Properties

Label 495.2.c.a.199.1
Level $495$
Weight $2$
Character 495.199
Analytic conductor $3.953$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,2,Mod(199,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 495.199
Dual form 495.2.c.a.199.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52434i q^{2} -4.37228 q^{4} +(-0.686141 - 2.12819i) q^{5} -3.46410i q^{7} +5.98844i q^{8} +(-5.37228 + 1.73205i) q^{10} +1.00000 q^{11} -8.74456 q^{14} +6.37228 q^{16} +1.58457i q^{17} -4.00000 q^{19} +(3.00000 + 9.30506i) q^{20} -2.52434i q^{22} -0.792287i q^{23} +(-4.05842 + 2.92048i) q^{25} +15.1460i q^{28} +8.74456 q^{29} +3.37228 q^{31} -4.10891i q^{32} +4.00000 q^{34} +(-7.37228 + 2.37686i) q^{35} +1.08724i q^{37} +10.0974i q^{38} +(12.7446 - 4.10891i) q^{40} -8.74456 q^{41} +3.46410i q^{43} -4.37228 q^{44} -2.00000 q^{46} -6.63325i q^{47} -5.00000 q^{49} +(7.37228 + 10.2448i) q^{50} -10.0974i q^{53} +(-0.686141 - 2.12819i) q^{55} +20.7446 q^{56} -22.0742i q^{58} -7.37228 q^{59} -0.744563 q^{61} -8.51278i q^{62} +2.37228 q^{64} -9.30506i q^{67} -6.92820i q^{68} +(6.00000 + 18.6101i) q^{70} +10.1168 q^{71} -6.92820i q^{73} +2.74456 q^{74} +17.4891 q^{76} -3.46410i q^{77} -1.25544 q^{79} +(-4.37228 - 13.5615i) q^{80} +22.0742i q^{82} -6.63325i q^{83} +(3.37228 - 1.08724i) q^{85} +8.74456 q^{86} +5.98844i q^{88} +1.37228 q^{89} +3.46410i q^{92} -16.7446 q^{94} +(2.74456 + 8.51278i) q^{95} -5.84096i q^{97} +12.6217i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{4} + 3 q^{5} - 10 q^{10} + 4 q^{11} - 12 q^{14} + 14 q^{16} - 16 q^{19} + 12 q^{20} + q^{25} + 12 q^{29} + 2 q^{31} + 16 q^{34} - 18 q^{35} + 28 q^{40} - 12 q^{41} - 6 q^{44} - 8 q^{46} - 20 q^{49}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.52434i 1.78498i −0.451071 0.892488i \(-0.648958\pi\)
0.451071 0.892488i \(-0.351042\pi\)
\(3\) 0 0
\(4\) −4.37228 −2.18614
\(5\) −0.686141 2.12819i −0.306851 0.951757i
\(6\) 0 0
\(7\) 3.46410i 1.30931i −0.755929 0.654654i \(-0.772814\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) 5.98844i 2.11723i
\(9\) 0 0
\(10\) −5.37228 + 1.73205i −1.69886 + 0.547723i
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −8.74456 −2.33708
\(15\) 0 0
\(16\) 6.37228 1.59307
\(17\) 1.58457i 0.384316i 0.981364 + 0.192158i \(0.0615486\pi\)
−0.981364 + 0.192158i \(0.938451\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 3.00000 + 9.30506i 0.670820 + 2.08068i
\(21\) 0 0
\(22\) 2.52434i 0.538191i
\(23\) 0.792287i 0.165203i −0.996583 0.0826016i \(-0.973677\pi\)
0.996583 0.0826016i \(-0.0263229\pi\)
\(24\) 0 0
\(25\) −4.05842 + 2.92048i −0.811684 + 0.584096i
\(26\) 0 0
\(27\) 0 0
\(28\) 15.1460i 2.86233i
\(29\) 8.74456 1.62382 0.811912 0.583779i \(-0.198427\pi\)
0.811912 + 0.583779i \(0.198427\pi\)
\(30\) 0 0
\(31\) 3.37228 0.605680 0.302840 0.953041i \(-0.402065\pi\)
0.302840 + 0.953041i \(0.402065\pi\)
\(32\) 4.10891i 0.726360i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) −7.37228 + 2.37686i −1.24614 + 0.401763i
\(36\) 0 0
\(37\) 1.08724i 0.178741i 0.995998 + 0.0893706i \(0.0284856\pi\)
−0.995998 + 0.0893706i \(0.971514\pi\)
\(38\) 10.0974i 1.63801i
\(39\) 0 0
\(40\) 12.7446 4.10891i 2.01509 0.649676i
\(41\) −8.74456 −1.36567 −0.682836 0.730572i \(-0.739253\pi\)
−0.682836 + 0.730572i \(0.739253\pi\)
\(42\) 0 0
\(43\) 3.46410i 0.528271i 0.964486 + 0.264135i \(0.0850865\pi\)
−0.964486 + 0.264135i \(0.914913\pi\)
\(44\) −4.37228 −0.659146
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 6.63325i 0.967559i −0.875190 0.483779i \(-0.839264\pi\)
0.875190 0.483779i \(-0.160736\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 7.37228 + 10.2448i 1.04260 + 1.44884i
\(51\) 0 0
\(52\) 0 0
\(53\) 10.0974i 1.38698i −0.720467 0.693489i \(-0.756073\pi\)
0.720467 0.693489i \(-0.243927\pi\)
\(54\) 0 0
\(55\) −0.686141 2.12819i −0.0925192 0.286966i
\(56\) 20.7446 2.77211
\(57\) 0 0
\(58\) 22.0742i 2.89849i
\(59\) −7.37228 −0.959789 −0.479895 0.877326i \(-0.659325\pi\)
−0.479895 + 0.877326i \(0.659325\pi\)
\(60\) 0 0
\(61\) −0.744563 −0.0953315 −0.0476657 0.998863i \(-0.515178\pi\)
−0.0476657 + 0.998863i \(0.515178\pi\)
\(62\) 8.51278i 1.08112i
\(63\) 0 0
\(64\) 2.37228 0.296535
\(65\) 0 0
\(66\) 0 0
\(67\) 9.30506i 1.13679i −0.822754 0.568397i \(-0.807564\pi\)
0.822754 0.568397i \(-0.192436\pi\)
\(68\) 6.92820i 0.840168i
\(69\) 0 0
\(70\) 6.00000 + 18.6101i 0.717137 + 2.22434i
\(71\) 10.1168 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i −0.914121 0.405442i \(-0.867117\pi\)
0.914121 0.405442i \(-0.132883\pi\)
\(74\) 2.74456 0.319049
\(75\) 0 0
\(76\) 17.4891 2.00614
\(77\) 3.46410i 0.394771i
\(78\) 0 0
\(79\) −1.25544 −0.141248 −0.0706239 0.997503i \(-0.522499\pi\)
−0.0706239 + 0.997503i \(0.522499\pi\)
\(80\) −4.37228 13.5615i −0.488836 1.51622i
\(81\) 0 0
\(82\) 22.0742i 2.43769i
\(83\) 6.63325i 0.728094i −0.931381 0.364047i \(-0.881395\pi\)
