Properties

Label 4925.2.a.q.1.29
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $37$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [37,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(37\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.29
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.86497 q^{2} +0.0285304 q^{3} +1.47810 q^{4} +0.0532083 q^{6} +2.61269 q^{7} -0.973320 q^{8} -2.99919 q^{9} -2.95031 q^{11} +0.0421709 q^{12} +5.30110 q^{13} +4.87258 q^{14} -4.77142 q^{16} -6.23067 q^{17} -5.59338 q^{18} +7.70215 q^{19} +0.0745411 q^{21} -5.50222 q^{22} +4.37513 q^{23} -0.0277693 q^{24} +9.88639 q^{26} -0.171159 q^{27} +3.86182 q^{28} -6.90125 q^{29} +4.74310 q^{31} -6.95190 q^{32} -0.0841735 q^{33} -11.6200 q^{34} -4.43311 q^{36} +7.34312 q^{37} +14.3643 q^{38} +0.151243 q^{39} +12.3379 q^{41} +0.139017 q^{42} +11.2845 q^{43} -4.36086 q^{44} +8.15948 q^{46} +8.16281 q^{47} -0.136131 q^{48} -0.173865 q^{49} -0.177764 q^{51} +7.83558 q^{52} +5.90870 q^{53} -0.319207 q^{54} -2.54298 q^{56} +0.219746 q^{57} -12.8706 q^{58} -9.78424 q^{59} -0.306027 q^{61} +8.84573 q^{62} -7.83594 q^{63} -3.42223 q^{64} -0.156981 q^{66} +12.8152 q^{67} -9.20957 q^{68} +0.124824 q^{69} -3.43459 q^{71} +2.91917 q^{72} +14.0877 q^{73} +13.6947 q^{74} +11.3846 q^{76} -7.70823 q^{77} +0.282063 q^{78} -6.51002 q^{79} +8.99267 q^{81} +23.0098 q^{82} -6.17514 q^{83} +0.110179 q^{84} +21.0453 q^{86} -0.196896 q^{87} +2.87159 q^{88} -0.892411 q^{89} +13.8501 q^{91} +6.46690 q^{92} +0.135323 q^{93} +15.2234 q^{94} -0.198341 q^{96} +2.91287 q^{97} -0.324252 q^{98} +8.84851 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 37 q + 2 q^{2} + q^{3} + 50 q^{4} + 8 q^{6} - 4 q^{7} + 50 q^{9} + 17 q^{11} - 2 q^{12} - 3 q^{13} + 14 q^{14} + 72 q^{16} - 10 q^{17} - 4 q^{18} + 54 q^{19} + 15 q^{21} - 11 q^{22} + 4 q^{23} + 28 q^{24}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.86497 1.31873 0.659366 0.751823i \(-0.270825\pi\)
0.659366 + 0.751823i \(0.270825\pi\)
\(3\) 0.0285304 0.0164721 0.00823603 0.999966i \(-0.497378\pi\)
0.00823603 + 0.999966i \(0.497378\pi\)
\(4\) 1.47810 0.739052
\(5\) 0 0
\(6\) 0.0532083 0.0217222
\(7\) 2.61269 0.987503 0.493752 0.869603i \(-0.335625\pi\)
0.493752 + 0.869603i \(0.335625\pi\)
\(8\) −0.973320 −0.344121
\(9\) −2.99919 −0.999729
\(10\) 0 0
\(11\) −2.95031 −0.889551 −0.444775 0.895642i \(-0.646716\pi\)
−0.444775 + 0.895642i \(0.646716\pi\)
\(12\) 0.0421709 0.0121737
\(13\) 5.30110 1.47026 0.735131 0.677925i \(-0.237121\pi\)
0.735131 + 0.677925i \(0.237121\pi\)
\(14\) 4.87258 1.30225
\(15\) 0 0
\(16\) −4.77142 −1.19285
\(17\) −6.23067 −1.51116 −0.755579 0.655057i \(-0.772644\pi\)
−0.755579 + 0.655057i \(0.772644\pi\)
