465\) 0 0
\(466\) −13.4891 −0.624872
\(467\) 4.40387i 0.203787i −0.994795 0.101893i \(-0.967510\pi\)
0.994795 0.101893i \(-0.0324900\pi\)
\(468\) 0 0
\(469\) 2.23369 0.103142
\(470\) −11.4891 + 2.46943i −0.529954 + 0.113907i
\(471\) 0 0
\(472\) 4.34896i 0.200177i
\(473\) 3.46410i 0.159280i
\(474\) 0 0
\(475\) −18.2337 + 8.21782i −0.836619 + 0.377060i
\(476\) −24.0000 −1.10004
\(477\) 0 0
\(478\) 2.57924i 0.117972i
\(479\) 17.4891 0.799099 0.399549 0.916712i \(-0.369167\pi\)
0.399549 + 0.916712i \(0.369167\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 4.16381i 0.189657i
\(483\) 0 0
\(484\) 1.37228 0.0623764
\(485\) 1.93070 + 8.98266i 0.0876687 + 0.407882i
\(486\) 0 0
\(487\) 22.7190i 1.02950i −0.857341 0.514749i \(-0.827885\pi\)
0.857341 0.514749i \(-0.172115\pi\)
\(488\) 28.7075i 1.29953i
\(489\) 0 0
\(490\) −1.86141 8.66025i −0.0840898 0.391230i
\(491\) −29.4891 −1.33083 −0.665413 0.746476i \(-0.731744\pi\)
−0.665413 + 0.746476i \(0.731744\pi\)
\(492\) 0 0
\(493\) 13.8564i 0.624061i
\(494\) 0 0
\(495\) 0 0
\(496\) −1.48913 −0.0668637
\(497\) 24.6535i 1.10586i
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 12.3505 9.10268i 0.552333 0.407084i
\(501\) 0 0
\(502\) 3.86886i 0.172676i
\(503\) 0.294954i 0.0131513i −0.999978 0.00657567i \(-0.997907\pi\)
0.999978 0.00657567i \(-0.00209311\pi\)
\(504\) 0 0
\(505\) −13.1168 + 2.81929i −0.583692 + 0.125457i
\(506\) −2.00000 −0.0889108
\(507\) 0 0
\(508\) 16.0309i 0.711256i
\(509\) 28.3723 1.25758 0.628790 0.777575i \(-0.283551\pi\)
0.628790 + 0.777575i \(0.283551\pi\)
\(510\) 0 0
\(511\) −24.0000 −1.06170
\(512\) 7.02078i 0.310277i
\(513\) 0 0
\(514\) −18.9783 −0.837095
\(515\) −4.88316 22.7190i −0.215178 1.00112i
\(516\) 0 0
\(517\) 6.63325i 0.291730i
\(518\) 30.2921i 1.33096i
\(519\) 0 0
\(520\) 0 0
\(521\) −18.6060 −0.815142 −0.407571 0.913173i \(-0.633624\pi\)
−0.407571 + 0.913173i \(0.633624\pi\)
\(522\) 0 0
\(523\) 9.10268i 0.398033i 0.979996 + 0.199016i \(0.0637747\pi\)
−0.979996 + 0.199016i \(0.936225\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) 11.2119 0.488864
\(527\) 11.9769i 0.521721i
\(528\) 0 0
\(529\) 16.6277 0.722944
\(530\) −5.48913 + 1.17981i −0.238432 + 0.0512479i
\(531\) 0 0
\(532\) 19.0149i 0.824400i
\(533\) 0 0
\(534\) 0 0
\(535\) 3.11684 + 14.5012i 0.134753 + 0.626942i
\(536\) −1.72281 −0.0744142
\(537\) 0 0
\(538\) 9.10268i 0.392445i
\(539\) −5.00000 −0.215365
\(540\) 0 0
\(541\) −0.233688 −0.0100470 −0.00502351 0.999987i \(-0.501599\pi\)
−0.00502351 + 0.999987i \(0.501599\pi\)
\(542\) 7.51811i 0.322930i
\(543\) 0 0