0.931381 0.364047i \(-0.118605\pi\)
\(84\) 0 0
\(85\) 3.37228 1.08724i 0.365775 0.117928i
\(86\) 8.74456 0.942950
\(87\) 0 0
\(88\) 5.98844i 0.638370i
\(89\) 1.37228 0.145462 0.0727308 0.997352i \(-0.476829\pi\)
0.0727308 + 0.997352i \(0.476829\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.46410i 0.361158i
\(93\) 0 0
\(94\) −16.7446 −1.72707
\(95\) 2.74456 + 8.51278i 0.281586 + 0.873393i
\(96\) 0 0
\(97\) 5.84096i 0.593060i −0.955024 0.296530i \(-0.904171\pi\)
0.955024 0.296530i \(-0.0958295\pi\)
\(98\) 12.6217i 1.27498i
\(99\) 0 0
\(100\) 17.7446 12.7692i 1.77446 1.27692i
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 10.3923i 1.02398i −0.858990 0.511992i \(-0.828908\pi\)
0.858990 0.511992i \(-0.171092\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −25.4891 −2.47572
\(107\) 6.63325i 0.641260i −0.947204 0.320630i \(-0.896105\pi\)
0.947204 0.320630i \(-0.103895\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −5.37228 + 1.73205i −0.512227 + 0.165145i
\(111\) 0 0
\(112\) 22.0742i 2.08582i
\(113\) 0.497333i 0.0467852i 0.999726 + 0.0233926i \(0.00744677\pi\)
−0.999726 + 0.0233926i \(0.992553\pi\)
\(114\) 0 0
\(115\) −1.68614 + 0.543620i −0.157233 + 0.0506929i
\(116\) −38.2337 −3.54991
\(117\) 0 0
\(118\) 18.6101i 1.71320i
\(119\) 5.48913 0.503187
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 1.87953i 0.170164i
\(123\) 0 0
\(124\) −14.7446 −1.32410
\(125\) 9.00000 + 6.63325i 0.804984 + 0.593296i
\(126\) 0 0
\(127\) 8.21782i 0.729214i 0.931162 + 0.364607i \(0.118797\pi\)
−0.931162 + 0.364607i \(0.881203\pi\)
\(128\) 14.2063i 1.25567i
\(129\) 0 0
\(130\) 0 0
\(131\) 2.74456 0.239794 0.119897 0.992786i \(-0.461744\pi\)
0.119897 + 0.992786i \(0.461744\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) −23.4891 −2.02915
\(135\) 0 0
\(136\) −9.48913 −0.813686
\(137\) 14.3537i 1.22632i 0.789958 + 0.613161i \(0.210102\pi\)
−0.789958 + 0.613161i \(0.789898\pi\)
\(138\) 0 0
\(139\) 16.2337 1.37692 0.688462 0.725273i \(-0.258286\pi\)
0.688462 + 0.725273i \(0.258286\pi\)
\(140\) 32.2337 10.3923i 2.72424 0.878310i
\(141\) 0 0
\(142\) 25.5383i 2.14313i
\(143\) 0 0
\(144\) 0 0
\(145\) −6.00000 18.6101i −0.498273 1.54549i
\(146\) −17.4891 −1.44741
\(147\) 0 0
\(148\) 4.75372i 0.390754i
\(149\) −11.4891 −0.941226 −0.470613 0.882340i \(-0.655967\pi\)
−0.470613 + 0.882340i \(0.655967\pi\)
\(150\) 0 0
\(151\) −12.2337 −0.995563 −0.497782 0.867302i \(-0.665852\pi\)
−0.497782 + 0.867302i \(0.665852\pi\)
\(152\) 23.9538i 1.94291i
\(153\) 0 0
\(154\) −8.74456 −0.704657
\(155\) −2.31386 7.17687i −0.185854 0.576460i
\(156\) 0 0
\(157\) 24.4511i 1.95141i 0.219090 + 0.975705i \(0.429691\pi\)
−0.219090 + 0.975705i \(0.570309\pi\)
\(158\) 3.16915i 0.252124i
\(159\) 0 0
\(160\) −8.74456 + 2.81929i −0.691318 + 0.222885i
\(161\) −2.74456 −0.216302
\(162\) 0 0
\(163\) 3.46410i 0.271329i −0.990755 0.135665i \(-0.956683\pi\)
0.990755 0.135665i \(-0.0433170\pi\)
\(164\) 38.2337 2.98555
\(165\) 0 0
\(166\) −16.7446 −1.29963
\(167\) 15.7359i 1.21768i −0.793292 0.608842i \(-0.791635\pi\)
0.793292 0.608842i \(-0.208365\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) −2.74456 8.51278i −0.210498 0.652900i
\(171\) 0 0
\(172\) 15.1460i 1.15487i
\(173\) 8.51278i 0.647214i 0.946192 + 0.323607i \(0.104896\pi\)
−0.946192 + 0.323607i \(0.895104\pi\)
\(174\) 0 0
\(175\) 10.1168 + 14.0588i 0.764762 + 1.06274i
\(176\) 6.37228 0.480329
\(177\) 0 0
\(178\) 3.46410i 0.259645i
\(179\) 12.8614 0.961307 0.480653 0.876911i \(-0.340400\pi\)
0.480653 + 0.876911i \(0.340400\pi\)
\(180\) 0 0
\(181\) 24.1168 1.79259 0.896295 0.443457i \(-0.146248\pi\)
0.896295 + 0.443457i \(0.146248\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.74456 0.349774
\(185\) 2.31386 0.746000i 0.170118 0.0548470i
\(186\) 0 0
\(187\) 1.58457i 0.115876i
\(188\) 29.0024i 2.11522i
\(189\) 0 0
\(190\) 21.4891 6.92820i 1.55899 0.502625i
\(191\) 19.3723 1.40173 0.700865 0.713294i \(-0.252798\pi\)
0.700865 + 0.713294i \(0.252798\pi\)
\(192\) 0 0
\(193\) 16.4356i 1.18306i −0.806282 0.591532i \(-0.798523\pi\)
0.806282 0.591532i \(-0.201477\pi\)
\(194\) −14.7446 −1.05860
\(195\) 0 0
\(196\) 21.8614 1.56153
\(197\) 8.51278i 0.606510i 0.952909 + 0.303255i \(0.0980734\pi\)
−0.952909 + 0.303255i \(0.901927\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) −17.4891 24.3036i −1.23667 1.71853i
\(201\) 0 0
\(202\) 15.1460i 1.06567i
\(203\) 30.2921i 2.12609i
\(204\) 0 0
\(205\) 6.00000 + 18.6101i 0.419058 + 1.29979i
\(206\) −26.2337 −1.82779
\(207\) 0 0
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 1.48913 0.102516 0.0512578 0.998685i \(-0.483677\pi\)
0.0512578 + 0.998685i \(0.483677\pi\)
\(212\) 44.1485i 3.03213i
\(213\) 0 0
\(214\) −16.7446 −1.14463
\(215\) 7.37228 2.37686i 0.502785 0.162101i
\(216\) 0 0
\(217\) 11.6819i 0.793021i
\(218\) 25.2434i 1.70970i
\(219\) 0 0
\(220\) 3.00000 + 9.30506i 0.202260 + 0.627347i
\(221\) 0 0