\(18\) −5.59338 −1.31837
\(19\) 7.70215 1.76699 0.883497 0.468437i \(-0.155183\pi\)
0.883497 + 0.468437i \(0.155183\pi\)
\(20\) 0 0
\(21\) 0.0745411 0.0162662
\(22\) −5.50222 −1.17308
\(23\) 4.37513 0.912278 0.456139 0.889908i \(-0.349232\pi\)
0.456139 + 0.889908i \(0.349232\pi\)
\(24\) −0.0277693 −0.00566837
\(25\) 0 0
\(26\) 9.88639 1.93888
\(27\) −0.171159 −0.0329396
\(28\) 3.86182 0.729816
\(29\) −6.90125 −1.28153 −0.640765 0.767737i \(-0.721383\pi\)
−0.640765 + 0.767737i \(0.721383\pi\)
\(30\) 0 0
\(31\) 4.74310 0.851887 0.425943 0.904750i \(-0.359942\pi\)
0.425943 + 0.904750i \(0.359942\pi\)
\(32\) −6.95190 −1.22893
\(33\) −0.0841735 −0.0146527
\(34\) −11.6200 −1.99281
\(35\) 0 0
\(36\) −4.43311 −0.738851
\(37\) 7.34312 1.20720 0.603600 0.797287i \(-0.293732\pi\)
0.603600 + 0.797287i \(0.293732\pi\)
\(38\) 14.3643 2.33019
\(39\) 0.151243 0.0242182
\(40\) 0 0
\(41\) 12.3379 1.92685 0.963427 0.267971i \(-0.0863530\pi\)
0.963427 + 0.267971i \(0.0863530\pi\)
\(42\) 0.139017 0.0214508
\(43\) 11.2845 1.72088 0.860438 0.509555i \(-0.170190\pi\)
0.860438 + 0.509555i \(0.170190\pi\)
\(44\) −4.36086 −0.657424
\(45\) 0 0
\(46\) 8.15948 1.20305
\(47\) 8.16281 1.19067 0.595334 0.803478i \(-0.297020\pi\)
0.595334 + 0.803478i \(0.297020\pi\)
\(48\) −0.136131 −0.0196488
\(49\) −0.173865 −0.0248378
\(50\) 0 0
\(51\) −0.177764 −0.0248919
\(52\) 7.83558 1.08660
\(53\) 5.90870 0.811623 0.405812 0.913957i \(-0.366989\pi\)
0.405812 + 0.913957i \(0.366989\pi\)
\(54\) −0.319207 −0.0434385
\(55\) 0 0
\(56\) −2.54298 −0.339820
\(57\) 0.219746 0.0291060
\(58\) −12.8706 −1.68999
\(59\) −9.78424 −1.27380 −0.636900 0.770947i \(-0.719783\pi\)
−0.636900 + 0.770947i \(0.719783\pi\)
\(60\) 0 0
\(61\) −0.306027 −0.0391828 −0.0195914 0.999808i \(-0.506237\pi\)
−0.0195914 + 0.999808i \(0.506237\pi\)
\(62\) 8.84573 1.12341
\(63\) −7.83594 −0.987235
\(64\) −3.42223 −0.427778
\(65\) 0 0
\(66\) −0.156981 −0.0193230
\(67\) 12.8152 1.56563 0.782815 0.622255i \(-0.213783\pi\)
0.782815 + 0.622255i \(0.213783\pi\)
\(68\) −9.20957 −1.11682
\(69\) 0.124824 0.0150271
\(70\) 0 0
\(71\) −3.43459 −0.407611 −0.203805 0.979011i \(-0.565331\pi\)
−0.203805 + 0.979011i \(0.565331\pi\)
\(72\) 2.91917 0.344027
\(73\) 14.0877 1.64884 0.824422 0.565975i \(-0.191500\pi\)
0.824422 + 0.565975i \(0.191500\pi\)
\(74\) 13.6947 1.59197
\(75\) 0 0
\(76\) 11.3846 1.30590
\(77\) −7.70823 −0.878434
\(78\) 0.282063 0.0319373
\(79\) −6.51002 −0.732435 −0.366217 0.930529i \(-0.619347\pi\)
−0.366217 + 0.930529i \(0.619347\pi\)
\(80\) 0 0
\(81\) 8.99267 0.999186
\(82\) 23.0098 2.54100
\(83\) −6.17514 −0.677809 −0.338905 0.940821i \(-0.610056\pi\)
−0.338905 + 0.940821i \(0.610056\pi\)
\(84\) 0.110179 0.0120216
\(85\) 0 0