\(544\) 29.4891 1.26434
\(545\) −21.8614 + 4.69882i −0.936440 + 0.201275i
\(546\) 0 0
\(547\) 9.10268i 0.389203i 0.980882 + 0.194601i \(0.0623413\pi\)
−0.980882 + 0.194601i \(0.937659\pi\)
\(548\) 3.05934i 0.130689i
\(549\) 0 0
\(550\) 1.62772 + 3.61158i 0.0694062 + 0.153998i
\(551\) 10.9783 0.467689
\(552\) 0 0
\(553\) 44.1485i 1.87738i
\(554\) 6.51087 0.276621
\(555\) 0 0
\(556\) −25.0217 −1.06116
\(557\) 32.1716i 1.36315i 0.731747 + 0.681577i \(0.238705\pi\)
−0.731747 + 0.681577i \(0.761295\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.02175 4.75372i −0.0431768 0.200881i
\(561\) 0 0
\(562\) 18.6101i 0.785021i
\(563\) 12.2718i 0.517196i 0.965985 + 0.258598i \(0.0832605\pi\)
−0.965985 + 0.258598i \(0.916739\pi\)
\(564\) 0 0
\(565\) −7.55842 35.1658i −0.317985 1.47944i
\(566\) 3.76631 0.158310
\(567\) 0 0
\(568\) 19.0149i 0.797847i
\(569\) −38.7446 −1.62426 −0.812128 0.583479i \(-0.801691\pi\)
−0.812128 + 0.583479i \(0.801691\pi\)
\(570\) 0 0
\(571\) −21.4891 −0.899292 −0.449646 0.893207i \(-0.648450\pi\)
−0.449646 + 0.893207i \(0.648450\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 7.53262 0.314406
\(575\) 5.18614 + 11.5070i 0.216277 + 0.479875i
\(576\) 0 0
\(577\) 31.8217i 1.32476i −0.749170 0.662378i \(-0.769547\pi\)
0.749170 0.662378i \(-0.230453\pi\)
\(578\) 6.72582i 0.279757i
\(579\) 0 0
\(580\) −8.23369 + 1.76972i −0.341885 + 0.0734837i
\(581\) 22.9783 0.953298
\(582\) 0 0
\(583\) 3.16915i 0.131253i
\(584\) 18.5109 0.765985
\(585\) 0 0
\(586\) −8.00000 −0.330477
\(587\) 28.0078i 1.15600i −0.816035 0.578002i \(-0.803833\pi\)
0.816035 0.578002i \(-0.196167\pi\)
\(588\) 0 0
\(589\) 9.48913 0.390993
\(590\) −0.605969 2.81929i −0.0249474 0.116068i
\(591\) 0 0
\(592\) 6.92820i 0.284747i
\(593\) 43.5586i 1.78874i −0.447333 0.894368i \(-0.647626\pi\)
0.447333 0.894368i \(-0.352374\pi\)
\(594\) 0 0
\(595\) −38.2337 + 8.21782i −1.56743 + 0.336898i
\(596\) 15.7663 0.645813
\(597\) 0 0
\(598\) 0 0
\(599\) −34.9783 −1.42917 −0.714586 0.699547i \(-0.753385\pi\)
−0.714586 + 0.699547i \(0.753385\pi\)
\(600\) 0 0
\(601\) 30.4674 1.24279 0.621395 0.783497i \(-0.286566\pi\)
0.621395 + 0.783497i \(0.286566\pi\)
\(602\) 9.50744i 0.387494i
\(603\) 0 0
\(604\) 30.5109 1.24147
\(605\) 2.18614 0.469882i 0.0888793 0.0191034i
\(606\) 0 0
\(607\) 3.46410i 0.140604i −0.997526 0.0703018i \(-0.977604\pi\)
0.997526 0.0703018i \(-0.0223962\pi\)
\(608\) 23.3639i 0.947529i
\(609\) 0 0
\(610\) 4.00000 + 18.6101i 0.161955 + 0.753502i
\(611\) 0 0
\(612\) 0 0
\(613\) 44.1485i 1.78314i −0.452883 0.891570i \(-0.649605\pi\)