\(222\) 0 0
\(223\) 2.37686i 0.159166i −0.996828 0.0795832i \(-0.974641\pi\)
0.996828 0.0795832i \(-0.0253589\pi\)
\(224\) −14.2337 −0.951028
\(225\) 0 0
\(226\) 1.25544 0.0835105
\(227\) 16.7306i 1.11045i 0.831701 + 0.555224i \(0.187368\pi\)
−0.831701 + 0.555224i \(0.812632\pi\)
\(228\) 0 0
\(229\) −14.6277 −0.966627 −0.483313 0.875447i \(-0.660567\pi\)
−0.483313 + 0.875447i \(0.660567\pi\)
\(230\) 1.37228 + 4.25639i 0.0904856 + 0.280658i
\(231\) 0 0
\(232\) 52.3663i 3.43801i
\(233\) 3.75906i 0.246264i 0.992390 + 0.123132i \(0.0392938\pi\)
−0.992390 + 0.123132i \(0.960706\pi\)
\(234\) 0 0
\(235\) −14.1168 + 4.55134i −0.920881 + 0.296897i
\(236\) 32.2337 2.09823
\(237\) 0 0
\(238\) 13.8564i 0.898177i
\(239\) −14.7446 −0.953746 −0.476873 0.878972i \(-0.658230\pi\)
−0.476873 + 0.878972i \(0.658230\pi\)
\(240\) 0 0
\(241\) 16.7446 1.07861 0.539306 0.842110i \(-0.318687\pi\)
0.539306 + 0.842110i \(0.318687\pi\)
\(242\) 2.52434i 0.162271i
\(243\) 0 0
\(244\) 3.25544 0.208408
\(245\) 3.43070 + 10.6410i 0.219180 + 0.679827i
\(246\) 0 0
\(247\) 0 0
\(248\) 20.1947i 1.28236i
\(249\) 0 0
\(250\) 16.7446 22.7190i 1.05902 1.43688i
\(251\) 22.1168 1.39600 0.698001 0.716096i \(-0.254073\pi\)
0.698001 + 0.716096i \(0.254073\pi\)
\(252\) 0 0
\(253\) 0.792287i 0.0498107i
\(254\) 20.7446 1.30163
\(255\) 0 0
\(256\) −31.1168 −1.94480
\(257\) 10.6873i 0.666653i 0.942811 + 0.333326i \(0.108171\pi\)
−0.942811 + 0.333326i \(0.891829\pi\)
\(258\) 0 0
\(259\) 3.76631 0.234027
\(260\) 0 0
\(261\) 0 0
\(262\) 6.92820i 0.428026i
\(263\) 27.4179i 1.69066i −0.534246 0.845329i \(-0.679405\pi\)
0.534246 0.845329i \(-0.320595\pi\)
\(264\) 0 0
\(265\) −21.4891 + 6.92820i −1.32007 + 0.425596i
\(266\) 34.9783 2.14465
\(267\) 0 0
\(268\) 40.6844i 2.48519i
\(269\) −11.4891 −0.700504 −0.350252 0.936655i \(-0.613904\pi\)
−0.350252 + 0.936655i \(0.613904\pi\)
\(270\) 0 0
\(271\) 13.4891 0.819406 0.409703 0.912219i \(-0.365632\pi\)
0.409703 + 0.912219i \(0.365632\pi\)
\(272\) 10.0974i 0.612242i
\(273\) 0 0
\(274\) 36.2337 2.18896
\(275\) −4.05842 + 2.92048i −0.244732 + 0.176112i
\(276\) 0 0
\(277\) 11.6819i 0.701899i 0.936394 + 0.350949i \(0.114141\pi\)
−0.936394 + 0.350949i \(0.885859\pi\)
\(278\) 40.9793i 2.45778i
\(279\) 0 0
\(280\) −14.2337 44.1485i −0.850626 2.63838i
\(281\) 0.510875 0.0304762 0.0152381 0.999884i \(-0.495149\pi\)
0.0152381 + 0.999884i \(0.495149\pi\)
\(282\) 0 0
\(283\) 15.1460i 0.900338i 0.892943 + 0.450169i \(0.148636\pi\)
−0.892943 + 0.450169i \(0.851364\pi\)
\(284\) −44.2337 −2.62479
\(285\) 0 0
\(286\) 0 0
\(287\) 30.2921i 1.78808i
\(288\) 0 0
\(289\) 14.4891 0.852301
\(290\) −46.9783 + 15.1460i −2.75866 + 0.889405i
\(291\) 0 0
\(292\) 30.2921i 1.77271i
\(293\) 3.16915i 0.185144i −0.995706 0.0925718i \(-0.970491\pi\)
0.995706 0.0925718i \(-0.0295088\pi\)
\(294\) 0 0
\(295\) 5.05842 + 15.6896i 0.294513 + 0.913487i
\(296\) −6.51087 −0.378437
\(297\) 0 0
\(298\) 29.0024i 1.68007i
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 30.8820i 1.77706i
\(303\) 0 0
\(304\) −25.4891 −1.46190
\(305\) 0.510875 + 1.58457i 0.0292526 + 0.0907324i
\(306\) 0 0
\(307\) 31.5817i 1.80246i −0.433340 0.901231i \(-0.642665\pi\)
0.433340 0.901231i \(-0.357335\pi\)
\(308\) 15.1460i 0.863025i
\(309\) 0 0
\(310\) −18.1168 + 5.84096i −1.02897 + 0.331744i
\(311\) −5.48913 −0.311260 −0.155630 0.987815i \(-0.549741\pi\)
−0.155630 + 0.987815i \(0.549741\pi\)
\(312\) 0 0
\(313\) 21.8719i 1.23627i −0.786072 0.618135i \(-0.787888\pi\)
0.786072 0.618135i \(-0.212112\pi\)
\(314\) 61.7228 3.48322
\(315\) 0 0
\(316\) 5.48913 0.308787
\(317\) 32.9639i 1.85144i 0.378215 + 0.925718i \(0.376538\pi\)
−0.378215 + 0.925718i \(0.623462\pi\)
\(318\) 0 0
\(319\) 8.74456 0.489602
\(320\) −1.62772 5.04868i −0.0909922 0.282230i
\(321\) 0 0
\(322\) 6.92820i 0.386094i
\(323\) 6.33830i 0.352672i
\(324\) 0 0
\(325\) 0 0
\(326\) −8.74456 −0.484317
\(327\) 0 0
\(328\) 52.3663i 2.89144i
\(329\) −22.9783 −1.26683
\(330\) 0 0
\(331\) −14.1168 −0.775932 −0.387966 0.921674i \(-0.626822\pi\)
−0.387966 + 0.921674i \(0.626822\pi\)
\(332\) 29.0024i 1.59172i
\(333\) 0 0
\(334\) −39.7228 −2.17354
\(335\) −19.8030 + 6.38458i −1.08195 + 0.348827i
\(336\) 0 0
\(337\) 32.4665i 1.76856i 0.466952 + 0.884282i \(0.345352\pi\)
−0.466952 + 0.884282i \(0.654648\pi\)
\(338\) 32.8164i 1.78498i
\(339\) 0 0
\(340\) −14.7446 + 4.75372i −0.799636 + 0.257807i
\(341\) 3.37228 0.182619
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) −20.7446 −1.11847
\(345\) 0 0
\(346\) 21.4891 1.15526
\(347\) 22.6641i 1.21667i −0.793679 0.608337i \(-0.791837\pi\)
0.793679 0.608337i \(-0.208163\pi\)
\(348\) 0 0
\(349\) −15.4891 −0.829114 −0.414557 0.910023i \(-0.636063\pi\)
−0.414557 + 0.910023i \(0.636063\pi\)
\(350\) 35.4891 25.5383i 1.89697 1.36508i
\(351\) 0 0
\(352\) 4.10891i 0.219006i
\(353\) 25.0410i 1.33280i −0.745595 0.666399i \(-0.767835\pi\)
0.745595 0.666399i \(-0.232165\pi\)