\(86\) 21.0453 2.26937
\(87\) −0.196896 −0.0211094
\(88\) 2.87159 0.306113
\(89\) −0.892411 −0.0945954 −0.0472977 0.998881i \(-0.515061\pi\)
−0.0472977 + 0.998881i \(0.515061\pi\)
\(90\) 0 0
\(91\) 13.8501 1.45189
\(92\) 6.46690 0.674221
\(93\) 0.135323 0.0140323
\(94\) 15.2234 1.57017
\(95\) 0 0
\(96\) −0.198341 −0.0202431
\(97\) 2.91287 0.295757 0.147879 0.989006i \(-0.452756\pi\)
0.147879 + 0.989006i \(0.452756\pi\)
\(98\) −0.324252 −0.0327544
\(99\) 8.84851 0.889309
\(100\) 0 0
\(101\) −4.43051 −0.440852 −0.220426 0.975404i \(-0.570745\pi\)
−0.220426 + 0.975404i \(0.570745\pi\)
\(102\) −0.331523 −0.0328257
\(103\) −16.8911 −1.66433 −0.832166 0.554526i \(-0.812900\pi\)
−0.832166 + 0.554526i \(0.812900\pi\)
\(104\) −5.15967 −0.505947
\(105\) 0 0
\(106\) 11.0195 1.07031
\(107\) −13.2657 −1.28244 −0.641220 0.767357i \(-0.721571\pi\)
−0.641220 + 0.767357i \(0.721571\pi\)
\(108\) −0.252991 −0.0243441
\(109\) 1.13961 0.109155 0.0545775 0.998510i \(-0.482619\pi\)
0.0545775 + 0.998510i \(0.482619\pi\)
\(110\) 0 0
\(111\) 0.209502 0.0198851
\(112\) −12.4662 −1.17795
\(113\) 9.11889 0.857833 0.428917 0.903344i \(-0.358895\pi\)
0.428917 + 0.903344i \(0.358895\pi\)
\(114\) 0.409818 0.0383830
\(115\) 0 0
\(116\) −10.2008 −0.947117
\(117\) −15.8990 −1.46986
\(118\) −18.2473 −1.67980
\(119\) −16.2788 −1.49227
\(120\) 0 0
\(121\) −2.29570 −0.208700
\(122\) −0.570731 −0.0516715
\(123\) 0.352005 0.0317393
\(124\) 7.01080 0.629588
\(125\) 0 0
\(126\) −14.6138 −1.30190
\(127\) −18.2177 −1.61656 −0.808278 0.588802i \(-0.799600\pi\)
−0.808278 + 0.588802i \(0.799600\pi\)
\(128\) 7.52145 0.664809
\(129\) 0.321953 0.0283464
\(130\) 0 0
\(131\) 8.39706 0.733654 0.366827 0.930289i \(-0.380444\pi\)
0.366827 + 0.930289i \(0.380444\pi\)
\(132\) −0.124417 −0.0108291
\(133\) 20.1233 1.74491
\(134\) 23.9000 2.06464
\(135\) 0 0
\(136\) 6.06443 0.520021
\(137\) 7.67056 0.655340 0.327670 0.944792i \(-0.393737\pi\)
0.327670 + 0.944792i \(0.393737\pi\)
\(138\) 0.232794 0.0198167
\(139\) −17.6010 −1.49289 −0.746447 0.665445i \(-0.768242\pi\)
−0.746447 + 0.665445i \(0.768242\pi\)
\(140\) 0 0
\(141\) 0.232888 0.0196127
\(142\) −6.40540 −0.537529
\(143\) −15.6399 −1.30787
\(144\) 14.3104 1.19253
\(145\) 0 0
\(146\) 26.2732 2.17438
\(147\) −0.00496044 −0.000409130 0
\(148\) 10.8539 0.892184
\(149\) 20.7583 1.70059 0.850295 0.526307i \(-0.176424\pi\)
0.850295 + 0.526307i \(0.176424\pi\)
\(150\) 0 0
\(151\) 8.24865 0.671265 0.335633 0.941993i \(-0.391050\pi\)
0.335633 + 0.941993i \(0.391050\pi\)
\(152\) −7.49665 −0.608059
\(153\) 18.6869 1.51075
\(154\) −14.3756 −1.15842
\(155\) 0 0
\(156\) 0.223553 0.0178985
\(157\) −13.4770 −1.07558 −0.537791 0.843079i \(-0.680741\pi\)
−0.537791 + 0.843079i \(0.680741\pi\)