0.452883 0.891570i \(-0.350395\pi\)
\(614\) −22.2772 −0.899034
\(615\) 0 0
\(616\) 9.25544 0.372912
\(617\) 3.75906i 0.151334i −0.997133 0.0756669i \(-0.975891\pi\)
0.997133 0.0756669i \(-0.0241086\pi\)
\(618\) 0 0
\(619\) 3.11684 0.125277 0.0626383 0.998036i \(-0.480049\pi\)
0.0626383 + 0.998036i \(0.480049\pi\)
\(620\) −7.11684 + 1.52967i −0.285819 + 0.0614331i
\(621\) 0 0
\(622\) 13.8564i 0.555591i
\(623\) 15.1460i 0.606813i
\(624\) 0 0
\(625\) 16.5584 18.7302i 0.662337 0.749206i
\(626\) 25.2119 1.00767
\(627\) 0 0
\(628\) 7.40830i 0.295624i
\(629\) 55.7228 2.22181
\(630\) 0 0
\(631\) −16.6060 −0.661073 −0.330537 0.943793i \(-0.607230\pi\)
−0.330537 + 0.943793i \(0.607230\pi\)
\(632\) 34.0511i 1.35448i
\(633\) 0 0
\(634\) 2.78806 0.110728
\(635\) −5.48913 25.5383i −0.217829 1.01346i
\(636\) 0 0
\(637\) 0 0
\(638\) 2.17448i 0.0860885i
\(639\) 0 0
\(640\) 4.23369 + 19.6974i 0.167351 + 0.778607i
\(641\) 19.6277 0.775248 0.387624 0.921818i \(-0.373296\pi\)
0.387624 + 0.921818i \(0.373296\pi\)
\(642\) 0 0
\(643\) 39.1547i 1.54411i 0.635556 + 0.772055i \(0.280771\pi\)
−0.635556 + 0.772055i \(0.719229\pi\)
\(644\) 12.0000 0.472866
\(645\) 0 0
\(646\) −16.0000 −0.629512
\(647\) 41.0342i 1.61322i 0.591083 + 0.806611i \(0.298701\pi\)
−0.591083 + 0.806611i \(0.701299\pi\)
\(648\) 0 0
\(649\) −1.62772 −0.0638935
\(650\) 0 0
\(651\) 0 0
\(652\) 4.75372i 0.186170i
\(653\) 25.5932i 1.00154i −0.865580 0.500770i \(-0.833050\pi\)
0.865580 0.500770i \(-0.166950\pi\)
\(654\) 0 0
\(655\) −19.1168 + 4.10891i −0.746957 + 0.160548i
\(656\) 1.72281 0.0672646
\(657\) 0 0
\(658\) 18.2054i 0.709719i
\(659\) 32.7446 1.27555 0.637774 0.770224i \(-0.279856\pi\)
0.637774 + 0.770224i \(0.279856\pi\)
\(660\) 0 0
\(661\) 35.3505 1.37498 0.687488 0.726196i \(-0.258713\pi\)
0.687488 + 0.726196i \(0.258713\pi\)
\(662\) 2.46943i 0.0959773i
\(663\) 0 0
\(664\) −17.7228 −0.687779
\(665\) 6.51087 + 30.2921i 0.252481 + 1.17468i
\(666\) 0 0
\(667\) 6.92820i 0.268261i
\(668\) 30.6968i 1.18770i
\(669\) 0 0
\(670\) −1.11684 + 0.240051i −0.0431474 + 0.00927397i
\(671\) 10.7446 0.414789
\(672\) 0 0
\(673\) 1.28962i 0.0497112i −0.999691 0.0248556i \(-0.992087\pi\)
0.999691 0.0248556i \(-0.00791260\pi\)
\(674\) −9.95650 −0.383510
\(675\) 0 0
\(676\) 17.8397 0.686141
\(677\) 43.4487i 1.66987i 0.550348 + 0.834935i \(0.314495\pi\)
−0.550348 + 0.834935i \(0.685505\pi\)
\(678\) 0 0
\(679\) 14.2337 0.546239
\(680\) 29.4891 6.33830i 1.13086 0.243063i
\(681\) 0 0
\(682\) 1.87953i 0.0719708i
\(683\) 44.4434i 1.70058i −0.526314 0.850290i \(-0.676427\pi\)