\(354\) 0 0
\(355\) −6.94158 21.5306i −0.368421 1.14273i
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 32.4665i 1.71591i
\(359\) 29.4891 1.55638 0.778188 0.628031i \(-0.216139\pi\)
0.778188 + 0.628031i \(0.216139\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 60.8791i 3.19973i
\(363\) 0 0
\(364\) 0 0
\(365\) −14.7446 + 4.75372i −0.771766 + 0.248821i
\(366\) 0 0
\(367\) 25.7407i 1.34365i −0.740708 0.671827i \(-0.765510\pi\)
0.740708 0.671827i \(-0.234490\pi\)
\(368\) 5.04868i 0.263180i
\(369\) 0 0
\(370\) −1.88316 5.84096i −0.0979006 0.303657i
\(371\) −34.9783 −1.81598
\(372\) 0 0
\(373\) 11.6819i 0.604867i −0.953170 0.302434i \(-0.902201\pi\)
0.953170 0.302434i \(-0.0977990\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 39.7228 2.04855
\(377\) 0 0
\(378\) 0 0
\(379\) 0.627719 0.0322437 0.0161219 0.999870i \(-0.494868\pi\)
0.0161219 + 0.999870i \(0.494868\pi\)
\(380\) −12.0000 37.2203i −0.615587 1.90936i
\(381\) 0 0
\(382\) 48.9022i 2.50205i
\(383\) 10.8896i 0.556435i 0.960518 + 0.278217i \(0.0897435\pi\)
−0.960518 + 0.278217i \(0.910256\pi\)
\(384\) 0 0
\(385\) −7.37228 + 2.37686i −0.375726 + 0.121136i
\(386\) −41.4891 −2.11174
\(387\) 0 0
\(388\) 25.5383i 1.29651i
\(389\) 18.8614 0.956311 0.478156 0.878275i \(-0.341305\pi\)
0.478156 + 0.878275i \(0.341305\pi\)
\(390\) 0 0
\(391\) 1.25544 0.0634902
\(392\) 29.9422i 1.51231i
\(393\) 0 0
\(394\) 21.4891 1.08261
\(395\) 0.861407 + 2.67181i 0.0433421 + 0.134434i
\(396\) 0 0
\(397\) 16.4356i 0.824881i 0.910984 + 0.412441i \(0.135324\pi\)
−0.910984 + 0.412441i \(0.864676\pi\)
\(398\) 20.1947i 1.01227i
\(399\) 0 0
\(400\) −25.8614 + 18.6101i −1.29307 + 0.930506i
\(401\) 11.4891 0.573740 0.286870 0.957970i \(-0.407385\pi\)
0.286870 + 0.957970i \(0.407385\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 26.2337 1.30517
\(405\) 0 0
\(406\) −76.4674 −3.79501
\(407\) 1.08724i 0.0538925i
\(408\) 0 0
\(409\) −27.4891 −1.35925 −0.679625 0.733560i \(-0.737857\pi\)
−0.679625 + 0.733560i \(0.737857\pi\)
\(410\) 46.9783 15.1460i 2.32009 0.748009i
\(411\) 0 0
\(412\) 45.4381i 2.23857i
\(413\) 25.5383i 1.25666i
\(414\) 0 0
\(415\) −14.1168 + 4.55134i −0.692969 + 0.223417i
\(416\) 0 0
\(417\) 0 0
\(418\) 10.0974i 0.493878i
\(419\) −22.9783 −1.12256 −0.561280 0.827626i \(-0.689691\pi\)
−0.561280 + 0.827626i \(0.689691\pi\)
\(420\) 0 0
\(421\) 8.51087 0.414795 0.207397 0.978257i \(-0.433501\pi\)
0.207397 + 0.978257i \(0.433501\pi\)
\(422\) 3.75906i 0.182988i
\(423\) 0 0
\(424\) 60.4674 2.93656
\(425\) −4.62772 6.43087i −0.224477 0.311943i
\(426\) 0 0
\(427\) 2.57924i 0.124818i
\(428\) 29.0024i 1.40189i
\(429\) 0 0
\(430\) −6.00000 18.6101i −0.289346 0.897460i
\(431\) 25.7228 1.23902 0.619512 0.784987i \(-0.287330\pi\)
0.619512 + 0.784987i \(0.287330\pi\)
\(432\) 0 0
\(433\) 29.2048i 1.40349i 0.712426 + 0.701747i \(0.247596\pi\)
−0.712426 + 0.701747i \(0.752404\pi\)
\(434\) −29.4891 −1.41552
\(435\) 0 0
\(436\) 43.7228 2.09394
\(437\) 3.16915i 0.151601i
\(438\) 0 0
\(439\) −21.4891 −1.02562 −0.512810 0.858502i \(-0.671395\pi\)
−0.512810 + 0.858502i \(0.671395\pi\)
\(440\) 12.7446 4.10891i 0.607573 0.195885i
\(441\) 0 0
\(442\) 0 0
\(443\) 31.6742i 1.50489i 0.658656 + 0.752444i \(0.271125\pi\)
−0.658656 + 0.752444i \(0.728875\pi\)
\(444\) 0 0
\(445\) −0.941578 2.92048i −0.0446351 0.138444i
\(446\) −6.00000 −0.284108
\(447\) 0 0
\(448\) 8.21782i 0.388256i
\(449\) 6.86141 0.323810 0.161905 0.986806i \(-0.448236\pi\)
0.161905 + 0.986806i \(0.448236\pi\)
\(450\) 0 0
\(451\) −8.74456 −0.411765
\(452\) 2.17448i 0.102279i
\(453\) 0 0
\(454\) 42.2337 1.98213
\(455\) 0 0
\(456\) 0 0
\(457\) 20.7846i 0.972263i 0.873886 + 0.486132i \(0.161592\pi\)
−0.873886 + 0.486132i \(0.838408\pi\)
\(458\) 36.9253i 1.72541i
\(459\) 0 0
\(460\) 7.37228 2.37686i 0.343734 0.110822i
\(461\) −2.23369 −0.104033 −0.0520166 0.998646i \(-0.516565\pi\)
−0.0520166 + 0.998646i \(0.516565\pi\)
\(462\) 0 0
\(463\) 30.0897i 1.39839i −0.714933 0.699193i \(-0.753543\pi\)
0.714933 0.699193i \(-0.246457\pi\)
\(464\) 55.7228 2.58687
\(465\) 0 0
\(466\) 9.48913 0.439575
\(467\) 7.72049i 0.357262i −0.983916 0.178631i \(-0.942833\pi\)
0.983916 0.178631i \(-0.0571668\pi\)
\(468\) 0 0
\(469\) −32.2337 −1.48841
\(470\) 11.4891 + 35.6357i 0.529954 + 1.64375i
\(471\) 0 0
\(472\) 44.1485i 2.03210i
\(473\) 3.46410i 0.159280i
\(474\) 0 0
\(475\) 16.2337 11.6819i 0.744853 0.536003i
\(476\) −24.0000 −1.10004
\(477\) 0 0
\(478\) 37.2203i 1.70241i
\(479\) −5.48913 −0.250805 −0.125402 0.992106i \(-0.540022\pi\)
−0.125402 + 0.992106i \(0.540022\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 42.2689i 1.92530i
\(483\) 0 0
\(484\) −4.37228 −0.198740
\(485\) −12.4307 + 4.00772i −0.564449 + 0.181981i
\(486\) 0 0
\(487\) 7.13058i 0.323118i 0.986863 + 0.161559i \(0.0516521\pi\)
−0.986863 + 0.161559i \(0.948348\pi\)
\(488\) 4.45877i 0.201839i
\(489\) 0 0