\(158\) −12.1410 −0.965884
\(159\) 0.168578 0.0133691
\(160\) 0 0
\(161\) 11.4309 0.900878
\(162\) 16.7710 1.31766
\(163\) 3.90935 0.306204 0.153102 0.988210i \(-0.451074\pi\)
0.153102 + 0.988210i \(0.451074\pi\)
\(164\) 18.2367 1.42404
\(165\) 0 0
\(166\) −11.5164 −0.893848
\(167\) 10.0354 0.776559 0.388280 0.921542i \(-0.373069\pi\)
0.388280 + 0.921542i \(0.373069\pi\)
\(168\) −0.0725524 −0.00559754
\(169\) 15.1017 1.16167
\(170\) 0 0
\(171\) −23.1002 −1.76651
\(172\) 16.6797 1.27182
\(173\) 1.77803 0.135181 0.0675906 0.997713i \(-0.478469\pi\)
0.0675906 + 0.997713i \(0.478469\pi\)
\(174\) −0.367204 −0.0278377
\(175\) 0 0
\(176\) 14.0771 1.06110
\(177\) −0.279149 −0.0209821
\(178\) −1.66432 −0.124746
\(179\) 11.0579 0.826503 0.413252 0.910617i \(-0.364393\pi\)
0.413252 + 0.910617i \(0.364393\pi\)
\(180\) 0 0
\(181\) 8.38065 0.622929 0.311464 0.950258i \(-0.399181\pi\)
0.311464 + 0.950258i \(0.399181\pi\)
\(182\) 25.8300 1.91465
\(183\) −0.00873109 −0.000645421 0
\(184\) −4.25841 −0.313934
\(185\) 0 0
\(186\) 0.252373 0.0185049
\(187\) 18.3824 1.34425
\(188\) 12.0655 0.879965
\(189\) −0.447186 −0.0325280
\(190\) 0 0
\(191\) −11.1126 −0.804081 −0.402040 0.915622i \(-0.631699\pi\)
−0.402040 + 0.915622i \(0.631699\pi\)
\(192\) −0.0976376 −0.00704639
\(193\) 11.0641 0.796412 0.398206 0.917296i \(-0.369633\pi\)
0.398206 + 0.917296i \(0.369633\pi\)
\(194\) 5.43241 0.390024
\(195\) 0 0
\(196\) −0.256990 −0.0183564
\(197\) 1.00000 0.0712470
\(198\) 16.5022 1.17276
\(199\) −4.67613 −0.331482 −0.165741 0.986169i \(-0.553002\pi\)
−0.165741 + 0.986169i \(0.553002\pi\)
\(200\) 0 0
\(201\) 0.365624 0.0257891
\(202\) −8.26275 −0.581365
\(203\) −18.0308 −1.26551
\(204\) −0.262753 −0.0183964
\(205\) 0 0
\(206\) −31.5014 −2.19481
\(207\) −13.1218 −0.912031
\(208\) −25.2938 −1.75381
\(209\) −22.7237 −1.57183
\(210\) 0 0
\(211\) 16.2179 1.11649 0.558243 0.829677i \(-0.311476\pi\)
0.558243 + 0.829677i \(0.311476\pi\)
\(212\) 8.73368 0.599831
\(213\) −0.0979904 −0.00671419
\(214\) −24.7400 −1.69119
\(215\) 0 0
\(216\) 0.166593 0.0113352
\(217\) 12.3922 0.841241
\(218\) 2.12534 0.143946
\(219\) 0.401929 0.0271599
\(220\) 0 0
\(221\) −33.0294 −2.22180
\(222\) 0.390715 0.0262231
\(223\) 12.5711 0.841820 0.420910 0.907102i \(-0.361711\pi\)
0.420910 + 0.907102i \(0.361711\pi\)
\(224\) −18.1631 −1.21358
\(225\) 0 0
\(226\) 17.0064 1.13125
\(227\) −16.7032 −1.10863 −0.554314 0.832307i \(-0.687019\pi\)
−0.554314 + 0.832307i \(0.687019\pi\)
\(228\) 0.324807 0.0215108
\(229\) 24.0153 1.58698 0.793488 0.608586i \(-0.208263\pi\)
0.793488 + 0.608586i \(0.208263\pi\)
\(230\) 0 0
\(231\) −0.219919 −0.0144696
\(232\) 6.71712 0.441001
\(233\) −10.5658 −0.692187 −0.346093 0.938200i \(-0.612492\pi\)
