# Properties

 Label 4928.2.a.bv Level $4928$ Weight $2$ Character orbit 4928.a Self dual yes Analytic conductor $39.350$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4928 = 2^{6} \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4928.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$39.3502781161$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{5})$$ Defining polynomial: $$x^{2} - x - 1$$ x^2 - x - 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 77) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{5}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta + 1) q^{3} + 2 q^{5} - q^{7} + (2 \beta + 3) q^{9}+O(q^{10})$$ q + (b + 1) * q^3 + 2 * q^5 - q^7 + (2*b + 3) * q^9 $$q + (\beta + 1) q^{3} + 2 q^{5} - q^{7} + (2 \beta + 3) q^{9} - q^{11} + (\beta - 1) q^{13} + (2 \beta + 2) q^{15} + (\beta - 1) q^{17} + ( - 2 \beta + 2) q^{19} + ( - \beta - 1) q^{21} + (2 \beta + 2) q^{23} - q^{25} + (2 \beta + 10) q^{27} + (2 \beta - 4) q^{29} + (\beta + 5) q^{31} + ( - \beta - 1) q^{33} - 2 q^{35} + ( - 2 \beta + 4) q^{37} + 4 q^{39} + (\beta - 9) q^{41} + 8 q^{43} + (4 \beta + 6) q^{45} + ( - \beta - 5) q^{47} + q^{49} + 4 q^{51} + ( - 2 \beta - 4) q^{53} - 2 q^{55} - 8 q^{57} + (\beta + 1) q^{59} + ( - \beta + 5) q^{61} + ( - 2 \beta - 3) q^{63} + (2 \beta - 2) q^{65} + ( - 2 \beta + 10) q^{67} + (4 \beta + 12) q^{69} + ( - 2 \beta + 6) q^{71} + ( - \beta - 3) q^{73} + ( - \beta - 1) q^{75} + q^{77} - 4 \beta q^{79} + (6 \beta + 11) q^{81} + (6 \beta + 2) q^{83} + (2 \beta - 2) q^{85} + ( - 2 \beta + 6) q^{87} + 2 q^{89} + ( - \beta + 1) q^{91} + (6 \beta + 10) q^{93} + ( - 4 \beta + 4) q^{95} + ( - 6 \beta + 4) q^{97} + ( - 2 \beta - 3) q^{99} +O(q^{100})$$ q + (b + 1) * q^3 + 2 * q^5 - q^7 + (2*b + 3) * q^9 - q^11 + (b - 1) * q^13 + (2*b + 2) * q^15 + (b - 1) * q^17 + (-2*b + 2) * q^19 + (-b - 1) * q^21 + (2*b + 2) * q^23 - q^25 + (2*b + 10) * q^27 + (2*b - 4) * q^29 + (b + 5) * q^31 + (-b - 1) * q^33 - 2 * q^35 + (-2*b + 4) * q^37 + 4 * q^39 + (b - 9) * q^41 + 8 * q^43 + (4*b + 6) * q^45 + (-b - 5) * q^47 + q^49 + 4 * q^51 + (-2*b - 4) * q^53 - 2 * q^55 - 8 * q^57 + (b + 1) * q^59 + (-b + 5) * q^61 + (-2*b - 3) * q^63 + (2*b - 2) * q^65 + (-2*b + 10) * q^67 + (4*b + 12) * q^69 + (-2*b + 6) * q^71 + (-b - 3) * q^73 + (-b - 1) * q^75 + q^77 - 4*b * q^79 + (6*b + 11) * q^81 + (6*b + 2) * q^83 + (2*b - 2) * q^85 + (-2*b + 6) * q^87 + 2 * q^89 + (-b + 1) * q^91 + (6*b + 10) * q^93 + (-4*b + 4) * q^95 + (-6*b + 4) * q^97 + (-2*b - 3) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{3} + 4 q^{5} - 2 q^{7} + 6 q^{9}+O(q^{10})$$ 2 * q + 2 * q^3 + 4 * q^5 - 2 * q^7 + 6 * q^9 $$2 q + 2 q^{3} + 4 q^{5} - 2 q^{7} + 6 q^{9} - 2 q^{11} - 2 q^{13} + 4 q^{15} - 2 q^{17} + 4 q^{19} - 2 q^{21} + 4 q^{23} - 2 q^{25} + 20 q^{27} - 8 q^{29} + 10 q^{31} - 2 q^{33} - 4 q^{35} + 8 q^{37} + 8 q^{39} - 18 q^{41} + 16 q^{43} + 12 q^{45} - 10 q^{47} + 2 q^{49} + 8 q^{51} - 8 q^{53} - 4 q^{55} - 16 q^{57} + 2 q^{59} + 10 q^{61} - 6 q^{63} - 4 q^{65} + 20 q^{67} + 24 q^{69} + 12 q^{71} - 6 q^{73} - 2 q^{75} + 2 q^{77} + 22 q^{81} + 4 q^{83} - 4 q^{85} + 12 q^{87} + 4 q^{89} + 2 q^{91} + 20 q^{93} + 8 q^{95} + 8 q^{97} - 6 q^{99}+O(q^{100})$$ 2 * q + 2 * q^3 + 4 * q^5 - 2 * q^7 + 6 * q^9 - 2 * q^11 - 2 * q^13 + 4 * q^15 - 2 * q^17 + 4 * q^19 - 2 * q^21 + 4 * q^23 - 2 * q^25 + 20 * q^27 - 8 * q^29 + 10 * q^31 - 2 * q^33 - 4 * q^35 + 8 * q^37 + 8 * q^39 - 18 * q^41 + 16 * q^43 + 12 * q^45 - 10 * q^47 + 2 * q^49 + 8 * q^51 - 8 * q^53 - 4 * q^55 - 16 * q^57 + 2 * q^59 + 10 * q^61 - 6 * q^63 - 4 * q^65 + 20 * q^67 + 24 * q^69 + 12 * q^71 - 6 * q^73 - 2 * q^75 + 2 * q^77 + 22 * q^81 + 4 * q^83 - 4 * q^85 + 12 * q^87 + 4 * q^89 + 2 * q^91 + 20 * q^93 + 8 * q^95 + 8 * q^97 - 6 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.618034 1.61803
0 −1.23607 0 2.00000 0 −1.00000 0 −1.47214 0
1.2 0 3.23607 0 2.00000 0 −1.00000 0 7.47214 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$7$$ $$1$$
$$11$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4928.2.a.bv 2
4.b odd 2 1 4928.2.a.bm 2
8.b even 2 1 1232.2.a.m 2
8.d odd 2 1 77.2.a.d 2
24.f even 2 1 693.2.a.h 2
40.e odd 2 1 1925.2.a.r 2
40.k even 4 2 1925.2.b.h 4
56.e even 2 1 539.2.a.f 2
56.h odd 2 1 8624.2.a.ce 2
56.k odd 6 2 539.2.e.i 4
56.m even 6 2 539.2.e.j 4
88.g even 2 1 847.2.a.f 2
88.k even 10 2 847.2.f.b 4
88.k even 10 2 847.2.f.m 4
88.l odd 10 2 847.2.f.a 4
88.l odd 10 2 847.2.f.n 4
168.e odd 2 1 4851.2.a.y 2
264.p odd 2 1 7623.2.a.bl 2
616.g odd 2 1 5929.2.a.m 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.2.a.d 2 8.d odd 2 1
539.2.a.f 2 56.e even 2 1
539.2.e.i 4 56.k odd 6 2
539.2.e.j 4 56.m even 6 2
693.2.a.h 2 24.f even 2 1
847.2.a.f 2 88.g even 2 1
847.2.f.a 4 88.l odd 10 2
847.2.f.b 4 88.k even 10 2
847.2.f.m 4 88.k even 10 2
847.2.f.n 4 88.l odd 10 2
1232.2.a.m 2 8.b even 2 1
1925.2.a.r 2 40.e odd 2 1
1925.2.b.h 4 40.k even 4 2
4851.2.a.y 2 168.e odd 2 1
4928.2.a.bm 2 4.b odd 2 1
4928.2.a.bv 2 1.a even 1 1 trivial
5929.2.a.m 2 616.g odd 2 1
7623.2.a.bl 2 264.p odd 2 1
8624.2.a.ce 2 56.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4928))$$:

 $$T_{3}^{2} - 2T_{3} - 4$$ T3^2 - 2*T3 - 4 $$T_{5} - 2$$ T5 - 2 $$T_{13}^{2} + 2T_{13} - 4$$ T13^2 + 2*T13 - 4 $$T_{17}^{2} + 2T_{17} - 4$$ T17^2 + 2*T17 - 4 $$T_{19}^{2} - 4T_{19} - 16$$ T19^2 - 4*T19 - 16 $$T_{23}^{2} - 4T_{23} - 16$$ T23^2 - 4*T23 - 16

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} - 2T - 4$$
$5$ $$(T - 2)^{2}$$
$7$ $$(T + 1)^{2}$$
$11$ $$(T + 1)^{2}$$
$13$ $$T^{2} + 2T - 4$$
$17$ $$T^{2} + 2T - 4$$
$19$ $$T^{2} - 4T - 16$$
$23$ $$T^{2} - 4T - 16$$
$29$ $$T^{2} + 8T - 4$$
$31$ $$T^{2} - 10T + 20$$
$37$ $$T^{2} - 8T - 4$$
$41$ $$T^{2} + 18T + 76$$
$43$ $$(T - 8)^{2}$$
$47$ $$T^{2} + 10T + 20$$
$53$ $$T^{2} + 8T - 4$$
$59$ $$T^{2} - 2T - 4$$
$61$ $$T^{2} - 10T + 20$$
$67$ $$T^{2} - 20T + 80$$
$71$ $$T^{2} - 12T + 16$$
$73$ $$T^{2} + 6T + 4$$
$79$ $$T^{2} - 80$$
$83$ $$T^{2} - 4T - 176$$
$89$ $$(T - 2)^{2}$$
$97$ $$T^{2} - 8T - 164$$