\(490\) 26.8614 8.66025i 1.21347 0.391230i
\(491\) −6.51087 −0.293832 −0.146916 0.989149i \(-0.546935\pi\)
−0.146916 + 0.989149i \(0.546935\pi\)
\(492\) 0 0
\(493\) 13.8564i 0.624061i
\(494\) 0 0
\(495\) 0 0
\(496\) 21.4891 0.964890
\(497\) 35.0458i 1.57202i
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) −39.3505 29.0024i −1.75981 1.29703i
\(501\) 0 0
\(502\) 55.8304i 2.49183i
\(503\) 13.5615i 0.604675i −0.953201 0.302338i \(-0.902233\pi\)
0.953201 0.302338i \(-0.0977670\pi\)
\(504\) 0 0
\(505\) 4.11684 + 12.7692i 0.183197 + 0.568220i
\(506\) −2.00000 −0.0889108
\(507\) 0 0
\(508\) 35.9306i 1.59416i
\(509\) 22.6277 1.00296 0.501478 0.865170i \(-0.332790\pi\)
0.501478 + 0.865170i \(0.332790\pi\)
\(510\) 0 0
\(511\) −24.0000 −1.06170
\(512\) 50.1369i 2.21576i
\(513\) 0 0
\(514\) 26.9783 1.18996
\(515\) −22.1168 + 7.13058i −0.974585 + 0.314211i
\(516\) 0 0
\(517\) 6.63325i 0.291730i
\(518\) 9.50744i 0.417733i
\(519\) 0 0
\(520\) 0 0
\(521\) 21.6060 0.946575 0.473287 0.880908i \(-0.343067\pi\)
0.473287 + 0.880908i \(0.343067\pi\)
\(522\) 0 0
\(523\) 29.0024i 1.26819i 0.773256 + 0.634094i \(0.218627\pi\)
−0.773256 + 0.634094i \(0.781373\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −69.2119 −3.01778
\(527\) 5.34363i 0.232772i
\(528\) 0 0
\(529\) 22.3723 0.972708
\(530\) 17.4891 + 54.2458i 0.759679 + 2.35629i
\(531\) 0 0
\(532\) 60.5841i 2.62665i
\(533\) 0 0
\(534\) 0 0
\(535\) −14.1168 + 4.55134i −0.610324 + 0.196772i
\(536\) 55.7228 2.40686
\(537\) 0 0
\(538\) 29.0024i 1.25038i
\(539\) −5.00000 −0.215365
\(540\) 0 0
\(541\) 34.2337 1.47182 0.735911 0.677079i \(-0.236754\pi\)
0.735911 + 0.677079i \(0.236754\pi\)
\(542\) 34.0511i 1.46262i
\(543\) 0 0
\(544\) 6.51087 0.279151
\(545\) 6.86141 + 21.2819i 0.293910 + 0.911618i
\(546\) 0 0
\(547\) 29.0024i 1.24005i 0.784580 + 0.620027i \(0.212878\pi\)
−0.784580 + 0.620027i \(0.787122\pi\)
\(548\) 62.7586i 2.68091i
\(549\) 0 0
\(550\) 7.37228 + 10.2448i 0.314355 + 0.436841i
\(551\) −34.9783 −1.49012
\(552\) 0 0
\(553\) 4.34896i 0.184937i
\(554\) 29.4891 1.25287
\(555\) 0 0
\(556\) −70.9783 −3.01015
\(557\) 0.994667i 0.0421454i −0.999778 0.0210727i \(-0.993292\pi\)
0.999778 0.0210727i \(-0.00670814\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −46.9783 + 15.1460i −1.98519 + 0.640036i
\(561\) 0 0
\(562\) 1.28962i 0.0543994i
\(563\) 18.9051i 0.796754i 0.917222 + 0.398377i \(0.130426\pi\)
−0.917222 + 0.398377i \(0.869574\pi\)
\(564\) 0 0
\(565\) 1.05842 0.341241i 0.0445281 0.0143561i
\(566\) 38.2337 1.60708
\(567\) 0 0
\(568\) 60.5841i 2.54205i
\(569\) −27.2554 −1.14261 −0.571304 0.820739i \(-0.693562\pi\)
−0.571304 + 0.820739i \(0.693562\pi\)
\(570\) 0 0
\(571\) 1.48913 0.0623180 0.0311590 0.999514i \(-0.490080\pi\)
0.0311590 + 0.999514i \(0.490080\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 76.4674 3.19169
\(575\) 2.31386 + 3.21543i 0.0964946 + 0.134093i
\(576\) 0 0
\(577\) 21.8719i 0.910537i −0.890354 0.455269i \(-0.849543\pi\)
0.890354 0.455269i \(-0.150457\pi\)
\(578\) 36.5754i 1.52134i
\(579\) 0 0
\(580\) 26.2337 + 81.3687i 1.08929 + 3.37865i
\(581\) −22.9783 −0.953298
\(582\) 0 0
\(583\) 10.0974i 0.418190i
\(584\) 41.4891 1.71683
\(585\) 0 0
\(586\) −8.00000 −0.330477
\(587\) 41.2743i 1.70357i −0.523890 0.851786i \(-0.675520\pi\)
0.523890 0.851786i \(-0.324480\pi\)
\(588\) 0 0
\(589\) −13.4891 −0.555810
\(590\) 39.6060 12.7692i 1.63055 0.525698i
\(591\) 0 0
\(592\) 6.92820i 0.284747i
\(593\) 22.7739i 0.935214i 0.883937 + 0.467607i \(0.154884\pi\)
−0.883937 + 0.467607i \(0.845116\pi\)
\(594\) 0 0
\(595\) −3.76631 11.6819i −0.154404 0.478912i
\(596\) 50.2337 2.05765
\(597\) 0 0
\(598\) 0 0
\(599\) 10.9783 0.448559 0.224280 0.974525i \(-0.427997\pi\)
0.224280 + 0.974525i \(0.427997\pi\)
\(600\) 0 0
\(601\) −38.4674 −1.56912 −0.784558 0.620055i \(-0.787110\pi\)
−0.784558 + 0.620055i \(0.787110\pi\)
\(602\) 30.2921i 1.23461i
\(603\) 0 0
\(604\) 53.4891 2.17644
\(605\) −0.686141 2.12819i −0.0278956 0.0865234i
\(606\) 0 0
\(607\) 3.46410i 0.140604i −0.997526 0.0703018i \(-0.977604\pi\)
0.997526 0.0703018i \(-0.0223962\pi\)
\(608\) 16.4356i 0.666554i
\(609\) 0 0
\(610\) 4.00000 1.28962i 0.161955 0.0522152i
\(611\) 0 0
\(612\) 0 0
\(613\) 4.34896i 0.175653i −0.996136 0.0878265i \(-0.972008\pi\)
0.996136 0.0878265i \(-0.0279921\pi\)
\(614\) −79.7228 −3.21735
\(615\) 0 0
\(616\) 20.7446 0.835822
\(617\) 17.0256i 0.685423i −0.939441 0.342712i \(-0.888655\pi\)
0.939441 0.342712i \(-0.111345\pi\)
\(618\) 0 0
\(619\) −14.1168 −0.567404 −0.283702 0.958913i \(-0.591563\pi\)
−0.283702 + 0.958913i \(0.591563\pi\)
\(620\) 10.1168 + 31.3793i 0.406302 + 1.26022i
\(621\) 0 0
\(622\) 13.8564i 0.555591i
\(623\) 4.75372i 0.190454i
\(624\) 0 0
\(625\) 7.94158 23.7051i 0.317663 0.948204i
\(626\) −55.2119 −2.20671
\(627\) 0 0
\(628\) 106.907i 4.26606i
\(629\) −1.72281 −0.0686931
\(630\) 0 0
\(631\) 23.6060 0.939739 0.469869 0.882736i \(-0.344301\pi\)
