Defining parameters
Level: | \( N \) | \(=\) | \( 495 = 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 495.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(495, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 24 | 56 |
Cusp forms | 64 | 24 | 40 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(495, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
495.2.c.a | $4$ | $3.953$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(0\) | \(0\) | \(3\) | \(0\) | \(q+(-\beta _{1}-\beta _{2}+\beta _{3})q^{2}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\) |
495.2.c.b | $4$ | $3.953$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(\beta _{1}+\beta _{2}-\beta _{3})q^{5}+\cdots\) |
495.2.c.c | $4$ | $3.953$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(\beta _{1}-\beta _{2}-\beta _{3})q^{5}+\cdots\) |
495.2.c.d | $6$ | $3.953$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+(-\beta _{1}-\beta _{3}-\beta _{5})q^{2}+(-2+\beta _{1}+\cdots)q^{4}+\cdots\) |
495.2.c.e | $6$ | $3.953$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q-\beta _{4}q^{2}+\beta _{2}q^{4}+(-\beta _{1}-\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(495, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(495, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)