0.526314 0.850290i \(-0.323573\pi\)
\(684\) 0 0
\(685\) −1.04755 4.87375i −0.0400247 0.186216i
\(686\) 5.48913 0.209576
\(687\) 0 0
\(688\) 2.17448i 0.0829013i
\(689\) 0 0
\(690\) 0 0
\(691\) 16.1386 0.613941 0.306971 0.951719i \(-0.400685\pi\)
0.306971 + 0.951719i \(0.400685\pi\)
\(692\) 2.57924i 0.0980480i
\(693\) 0 0
\(694\) 23.2119 0.881113
\(695\) −39.8614 + 8.56768i −1.51203 + 0.324991i
\(696\) 0 0
\(697\) 13.8564i 0.524849i
\(698\) 5.93354i 0.224588i
\(699\) 0 0
\(700\) −9.76631 21.6695i −0.369132 0.819029i
\(701\) 35.4891 1.34041 0.670203 0.742178i \(-0.266207\pi\)
0.670203 + 0.742178i \(0.266207\pi\)
\(702\) 0 0
\(703\) 44.1485i 1.66509i
\(704\) −3.37228 −0.127098
\(705\) 0 0
\(706\) 17.2119 0.647780
\(707\) 20.7846i 0.781686i
\(708\) 0 0
\(709\) −41.1168 −1.54418 −0.772088 0.635516i \(-0.780787\pi\)
−0.772088 + 0.635516i \(0.780787\pi\)
\(710\) −2.64947 12.3267i −0.0994328 0.462614i
\(711\) 0 0
\(712\) 11.6819i 0.437799i
\(713\) 5.98844i 0.224269i
\(714\) 0 0
\(715\) 0 0
\(716\) −21.7663 −0.813445
\(717\) 0 0
\(718\) 5.15848i 0.192513i
\(719\) 21.3505 0.796240 0.398120 0.917333i \(-0.369663\pi\)
0.398120 + 0.917333i \(0.369663\pi\)
\(720\) 0 0
\(721\) −36.0000 −1.34071
\(722\) 2.37686i 0.0884576i
\(723\) 0 0
\(724\) 9.44563 0.351044
\(725\) −12.5109 + 5.63858i −0.464642 + 0.209412i
\(726\) 0 0
\(727\) 15.7908i 0.585650i 0.956166 + 0.292825i \(0.0945953\pi\)
−0.956166 + 0.292825i \(0.905405\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 12.0000 2.57924i 0.444140 0.0954620i
\(731\) 17.4891 0.646859
\(732\) 0 0
\(733\) 30.2921i 1.11886i 0.828877 + 0.559431i \(0.188980\pi\)
−0.828877 + 0.559431i \(0.811020\pi\)
\(734\) −19.0217 −0.702106
\(735\) 0 0
\(736\) −14.7446 −0.543492
\(737\) 0.644810i 0.0237519i
\(738\) 0 0
\(739\) −0.744563 −0.0273892 −0.0136946 0.999906i \(-0.504359\pi\)
−0.0136946 + 0.999906i \(0.504359\pi\)
\(740\) 7.11684 + 33.1113i 0.261620 + 1.21720i
\(741\) 0 0
\(742\) 8.69793i 0.319311i
\(743\) 21.7793i 0.799004i 0.916732 + 0.399502i \(0.130817\pi\)
−0.916732 + 0.399502i \(0.869183\pi\)
\(744\) 0 0
\(745\) 25.1168 5.39853i 0.920210 0.197787i
\(746\) −6.51087 −0.238380
\(747\) 0 0
\(748\) 6.92820i 0.253320i
\(749\) 22.9783 0.839607
\(750\) 0 0
\(751\) 21.6277 0.789207 0.394603 0.918852i \(-0.370882\pi\)
0.394603 + 0.918852i \(0.370882\pi\)
\(752\) 4.16381i 0.151839i
\(753\) 0 0
\(754\) 0 0
\(755\) 48.6060 10.4472i 1.76895 0.380213i
\(756\) 0 0
\(757\) 39.7995i 1.44654i 0.690567 + 0.723269i \(0.257361\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 5.04868i 0.183376i
\(759\) 0 0