0.469869 + 0.882736i \(0.344301\pi\)
\(632\) 7.51811i 0.299054i
\(633\) 0 0
\(634\) 83.2119 3.30477
\(635\) 17.4891 5.63858i 0.694035 0.223760i
\(636\) 0 0
\(637\) 0 0
\(638\) 22.0742i 0.873927i
\(639\) 0 0
\(640\) −30.2337 + 9.74749i −1.19509 + 0.385304i
\(641\) 25.3723 1.00214 0.501072 0.865405i \(-0.332939\pi\)
0.501072 + 0.865405i \(0.332939\pi\)
\(642\) 0 0
\(643\) 30.4944i 1.20258i −0.799030 0.601292i \(-0.794653\pi\)
0.799030 0.601292i \(-0.205347\pi\)
\(644\) 12.0000 0.472866
\(645\) 0 0
\(646\) −16.0000 −0.629512
\(647\) 21.9817i 0.864188i −0.901829 0.432094i \(-0.857775\pi\)
0.901829 0.432094i \(-0.142225\pi\)
\(648\) 0 0
\(649\) −7.37228 −0.289387
\(650\) 0 0
\(651\) 0 0
\(652\) 15.1460i 0.593164i
\(653\) 30.7894i 1.20488i 0.798163 + 0.602441i \(0.205805\pi\)
−0.798163 + 0.602441i \(0.794195\pi\)
\(654\) 0 0
\(655\) −1.88316 5.84096i −0.0735810 0.228225i
\(656\) −55.7228 −2.17561
\(657\) 0 0
\(658\) 58.0049i 2.26127i
\(659\) 21.2554 0.827994 0.413997 0.910278i \(-0.364132\pi\)
0.413997 + 0.910278i \(0.364132\pi\)
\(660\) 0 0
\(661\) −16.3505 −0.635962 −0.317981 0.948097i \(-0.603005\pi\)
−0.317981 + 0.948097i \(0.603005\pi\)
\(662\) 35.6357i 1.38502i
\(663\) 0 0
\(664\) 39.7228 1.54154
\(665\) 29.4891 9.50744i 1.14354 0.368683i
\(666\) 0 0
\(667\) 6.92820i 0.268261i
\(668\) 68.8019i 2.66203i
\(669\) 0 0
\(670\) 16.1168 + 49.9894i 0.622648 + 1.93126i
\(671\) −0.744563 −0.0287435
\(672\) 0 0
\(673\) 18.6101i 0.717368i 0.933459 + 0.358684i \(0.116774\pi\)
−0.933459 + 0.358684i \(0.883226\pi\)
\(674\) 81.9565 3.15685
\(675\) 0 0
\(676\) −56.8397 −2.18614
\(677\) 50.0820i 1.92481i 0.271623 + 0.962404i \(0.412440\pi\)
−0.271623 + 0.962404i \(0.587560\pi\)
\(678\) 0 0
\(679\) −20.2337 −0.776498
\(680\) 6.51087 + 20.1947i 0.249681 + 0.774431i
\(681\) 0 0
\(682\) 8.51278i 0.325971i
\(683\) 17.9104i 0.685323i −0.939459 0.342661i \(-0.888672\pi\)
0.939459 0.342661i \(-0.111328\pi\)
\(684\) 0 0
\(685\) 30.5475 9.84868i 1.16716 0.376299i
\(686\) −17.4891 −0.667738
\(687\) 0 0
\(688\) 22.0742i 0.841572i
\(689\) 0 0
\(690\) 0 0
\(691\) 44.8614 1.70661 0.853304 0.521413i \(-0.174595\pi\)
0.853304 + 0.521413i \(0.174595\pi\)
\(692\) 37.2203i 1.41490i
\(693\) 0 0
\(694\) −57.2119 −2.17174
\(695\) −11.1386 34.5484i −0.422511 1.31050i
\(696\) 0 0
\(697\) 13.8564i 0.524849i
\(698\) 39.0998i 1.47995i
\(699\) 0 0
\(700\) −44.2337 61.4690i −1.67188 2.32331i
\(701\) 12.5109 0.472529 0.236265 0.971689i \(-0.424077\pi\)
0.236265 + 0.971689i \(0.424077\pi\)
\(702\) 0 0
\(703\) 4.34896i 0.164024i
\(704\) 2.37228 0.0894087
\(705\) 0 0
\(706\) −63.2119 −2.37901
\(707\) 20.7846i 0.781686i
\(708\) 0 0
\(709\) −23.8832 −0.896951 −0.448475 0.893795i \(-0.648033\pi\)
−0.448475 + 0.893795i \(0.648033\pi\)
\(710\) −54.3505 + 17.5229i −2.03974 + 0.657622i
\(711\) 0 0
\(712\) 8.21782i 0.307976i
\(713\) 2.67181i 0.100060i
\(714\) 0 0
\(715\) 0 0
\(716\) −56.2337 −2.10155
\(717\) 0 0
\(718\) 74.4405i 2.77810i
\(719\) −30.3505 −1.13188 −0.565942 0.824445i \(-0.691487\pi\)
−0.565942 + 0.824445i \(0.691487\pi\)
\(720\) 0 0
\(721\) −36.0000 −1.34071
\(722\) 7.57301i 0.281838i
\(723\) 0 0
\(724\) −105.446 −3.91886
\(725\) −35.4891 + 25.5383i −1.31803 + 0.948470i
\(726\) 0 0
\(727\) 14.0588i 0.521412i −0.965418 0.260706i \(-0.916045\pi\)
0.965418 0.260706i \(-0.0839552\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 12.0000 + 37.2203i 0.444140 + 1.37758i
\(731\) −5.48913 −0.203023
\(732\) 0 0
\(733\) 9.50744i 0.351165i −0.984465 0.175583i \(-0.943819\pi\)
0.984465 0.175583i \(-0.0561809\pi\)
\(734\) −64.9783 −2.39839
\(735\) 0 0
\(736\) −3.25544 −0.119997
\(737\) 9.30506i 0.342756i
\(738\) 0 0
\(739\) 10.7446 0.395245 0.197623 0.980278i \(-0.436678\pi\)
0.197623 + 0.980278i \(0.436678\pi\)
\(740\) −10.1168 + 3.26172i −0.371903 + 0.119903i
\(741\) 0 0
\(742\) 88.2969i 3.24148i
\(743\) 11.3870i 0.417747i −0.977943 0.208874i \(-0.933020\pi\)
0.977943 0.208874i \(-0.0669798\pi\)
\(744\) 0 0
\(745\) 7.88316 + 24.4511i 0.288816 + 0.895819i
\(746\) −29.4891 −1.07967
\(747\) 0 0
\(748\) 6.92820i 0.253320i
\(749\) −22.9783 −0.839607
\(750\) 0 0
\(751\) 27.3723 0.998829 0.499414 0.866363i \(-0.333549\pi\)
0.499414 + 0.866363i \(0.333549\pi\)
\(752\) 42.2689i 1.54139i
\(753\) 0 0
\(754\) 0 0
\(755\) 8.39403 + 26.0357i 0.305490 + 0.947535i
\(756\) 0 0
\(757\) 39.7995i 1.44654i −0.690567 0.723269i \(-0.742639\pi\)
0.690567 0.723269i \(-0.257361\pi\)
\(758\) 1.58457i 0.0575543i
\(759\) 0 0
\(760\) −50.9783 + 16.4356i −1.84918 + 0.596184i
\(761\) −32.7446 −1.18699 −0.593495 0.804838i \(-0.702252\pi\)
−0.593495 + 0.804838i \(0.702252\pi\)
\(762\) 0 0
\(763\) 34.6410i 1.25409i
\(764\) −84.7011 −3.06438
\(765\) 0 0
\(766\) 27.4891 0.993222
\(767\) 0 0
\(768\) 0 0
\(769\) −29.2119 −1.05341 −0.526705 0.850048i \(-0.676573\pi\)
−0.526705 + 0.850048i \(0.676573\pi\)
\(770\) 6.00000 + 18.6101i 0.216225 + 0.670662i