−0.346093 + 0.938200i \(0.612492\pi\)
\(234\) −29.6511 −1.93835
\(235\) 0 0
\(236\) −14.4621 −0.941404
\(237\) −0.185734 −0.0120647
\(238\) −30.3594 −1.96791
\(239\) −11.5049 −0.744190 −0.372095 0.928195i \(-0.621360\pi\)
−0.372095 + 0.928195i \(0.621360\pi\)
\(240\) 0 0
\(241\) −1.34956 −0.0869325 −0.0434662 0.999055i \(-0.513840\pi\)
−0.0434662 + 0.999055i \(0.513840\pi\)
\(242\) −4.28140 −0.275219
\(243\) 0.770043 0.0493983
\(244\) −0.452340 −0.0289581
\(245\) 0 0
\(246\) 0.656478 0.0418555
\(247\) 40.8299 2.59794
\(248\) −4.61656 −0.293152
\(249\) −0.176179 −0.0111649
\(250\) 0 0
\(251\) 3.75459 0.236988 0.118494 0.992955i \(-0.462193\pi\)
0.118494 + 0.992955i \(0.462193\pi\)
\(252\) −11.5823 −0.729618
\(253\) −12.9080 −0.811518
\(254\) −33.9753 −2.13180
\(255\) 0 0
\(256\) 20.8717 1.30448
\(257\) −2.39224 −0.149224 −0.0746118 0.997213i \(-0.523772\pi\)
−0.0746118 + 0.997213i \(0.523772\pi\)
\(258\) 0.600432 0.0373812
\(259\) 19.1853 1.19211
\(260\) 0 0
\(261\) 20.6981 1.28118
\(262\) 15.6602 0.967493
\(263\) −4.79320 −0.295561 −0.147781 0.989020i \(-0.547213\pi\)
−0.147781 + 0.989020i \(0.547213\pi\)
\(264\) 0.0819278 0.00504231
\(265\) 0 0
\(266\) 37.5293 2.30107
\(267\) −0.0254609 −0.00155818
\(268\) 18.9422 1.15708
\(269\) −20.9599 −1.27795 −0.638975 0.769227i \(-0.720641\pi\)
−0.638975 + 0.769227i \(0.720641\pi\)
\(270\) 0 0
\(271\) 5.01429 0.304597 0.152298 0.988335i \(-0.451333\pi\)
0.152298 + 0.988335i \(0.451333\pi\)
\(272\) 29.7291 1.80259
\(273\) 0.395150 0.0239156
\(274\) 14.3053 0.864217
\(275\) 0 0
\(276\) 0.184504 0.0111058
\(277\) −18.1690 −1.09167 −0.545835 0.837892i \(-0.683788\pi\)
−0.545835 + 0.837892i \(0.683788\pi\)
\(278\) −32.8252 −1.96873
\(279\) −14.2255 −0.851655
\(280\) 0 0
\(281\) −1.63371 −0.0974590 −0.0487295 0.998812i \(-0.515517\pi\)
−0.0487295 + 0.998812i \(0.515517\pi\)
\(282\) 0.434329 0.0258639
\(283\) −22.2328 −1.32160 −0.660800 0.750562i \(-0.729783\pi\)
−0.660800 + 0.750562i \(0.729783\pi\)
\(284\) −5.07668 −0.301245
\(285\) 0 0
\(286\) −29.1679 −1.72473
\(287\) 32.2350 1.90277
\(288\) 20.8500 1.22860
\(289\) 21.8212 1.28360
\(290\) 0 0
\(291\) 0.0831054 0.00487173
\(292\) 20.8231 1.21858
\(293\) −12.4690 −0.728449 −0.364224 0.931311i \(-0.618666\pi\)
−0.364224 + 0.931311i \(0.618666\pi\)
\(294\) −0.00925105 −0.000539532 0
\(295\) 0 0
\(296\) −7.14720 −0.415423
\(297\) 0.504973 0.0293015
\(298\) 38.7136 2.24262
\(299\) 23.1930 1.34129
\(300\) 0 0
\(301\) 29.4830 1.69937
\(302\) 15.3835 0.885219
\(303\) −0.126404 −0.00726174
\(304\) −36.7501 −2.10777
\(305\) 0 0
\(306\) 34.8505 1.99227
\(307\) −26.6488 −1.52093 −0.760463 0.649381i \(-0.775028\pi\)
−0.760463 + 0.649381i \(0.775028\pi\)