\(760\) −5.02175 23.3639i −0.182158 0.847496i
\(761\) −21.2554 −0.770509 −0.385255 0.922810i \(-0.625886\pi\)
−0.385255 + 0.922810i \(0.625886\pi\)
\(762\) 0 0
\(763\) 34.6410i 1.25409i
\(764\) 18.7011 0.676581
\(765\) 0 0
\(766\) 4.51087 0.162985
\(767\) 0 0
\(768\) 0 0
\(769\) 51.2119 1.84675 0.923375 0.383900i \(-0.125419\pi\)
0.923375 + 0.383900i \(0.125419\pi\)
\(770\) 6.00000 1.28962i 0.216225 0.0464747i
\(771\) 0 0
\(772\) 32.0618i 1.15393i
\(773\) 30.8820i 1.11075i 0.831601 + 0.555373i \(0.187425\pi\)
−0.831601 + 0.555373i \(0.812575\pi\)
\(774\) 0 0
\(775\) −10.8139 + 4.87375i −0.388445 + 0.175070i
\(776\) −10.9783 −0.394096
\(777\) 0 0
\(778\) 7.81306i 0.280112i
\(779\) −10.9783 −0.393337
\(780\) 0 0
\(781\) −7.11684 −0.254661
\(782\) 10.0974i 0.361081i
\(783\) 0 0
\(784\) −3.13859 −0.112093
\(785\) −2.53667 11.8020i −0.0905377 0.421230i
\(786\) 0 0
\(787\) 4.75372i 0.169452i −0.996404 0.0847259i \(-0.972999\pi\)
0.996404 0.0847259i \(-0.0270015\pi\)
\(788\) 2.57924i 0.0918816i
\(789\) 0 0
\(790\) −4.74456 22.0742i −0.168804 0.785366i
\(791\) −55.7228 −1.98128
\(792\) 0 0
\(793\) 0 0
\(794\) 18.5109 0.656926
\(795\) 0 0
\(796\) 10.9783 0.389114
\(797\) 31.2318i 1.10629i −0.833086 0.553144i \(-0.813428\pi\)
0.833086 0.553144i \(-0.186572\pi\)
\(798\) 0 0
\(799\) 33.4891 1.18476
\(800\) 12.0000 + 26.6256i 0.424264 + 0.941356i
\(801\) 0 0
\(802\) 9.10268i 0.321427i
\(803\) 6.92820i 0.244491i
\(804\) 0 0
\(805\) 19.1168 4.10891i 0.673780 0.144820i
\(806\) 0 0
\(807\) 0 0
\(808\) 16.0309i 0.563965i
\(809\) −21.2554 −0.747301 −0.373651 0.927569i \(-0.621894\pi\)
−0.373651 + 0.927569i \(0.621894\pi\)
\(810\) 0 0
\(811\) 34.2337 1.20211 0.601054 0.799209i \(-0.294748\pi\)
0.601054 + 0.799209i \(0.294748\pi\)
\(812\) 13.0469i 0.457856i
\(813\) 0 0
\(814\) −8.74456 −0.306497
\(815\) −1.62772 7.57301i −0.0570165 0.265271i
\(816\) 0 0
\(817\) 13.8564i 0.484774i
\(818\) 3.57391i 0.124959i
\(819\) 0 0
\(820\) 8.23369 1.76972i 0.287533 0.0618014i
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 33.5161i 1.16830i −0.811646 0.584149i \(-0.801428\pi\)
0.811646 0.584149i \(-0.198572\pi\)
\(824\) 27.7663 0.967285
\(825\) 0 0
\(826\) −4.46738 −0.155440
\(827\) 18.0202i 0.626624i −0.949650 0.313312i \(-0.898561\pi\)
0.949650 0.313312i \(-0.101439\pi\)
\(828\) 0 0
\(829\) −31.3505 −1.08885 −0.544424 0.838810i \(-0.683252\pi\)
−0.544424 + 0.838810i \(0.683252\pi\)
\(830\) −11.4891 + 2.46943i −0.398793 + 0.0857153i
\(831\) 0 0
\(832\) 0 0
\(833\) 25.2434i 0.874631i
\(834\) 0 0
\(835\) −10.5109 48.9022i −0.363744 1.69233i