\(771\) 0 0
\(772\) 71.8613i 2.58634i
\(773\) 17.6155i 0.633584i 0.948495 + 0.316792i \(0.102606\pi\)
−0.948495 + 0.316792i \(0.897394\pi\)
\(774\) 0 0
\(775\) −13.6861 + 9.84868i −0.491621 + 0.353775i
\(776\) 34.9783 1.25565
\(777\) 0 0
\(778\) 47.6126i 1.70699i
\(779\) 34.9783 1.25323
\(780\) 0 0
\(781\) 10.1168 0.362009
\(782\) 3.16915i 0.113328i
\(783\) 0 0
\(784\) −31.8614 −1.13791
\(785\) 52.0367 16.7769i 1.85727 0.598793i
\(786\) 0 0
\(787\) 15.1460i 0.539898i 0.962875 + 0.269949i \(0.0870068\pi\)
−0.962875 + 0.269949i \(0.912993\pi\)
\(788\) 37.2203i 1.32592i
\(789\) 0 0
\(790\) 6.74456 2.17448i 0.239961 0.0773646i
\(791\) 1.72281 0.0612562
\(792\) 0 0
\(793\) 0 0
\(794\) 41.4891 1.47239
\(795\) 0 0
\(796\) −34.9783 −1.23977
\(797\) 5.25106i 0.186002i 0.995666 + 0.0930010i \(0.0296460\pi\)
−0.995666 + 0.0930010i \(0.970354\pi\)
\(798\) 0 0
\(799\) 10.5109 0.371848
\(800\) 12.0000 + 16.6757i 0.424264 + 0.589575i
\(801\) 0 0
\(802\) 29.0024i 1.02411i
\(803\) 6.92820i 0.244491i
\(804\) 0 0
\(805\) 1.88316 + 5.84096i 0.0663725 + 0.205867i
\(806\) 0 0
\(807\) 0 0
\(808\) 35.9306i 1.26404i
\(809\) −32.7446 −1.15124 −0.575619 0.817718i \(-0.695239\pi\)
−0.575619 + 0.817718i \(0.695239\pi\)
\(810\) 0 0
\(811\) −0.233688 −0.00820589 −0.00410295 0.999992i \(-0.501306\pi\)
−0.00410295 + 0.999992i \(0.501306\pi\)
\(812\) 132.445i 4.64792i
\(813\) 0 0
\(814\) 2.74456 0.0961969
\(815\) −7.37228 + 2.37686i −0.258240 + 0.0832578i
\(816\) 0 0
\(817\) 13.8564i 0.484774i
\(818\) 69.3918i 2.42623i
\(819\) 0 0
\(820\) −26.2337 81.3687i −0.916120 2.84152i
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 56.0328i 1.95318i 0.215111 + 0.976590i \(0.430989\pi\)
−0.215111 + 0.976590i \(0.569011\pi\)
\(824\) 62.2337 2.16801
\(825\) 0 0
\(826\) 64.4674 2.24311
\(827\) 28.4125i 0.988000i 0.869462 + 0.494000i \(0.164466\pi\)
−0.869462 + 0.494000i \(0.835534\pi\)
\(828\) 0 0
\(829\) 20.3505 0.706803 0.353402 0.935472i \(-0.385025\pi\)
0.353402 + 0.935472i \(0.385025\pi\)
\(830\) 11.4891 + 35.6357i 0.398793 + 1.23693i
\(831\) 0 0
\(832\) 0 0
\(833\) 7.92287i 0.274511i
\(834\) 0 0
\(835\) −33.4891 + 10.7971i −1.15894 + 0.373648i
\(836\) 17.4891 0.604874
\(837\) 0 0
\(838\) 58.0049i 2.00374i
\(839\) −10.1168 −0.349272 −0.174636 0.984633i \(-0.555875\pi\)
−0.174636 + 0.984633i \(0.555875\pi\)
\(840\) 0 0
\(841\) 47.4674 1.63681
\(842\) 21.4843i 0.740399i
\(843\) 0 0
\(844\) −6.51087 −0.224114
\(845\) −8.91983 27.6665i −0.306851 0.951757i
\(846\) 0 0
\(847\) 3.46410i 0.119028i
\(848\) 64.3432i 2.20955i
\(849\) 0 0
\(850\) −16.2337 + 11.6819i −0.556811 + 0.400687i
\(851\) 0.861407 0.0295286
\(852\) 0 0
\(853\) 35.0458i 1.19994i 0.800021 + 0.599972i \(0.204822\pi\)
−0.800021 + 0.599972i \(0.795178\pi\)
\(854\) 6.51087 0.222798
\(855\) 0 0
\(856\) 39.7228 1.35770
\(857\) 23.9538i 0.818245i −0.912480 0.409122i \(-0.865835\pi\)
0.912480 0.409122i \(-0.134165\pi\)
\(858\) 0 0
\(859\) 6.11684 0.208704 0.104352 0.994540i \(-0.466723\pi\)
0.104352 + 0.994540i \(0.466723\pi\)
\(860\) −32.2337 + 10.3923i −1.09916 + 0.354375i
\(861\) 0 0
\(862\) 64.9331i 2.21163i
\(863\) 2.87419i 0.0978387i 0.998803 + 0.0489194i \(0.0155777\pi\)
−0.998803 + 0.0489194i \(0.984422\pi\)
\(864\) 0 0
\(865\) 18.1168 5.84096i 0.615991 0.198599i
\(866\) 73.7228 2.50520
\(867\) 0 0
\(868\) 51.0767i 1.73365i
\(869\) −1.25544 −0.0425878
\(870\) 0 0
\(871\) 0 0
\(872\) 59.8844i 2.02794i
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) 22.9783 31.1769i 0.776807 1.05397i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 54.2458i 1.83071i
\(879\) 0 0
\(880\) −4.37228 13.5615i −0.147390 0.457156i
\(881\) 6.86141 0.231167 0.115583 0.993298i \(-0.463126\pi\)
0.115583 + 0.993298i \(0.463126\pi\)
\(882\) 0 0
\(883\) 24.2487i 0.816034i 0.912974 + 0.408017i \(0.133780\pi\)
−0.912974 + 0.408017i \(0.866220\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 79.9565 2.68619
\(887\) 27.4179i 0.920602i −0.887763 0.460301i \(-0.847742\pi\)
0.887763 0.460301i \(-0.152258\pi\)
\(888\) 0 0
\(889\) 28.4674 0.954765
\(890\) −7.37228 + 2.37686i −0.247119 + 0.0796726i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) 26.5330i 0.887893i
\(894\) 0 0
\(895\) −8.82473 27.3716i −0.294978 0.914931i
\(896\) −49.2119 −1.64406
\(897\) 0 0
\(898\) 17.3205i 0.577993i
\(899\) 29.4891 0.983517
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) 22.0742i 0.734991i
\(903\) 0 0
\(904\) −2.97825 −0.0990551
\(905\) −16.5475 51.3253i −0.550059 1.70611i
\(906\) 0 0
\(907\) 19.8997i 0.660760i 0.943848 + 0.330380i \(0.107177\pi\)
−0.943848 + 0.330380i \(0.892823\pi\)
\(908\) 73.1509i 2.42760i
\(909\) 0 0
\(910\) 0 0
\(911\) 53.4891 1.77217 0.886087 0.463519i \(-0.153413\pi\)
0.886087 + 0.463519i \(0.153413\pi\)
\(912\) 0 0
\(913\) 6.63325i 0.219529i
\(914\) 52.4674 1.73547
\(915\) 0 0
\(916\) 63.9565 2.11318
\(917\) 9.50744i 0.313963i
\(918\) 0 0