\(308\) −11.3936 −0.649208
\(309\) −0.481911 −0.0274150
\(310\) 0 0
\(311\) −11.5838 −0.656858 −0.328429 0.944529i \(-0.606519\pi\)
−0.328429 + 0.944529i \(0.606519\pi\)
\(312\) −0.147208 −0.00833399
\(313\) −2.66092 −0.150404 −0.0752019 0.997168i \(-0.523960\pi\)
−0.0752019 + 0.997168i \(0.523960\pi\)
\(314\) −25.1341 −1.41840
\(315\) 0 0
\(316\) −9.62249 −0.541307
\(317\) 13.5020 0.758347 0.379174 0.925326i \(-0.376208\pi\)
0.379174 + 0.925326i \(0.376208\pi\)
\(318\) 0.314392 0.0176302
\(319\) 20.3608 1.13999
\(320\) 0 0
\(321\) −0.378475 −0.0211244
\(322\) 21.3182 1.18802
\(323\) −47.9895 −2.67021
\(324\) 13.2921 0.738450
\(325\) 0 0
\(326\) 7.29080 0.403800
\(327\) 0.0325136 0.00179801
\(328\) −12.0087 −0.663070
\(329\) 21.3269 1.17579
\(330\) 0 0
\(331\) 1.11883 0.0614967 0.0307484 0.999527i \(-0.490211\pi\)
0.0307484 + 0.999527i \(0.490211\pi\)
\(332\) −9.12749 −0.500936
\(333\) −22.0234 −1.20687
\(334\) 18.7156 1.02407
\(335\) 0 0
\(336\) −0.355667 −0.0194032
\(337\) −17.0812 −0.930471 −0.465236 0.885187i \(-0.654030\pi\)
−0.465236 + 0.885187i \(0.654030\pi\)
\(338\) 28.1642 1.53193
\(339\) 0.260166 0.0141303
\(340\) 0 0
\(341\) −13.9936 −0.757796
\(342\) −43.0811 −2.32956
\(343\) −18.7431 −1.01203
\(344\) −10.9835 −0.592189
\(345\) 0 0
\(346\) 3.31597 0.178268
\(347\) 7.08597 0.380395 0.190197 0.981746i \(-0.439087\pi\)
0.190197 + 0.981746i \(0.439087\pi\)
\(348\) −0.291032 −0.0156010
\(349\) 4.05841 0.217241 0.108621 0.994083i \(-0.465357\pi\)
0.108621 + 0.994083i \(0.465357\pi\)
\(350\) 0 0
\(351\) −0.907334 −0.0484299
\(352\) 20.5102 1.09320
\(353\) −6.49646 −0.345772 −0.172886 0.984942i \(-0.555309\pi\)
−0.172886 + 0.984942i \(0.555309\pi\)
\(354\) −0.520603 −0.0276697
\(355\) 0 0
\(356\) −1.31908 −0.0699109
\(357\) −0.464441 −0.0245808
\(358\) 20.6226 1.08994
\(359\) 9.81942 0.518249 0.259125 0.965844i \(-0.416566\pi\)
0.259125 + 0.965844i \(0.416566\pi\)
\(360\) 0 0
\(361\) 40.3230 2.12227
\(362\) 15.6296 0.821476
\(363\) −0.0654973 −0.00343772
\(364\) 20.4719 1.07302
\(365\) 0 0
\(366\) −0.0162832 −0.000851137 0
\(367\) 37.1694 1.94023 0.970113 0.242655i \(-0.0780184\pi\)
0.970113 + 0.242655i \(0.0780184\pi\)
\(368\) −20.8756 −1.08822
\(369\) −37.0036 −1.92633
\(370\) 0 0
\(371\) 15.4376 0.801480
\(372\) 0.200021 0.0103706
\(373\) 24.4554 1.26625 0.633126 0.774049i \(-0.281772\pi\)
0.633126 + 0.774049i \(0.281772\pi\)
\(374\) 34.2825 1.77271
\(375\) 0 0
\(376\) −7.94502 −0.409733
\(377\) −36.5842 −1.88418
\(378\) −0.833987 −0.0428957
\(379\) −20.3558 −1.04561 −0.522804 0.852453i \(-0.675114\pi\)
−0.522804 + 0.852453i \(0.675114\pi\)
\(380\) 0 0
\(381\) −0.519758 −0.0266280
\(382\) −20.7247 −1.06037
\(383\) 34.3333 1.75435 0.877176 0.480169i \(-0.159425\pi\)