\(836\) −5.48913 −0.189845
\(837\) 0 0
\(838\) 18.2054i 0.628894i
\(839\) 7.11684 0.245701 0.122850 0.992425i \(-0.460796\pi\)
0.122850 + 0.992425i \(0.460796\pi\)
\(840\) 0 0
\(841\) −21.4674 −0.740254
\(842\) 24.9484i 0.859779i
\(843\) 0 0
\(844\) −29.4891 −1.01506
\(845\) 28.4198 6.10846i 0.977672 0.210138i
\(846\) 0 0
\(847\) 3.46410i 0.119028i
\(848\) 1.98933i 0.0683140i
\(849\) 0 0
\(850\) 18.2337 8.21782i 0.625410 0.281869i
\(851\) −27.8614 −0.955077
\(852\) 0 0
\(853\) 24.6535i 0.844119i −0.906568 0.422059i \(-0.861307\pi\)
0.906568 0.422059i \(-0.138693\pi\)
\(854\) 29.4891 1.00910
\(855\) 0 0
\(856\) −17.7228 −0.605753
\(857\) 10.6873i 0.365070i −0.983199 0.182535i \(-0.941570\pi\)
0.983199 0.182535i \(-0.0584303\pi\)
\(858\) 0 0
\(859\) −11.1168 −0.379302 −0.189651 0.981852i \(-0.560736\pi\)
−0.189651 + 0.981852i \(0.560736\pi\)
\(860\) 2.23369 + 10.3923i 0.0761681 + 0.354375i
\(861\) 0 0
\(862\) 25.1336i 0.856053i
\(863\) 23.6588i 0.805355i −0.915342 0.402678i \(-0.868080\pi\)
0.915342 0.402678i \(-0.131920\pi\)
\(864\) 0 0
\(865\) 0.883156 + 4.10891i 0.0300282 + 0.139707i
\(866\) 16.2772 0.553121
\(867\) 0 0
\(868\) 11.2772i 0.382772i
\(869\) −12.7446 −0.432330
\(870\) 0 0
\(871\) 0 0
\(872\) 26.7181i 0.904791i
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) −22.9783 31.1769i −0.776807 1.05397i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 1.17981i 0.0398168i
\(879\) 0 0
\(880\) 1.37228 0.294954i 0.0462596 0.00994289i
\(881\) −21.8614 −0.736530 −0.368265 0.929721i \(-0.620048\pi\)
−0.368265 + 0.929721i \(0.620048\pi\)
\(882\) 0 0
\(883\) 24.2487i 0.816034i 0.912974 + 0.408017i \(0.133780\pi\)
−0.912974 + 0.408017i \(0.866220\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −11.9565 −0.401687
\(887\) 14.1514i 0.475156i −0.971368 0.237578i \(-0.923646\pi\)
0.971368 0.237578i \(-0.0763536\pi\)
\(888\) 0 0
\(889\) −40.4674 −1.35723
\(890\) −1.62772 7.57301i −0.0545613 0.253848i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) 26.5330i 0.887893i
\(894\) 0 0
\(895\) −34.6753 + 7.45299i −1.15907 + 0.249126i
\(896\) 31.2119 1.04272
\(897\) 0 0
\(898\) 17.3205i 0.577993i
\(899\) 6.51087 0.217150
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) 2.17448i 0.0724023i
\(903\) 0 0
\(904\) 42.9783 1.42944
\(905\) 15.0475 3.23427i 0.500197 0.107511i
\(906\) 0 0
\(907\) 19.8997i 0.660760i −0.943848 0.330380i \(-0.892823\pi\)
0.943848 0.330380i \(-0.107177\pi\)
\(908\) 13.4516i 0.446409i
\(909\) 0 0
\(910\) 0 0
\(911\) 30.5109 1.01087 0.505435 0.862865i \(-0.331332\pi\)