\(919\) 28.2337 0.931343 0.465672 0.884958i \(-0.345813\pi\)
0.465672 + 0.884958i \(0.345813\pi\)
\(920\) −3.25544 10.0974i −0.107329 0.332900i
\(921\) 0 0
\(922\) 5.63858i 0.185697i
\(923\) 0 0
\(924\) 0 0
\(925\) −3.17527 4.41248i −0.104402 0.145081i
\(926\) −75.9565 −2.49609
\(927\) 0 0
\(928\) 35.9306i 1.17948i
\(929\) −7.02175 −0.230376 −0.115188 0.993344i \(-0.536747\pi\)
−0.115188 + 0.993344i \(0.536747\pi\)
\(930\) 0 0
\(931\) 20.0000 0.655474
\(932\) 16.4356i 0.538368i
\(933\) 0 0
\(934\) −19.4891 −0.637704
\(935\) 3.37228 1.08724i 0.110285 0.0355566i
\(936\) 0 0
\(937\) 53.6559i 1.75286i −0.481527 0.876431i \(-0.659918\pi\)
0.481527 0.876431i \(-0.340082\pi\)
\(938\) 81.3687i 2.65678i
\(939\) 0 0
\(940\) 61.7228 19.8997i 2.01318 0.649058i
\(941\) 58.4674 1.90598 0.952991 0.302999i \(-0.0979878\pi\)
0.952991 + 0.302999i \(0.0979878\pi\)
\(942\) 0 0
\(943\) 6.92820i 0.225613i
\(944\) −46.9783 −1.52901
\(945\) 0 0
\(946\) 8.74456 0.284310
\(947\) 26.7354i 0.868783i −0.900724 0.434392i \(-0.856963\pi\)
0.900724 0.434392i \(-0.143037\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −29.4891 40.9793i −0.956754 1.32954i
\(951\) 0 0
\(952\) 32.8713i 1.06536i
\(953\) 31.2867i 1.01348i −0.862100 0.506738i \(-0.830851\pi\)
0.862100 0.506738i \(-0.169149\pi\)
\(954\) 0 0
\(955\) −13.2921 41.2280i −0.430123 1.33411i
\(956\) 64.4674 2.08502
\(957\) 0 0
\(958\) 13.8564i 0.447680i
\(959\) 49.7228 1.60563
\(960\) 0 0
\(961\) −19.6277 −0.633152
\(962\) 0 0
\(963\) 0 0
\(964\) −73.2119 −2.35800
\(965\) −34.9783 + 11.2772i −1.12599 + 0.363025i
\(966\) 0 0
\(967\) 26.4232i 0.849713i 0.905261 + 0.424856i \(0.139675\pi\)
−0.905261 + 0.424856i \(0.860325\pi\)
\(968\) 5.98844i 0.192476i
\(969\) 0 0
\(970\) 10.1168 + 31.3793i 0.324832 + 1.00753i
\(971\) 9.09509 0.291875 0.145938 0.989294i \(-0.453380\pi\)
0.145938 + 0.989294i \(0.453380\pi\)
\(972\) 0 0
\(973\) 56.2351i 1.80282i
\(974\) 18.0000 0.576757
\(975\) 0 0
\(976\) −4.74456 −0.151870
\(977\) 50.5793i 1.61818i −0.587687 0.809088i \(-0.699962\pi\)
0.587687 0.809088i \(-0.300038\pi\)
\(978\) 0 0
\(979\) 1.37228 0.0438583
\(980\) −15.0000 46.5253i −0.479157 1.48620i
\(981\) 0 0
\(982\) 16.4356i 0.524483i
\(983\) 24.7460i 0.789276i 0.918837 + 0.394638i \(0.129130\pi\)
−0.918837 + 0.394638i \(0.870870\pi\)
\(984\) 0 0
\(985\) 18.1168 5.84096i 0.577251 0.186109i
\(986\) 34.9783 1.11393
\(987\) 0 0
\(988\) 0 0
\(989\) 2.74456 0.0872720
\(990\) 0 0
\(991\) 18.9783 0.602864 0.301432 0.953488i \(-0.402535\pi\)
0.301432 + 0.953488i \(0.402535\pi\)
\(992\) 13.8564i 0.439941i
\(993\) 0 0
\(994\) −88.4674 −2.80601
\(995\) −5.48913 17.0256i −0.174017 0.539746i
\(996\) 0 0
\(997\) 2.17448i 0.0688665i −0.999407 0.0344333i \(-0.989037\pi\)
0.999407 0.0344333i \(-0.0109626\pi\)
\(998\) 50.4868i 1.59813i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.c.a.199.1 4
3.2 odd 2 55.2.b.a.34.4 yes 4
5.2 odd 4 2475.2.a.bi.1.4 4
5.3 odd 4 2475.2.a.bi.1.1 4
5.4 even 2 inner 495.2.c.a.199.4 4
12.11 even 2 880.2.b.h.529.3 4
15.2 even 4 275.2.a.h.1.1 4
15.8 even 4 275.2.a.h.1.4 4
15.14 odd 2 55.2.b.a.34.1 4
33.2 even 10 605.2.j.j.444.1 16
33.5 odd 10 605.2.j.i.124.1 16
33.8 even 10 605.2.j.j.9.1 16
33.14 odd 10 605.2.j.i.9.4 16
33.17 even 10 605.2.j.j.124.4 16
33.20 odd 10 605.2.j.i.444.4 16
33.26 odd 10 605.2.j.i.269.1 16
33.29 even 10 605.2.j.j.269.4 16
33.32 even 2 605.2.b.c.364.1 4
60.23 odd 4 4400.2.a.cc.1.2 4
60.47 odd 4 4400.2.a.cc.1.3 4
60.59 even 2 880.2.b.h.529.2 4
165.14 odd 10 605.2.j.i.9.1 16
165.29 even 10 605.2.j.j.269.1 16
165.32 odd 4 3025.2.a.ba.1.4 4
165.59 odd 10 605.2.j.i.269.4 16
165.74 even 10 605.2.j.j.9.4 16
165.98 odd 4 3025.2.a.ba.1.1 4
165.104 odd 10 605.2.j.i.124.4 16
165.119 odd 10 605.2.j.i.444.1 16
165.134 even 10 605.2.j.j.444.4 16
165.149 even 10 605.2.j.j.124.1 16
165.164 even 2 605.2.b.c.364.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.1 4 15.14 odd 2
55.2.b.a.34.4 yes 4 3.2 odd 2
275.2.a.h.1.1 4 15.2 even 4
275.2.a.h.1.4 4 15.8 even 4
495.2.c.a.199.1 4 1.1 even 1 trivial
495.2.c.a.199.4 4 5.4 even 2 inner
605.2.b.c.364.1 4 33.32 even 2
605.2.b.c.364.4 4 165.164 even 2
605.2.j.i.9.1 16 165.14 odd 10
605.2.j.i.9.4 16 33.14 odd 10
605.2.j.i.124.1 16 33.5 odd 10
605.2.j.i.124.4 16 165.104 odd 10
605.2.j.i.269.1 16 33.26 odd 10
605.2.j.i.269.4 16 165.59 odd 10
605.2.j.i.444.1 16 165.119 odd 10
605.2.j.i.444.4 16 33.20 odd 10
605.2.j.j.9.1 16 33.8 even 10
605.2.j.j.9.4 16 165.74 even 10
605.2.j.j.124.1 16 165.149 even 10
605.2.j.j.124.4 16 33.17 even 10
605.2.j.j.269.1 16 165.29 even 10
605.2.j.j.269.4 16 33.29 even 10
605.2.j.j.444.1 16 33.2 even 10
605.2.j.j.444.4 16 165.134 even 10
880.2.b.h.529.2 4 60.59 even 2
880.2.b.h.529.3 4 12.11 even 2
2475.2.a.bi.1.1 4 5.3 odd 4
2475.2.a.bi.1.4 4 5.2 odd 4
3025.2.a.ba.1.1 4 165.98 odd 4
3025.2.a.ba.1.4 4 165.32 odd 4
4400.2.a.cc.1.2 4 60.23 odd 4
4400.2.a.cc.1.3 4 60.47 odd 4