0.877176 + 0.480169i \(0.159425\pi\)
\(384\) 0.214590 0.0109508
\(385\) 0 0
\(386\) 20.6342 1.05025
\(387\) −33.8444 −1.72041
\(388\) 4.30552 0.218580
\(389\) −5.12671 −0.259935 −0.129967 0.991518i \(-0.541487\pi\)
−0.129967 + 0.991518i \(0.541487\pi\)
\(390\) 0 0
\(391\) −27.2600 −1.37860
\(392\) 0.169226 0.00854720
\(393\) 0.239572 0.0120848
\(394\) 1.86497 0.0939557
\(395\) 0 0
\(396\) 13.0790 0.657245
\(397\) −38.6708 −1.94083 −0.970417 0.241437i \(-0.922381\pi\)
−0.970417 + 0.241437i \(0.922381\pi\)
\(398\) −8.72083 −0.437136
\(399\) 0.574127 0.0287423
\(400\) 0 0
\(401\) −15.8108 −0.789555 −0.394777 0.918777i \(-0.629178\pi\)
−0.394777 + 0.918777i \(0.629178\pi\)
\(402\) 0.681877 0.0340089
\(403\) 25.1437 1.25250
\(404\) −6.54875 −0.325812
\(405\) 0 0
\(406\) −33.6269 −1.66887
\(407\) −21.6644 −1.07387
\(408\) 0.173021 0.00856581
\(409\) −14.0860 −0.696506 −0.348253 0.937400i \(-0.613225\pi\)
−0.348253 + 0.937400i \(0.613225\pi\)
\(410\) 0 0
\(411\) 0.218844 0.0107948
\(412\) −24.9668 −1.23003
\(413\) −25.5632 −1.25788
\(414\) −24.4718 −1.20272
\(415\) 0 0
\(416\) −36.8527 −1.80685
\(417\) −0.502163 −0.0245910
\(418\) −42.3789 −2.07282
\(419\) 11.2511 0.549653 0.274827 0.961494i \(-0.411380\pi\)
0.274827 + 0.961494i \(0.411380\pi\)
\(420\) 0 0
\(421\) 34.8165 1.69685 0.848427 0.529312i \(-0.177550\pi\)
0.848427 + 0.529312i \(0.177550\pi\)
\(422\) 30.2459 1.47235
\(423\) −24.4818 −1.19034
\(424\) −5.75106 −0.279296
\(425\) 0 0
\(426\) −0.182749 −0.00885421
\(427\) −0.799554 −0.0386931
\(428\) −19.6080 −0.947789
\(429\) −0.446213 −0.0215433
\(430\) 0 0
\(431\) 10.5202 0.506742 0.253371 0.967369i \(-0.418461\pi\)
0.253371 + 0.967369i \(0.418461\pi\)
\(432\) 0.816673 0.0392922
\(433\) 5.25119 0.252356 0.126178 0.992008i \(-0.459729\pi\)
0.126178 + 0.992008i \(0.459729\pi\)
\(434\) 23.1111 1.10937
\(435\) 0 0
\(436\) 1.68446 0.0806712
\(437\) 33.6979 1.61199
\(438\) 0.749585 0.0358166
\(439\) 10.3858 0.495688 0.247844 0.968800i \(-0.420278\pi\)
0.247844 + 0.968800i \(0.420278\pi\)
\(440\) 0 0
\(441\) 0.521452 0.0248311
\(442\) −61.5988 −2.92995
\(443\) −18.1023 −0.860067 −0.430033 0.902813i \(-0.641498\pi\)
−0.430033 + 0.902813i \(0.641498\pi\)
\(444\) 0.309666 0.0146961
\(445\) 0 0
\(446\) 23.4446 1.11013
\(447\) 0.592245 0.0280122
\(448\) −8.94121 −0.422432
\(449\) −15.5560 −0.734134 −0.367067 0.930195i \(-0.619638\pi\)
−0.367067 + 0.930195i \(0.619638\pi\)
\(450\) 0 0
\(451\) −36.4005 −1.71403
\(452\) 13.4787 0.633983
\(453\) 0.235338 0.0110571
\(454\) −31.1509 −1.46198
\(455\) 0 0
\(456\) −0.213883 −0.0100160
\(457\) −29.7196 −1.39022 −0.695111 0.718902i \(-0.744645\pi\)
−0.695111 + 0.718902i \(0.744645\pi\)
\(458\) 44.7878 2.09280