0.505435 + 0.862865i \(0.331332\pi\)
\(912\) 0 0
\(913\) 6.63325i 0.219529i
\(914\) −16.4674 −0.544692
\(915\) 0 0
\(916\) −27.9565 −0.923709
\(917\) 30.2921i 1.00033i
\(918\) 0 0
\(919\) −6.23369 −0.205630 −0.102815 0.994700i \(-0.532785\pi\)
−0.102815 + 0.994700i \(0.532785\pi\)
\(920\) −14.7446 + 3.16915i −0.486114 + 0.104484i
\(921\) 0 0
\(922\) 25.5383i 0.841060i
\(923\) 0 0
\(924\) 0 0
\(925\) 22.6753 + 50.3118i 0.745558 + 1.65424i
\(926\) 15.9565 0.524363
\(927\) 0 0
\(928\) 16.0309i 0.526240i
\(929\) −52.9783 −1.73816 −0.869080 0.494672i \(-0.835288\pi\)
−0.869080 + 0.494672i \(0.835288\pi\)
\(930\) 0 0
\(931\) 20.0000 0.655474
\(932\) 23.3639i 0.765308i
\(933\) 0 0
\(934\) 3.48913 0.114168
\(935\) −2.37228 11.0371i −0.0775819 0.360952i
\(936\) 0 0
\(937\) 25.9431i 0.847524i 0.905774 + 0.423762i \(0.139291\pi\)
−0.905774 + 0.423762i \(0.860709\pi\)
\(938\) 1.76972i 0.0577835i
\(939\) 0 0
\(940\) 4.27719 + 19.8997i 0.139506 + 0.649058i
\(941\) −10.4674 −0.341227 −0.170613 0.985338i \(-0.554575\pi\)
−0.170613 + 0.985338i \(0.554575\pi\)
\(942\) 0 0
\(943\) 6.92820i 0.225613i
\(944\) −1.02175 −0.0332551
\(945\) 0 0
\(946\) −2.74456 −0.0892334
\(947\) 56.1802i 1.82561i 0.408393 + 0.912806i \(0.366089\pi\)
−0.408393 + 0.912806i \(0.633911\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −6.51087 14.4463i −0.211241 0.468700i
\(951\) 0 0
\(952\) 46.7277i 1.51445i
\(953\) 41.6790i 1.35012i 0.737765 + 0.675058i \(0.235881\pi\)
−0.737765 + 0.675058i \(0.764119\pi\)
\(954\) 0 0
\(955\) 29.7921 6.40342i 0.964050 0.207210i
\(956\) −4.46738 −0.144485
\(957\) 0 0
\(958\) 13.8564i 0.447680i
\(959\) −7.72281 −0.249383
\(960\) 0 0
\(961\) −25.3723 −0.818461
\(962\) 0 0
\(963\) 0 0
\(964\) 7.21194 0.232281
\(965\) 10.9783 + 51.0767i 0.353402 + 1.64422i
\(966\) 0 0
\(967\) 46.3229i 1.48965i 0.667262 + 0.744823i \(0.267466\pi\)
−0.667262 + 0.744823i \(0.732534\pi\)
\(968\) 2.67181i 0.0858754i
\(969\) 0 0
\(970\) −7.11684 + 1.52967i −0.228508 + 0.0491148i
\(971\) −54.0951 −1.73599 −0.867997 0.496569i \(-0.834593\pi\)
−0.867997 + 0.496569i \(0.834593\pi\)
\(972\) 0 0
\(973\) 63.1633i 2.02492i
\(974\) 18.0000 0.576757
\(975\) 0 0
\(976\) 6.74456 0.215888
\(977\) 27.3630i 0.875419i −0.899117 0.437709i \(-0.855790\pi\)
0.899117 0.437709i \(-0.144210\pi\)
\(978\) 0 0
\(979\) −4.37228 −0.139739
\(980\) −15.0000 + 3.22405i −0.479157 + 0.102989i
\(981\) 0 0
\(982\) 23.3639i 0.745570i
\(983\) 8.16292i 0.260357i 0.991491 + 0.130178i \(0.0415550\pi\)
−0.991491 + 0.130178i \(0.958445\pi\)
\(984\) 0 0
\(985\) 0.883156 + 4.10891i 0.0281397 + 0.130921i
\(986\) −10.9783 −0.349619
\(987\) 0 0
\(988\) 0 0
\(989\) −8.74456 −0.278061
\(990\) 0 0
\(991\) −26.9783 −0.856992 −0.428496 0.903544i \(-0.640956\pi\)
−0.428496 + 0.903544i \(0.640956\pi\)
\(992\) 13.8564i 0.439941i
\(993\) 0 0
\(994\) −19.5326 −0.619537
\(995\) 17.4891 3.75906i 0.554443 0.119170i
\(996\) 0 0
\(997\) 22.0742i 0.699098i −0.936918 0.349549i \(-0.886335\pi\)
0.936918 0.349549i \(-0.113665\pi\)
\(998\) 15.8457i 0.501588i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.c.a.199.3 4
3.2 odd 2 55.2.b.a.34.2 4
5.2 odd 4 2475.2.a.bi.1.2 4
5.3 odd 4 2475.2.a.bi.1.3 4
5.4 even 2 inner 495.2.c.a.199.2 4
12.11 even 2 880.2.b.h.529.1 4
15.2 even 4 275.2.a.h.1.3 4
15.8 even 4 275.2.a.h.1.2 4
15.14 odd 2 55.2.b.a.34.3 yes 4
33.2 even 10 605.2.j.j.444.3 16
33.5 odd 10 605.2.j.i.124.3 16
33.8 even 10 605.2.j.j.9.3 16
33.14 odd 10 605.2.j.i.9.2 16
33.17 even 10 605.2.j.j.124.2 16
33.20 odd 10 605.2.j.i.444.2 16
33.26 odd 10 605.2.j.i.269.3 16
33.29 even 10 605.2.j.j.269.2 16
33.32 even 2 605.2.b.c.364.3 4
60.23 odd 4 4400.2.a.cc.1.4 4
60.47 odd 4 4400.2.a.cc.1.1 4
60.59 even 2 880.2.b.h.529.4 4
165.14 odd 10 605.2.j.i.9.3 16
165.29 even 10 605.2.j.j.269.3 16
165.32 odd 4 3025.2.a.ba.1.2 4
165.59 odd 10 605.2.j.i.269.2 16
165.74 even 10 605.2.j.j.9.2 16
165.98 odd 4 3025.2.a.ba.1.3 4
165.104 odd 10 605.2.j.i.124.2 16
165.119 odd 10 605.2.j.i.444.3 16
165.134 even 10 605.2.j.j.444.2 16
165.149 even 10 605.2.j.j.124.3 16
165.164 even 2 605.2.b.c.364.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.2 4 3.2 odd 2
55.2.b.a.34.3 yes 4 15.14 odd 2
275.2.a.h.1.2 4 15.8 even 4
275.2.a.h.1.3 4 15.2 even 4
495.2.c.a.199.2 4 5.4 even 2 inner
495.2.c.a.199.3 4 1.1 even 1 trivial
605.2.b.c.364.2 4 165.164 even 2
605.2.b.c.364.3 4 33.32 even 2
605.2.j.i.9.2 16 33.14 odd 10
605.2.j.i.9.3 16 165.14 odd 10
605.2.j.i.124.2 16 165.104 odd 10
605.2.j.i.124.3 16 33.5 odd 10
605.2.j.i.269.2 16 165.59 odd 10
605.2.j.i.269.3 16 33.26 odd 10
605.2.j.i.444.2 16 33.20 odd 10
605.2.j.i.444.3 16 165.119 odd 10
605.2.j.j.9.2 16 165.74 even 10
605.2.j.j.9.3 16 33.8 even 10
605.2.j.j.124.2 16 33.17 even 10
605.2.j.j.124.3 16 165.149 even 10
605.2.j.j.269.2 16 33.29 even 10
605.2.j.j.269.3 16 165.29 even 10
605.2.j.j.444.2 16 165.134 even 10
605.2.j.j.444.3 16 33.2 even 10
880.2.b.h.529.1 4 12.11 even 2
880.2.b.h.529.4 4 60.59 even 2
2475.2.a.bi.1.2 4 5.2 odd 4
2475.2.a.bi.1.3 4 5.3 odd 4
3025.2.a.ba.1.2 4 165.32 odd 4
3025.2.a.ba.1.3 4 165.98 odd 4
4400.2.a.cc.1.1 4 60.47 odd 4
4400.2.a.cc.1.4 4 60.23 odd 4