\(459\) 1.06644 0.0497770
\(460\) 0 0
\(461\) −19.3372 −0.900623 −0.450312 0.892872i \(-0.648687\pi\)
−0.450312 + 0.892872i \(0.648687\pi\)
\(462\) −0.410142 −0.0190815
\(463\) −0.900459 −0.0418479 −0.0209239 0.999781i \(-0.506661\pi\)
−0.0209239 + 0.999781i \(0.506661\pi\)
\(464\) 32.9287 1.52868
\(465\) 0 0
\(466\) −19.7048 −0.912808
\(467\) −4.60643 −0.213160 −0.106580 0.994304i \(-0.533990\pi\)
−0.106580 + 0.994304i \(0.533990\pi\)
\(468\) −23.5004 −1.08630
\(469\) 33.4822 1.54606
\(470\) 0 0
\(471\) −0.384504 −0.0177170
\(472\) 9.52320 0.438341
\(473\) −33.2928 −1.53081
\(474\) −0.346387 −0.0159101
\(475\) 0 0
\(476\) −24.0617 −1.10287
\(477\) −17.7213 −0.811403
\(478\) −21.4563 −0.981386
\(479\) −3.24393 −0.148219 −0.0741095 0.997250i \(-0.523611\pi\)
−0.0741095 + 0.997250i \(0.523611\pi\)
\(480\) 0 0
\(481\) 38.9266 1.77490
\(482\) −2.51688 −0.114641
\(483\) 0.326127 0.0148393
\(484\) −3.39328 −0.154240
\(485\) 0 0
\(486\) 1.43611 0.0651431
\(487\) 6.70261 0.303724 0.151862 0.988402i \(-0.451473\pi\)
0.151862 + 0.988402i \(0.451473\pi\)
\(488\) 0.297862 0.0134836
\(489\) 0.111535 0.00504380
\(490\) 0 0
\(491\) 13.2883 0.599694 0.299847 0.953987i \(-0.403064\pi\)
0.299847 + 0.953987i \(0.403064\pi\)
\(492\) 0.520300 0.0234569
\(493\) 42.9994 1.93659
\(494\) 76.1464 3.42599
\(495\) 0 0
\(496\) −22.6313 −1.01618
\(497\) −8.97351 −0.402517
\(498\) −0.328569 −0.0147235
\(499\) 2.82098 0.126284 0.0631422 0.998005i \(-0.479888\pi\)
0.0631422 + 0.998005i \(0.479888\pi\)
\(500\) 0 0
\(501\) 0.286313 0.0127915
\(502\) 7.00220 0.312523
\(503\) 21.7164 0.968286 0.484143 0.874989i \(-0.339131\pi\)
0.484143 + 0.874989i \(0.339131\pi\)
\(504\) 7.62687 0.339728
\(505\) 0 0
\(506\) −24.0730 −1.07017
\(507\) 0.430858 0.0191351
\(508\) −26.9276 −1.19472
\(509\) 15.8153 0.700999 0.350500 0.936563i \(-0.386012\pi\)
0.350500 + 0.936563i \(0.386012\pi\)
\(510\) 0 0
\(511\) 36.8069 1.62824
\(512\) 23.8822 1.05545
\(513\) −1.31829 −0.0582041
\(514\) −4.46144 −0.196786
\(515\) 0 0
\(516\) 0.475880 0.0209494
\(517\) −24.0828 −1.05916
\(518\) 35.7799 1.57208
\(519\) 0.0507280 0.00222671
\(520\) 0 0
\(521\) 3.85636 0.168950 0.0844751 0.996426i \(-0.473079\pi\)
0.0844751 + 0.996426i \(0.473079\pi\)
\(522\) 38.6013 1.68953
\(523\) −15.3629 −0.671774 −0.335887 0.941902i \(-0.609036\pi\)
−0.335887 + 0.941902i \(0.609036\pi\)
\(524\) 12.4117 0.542208
\(525\) 0 0
\(526\) −8.93915 −0.389766
\(527\) −29.5527 −1.28734
\(528\) 0.401627 0.0174786
\(529\) −3.85820 −0.167748
\(530\) 0 0
\(531\) 29.3447 1.27345
\(532\) 29.7443 1.28958
\(533\) 65.4044 2.83298
\(534\) −0.0474837 −0.00205482
\(535\) 0 0
\(536\) −12.4733 −0.538765
\(537\) 0.315486 0.0136142
\(538\) −39.0896 −1.68527
\(539\) 0.512954 0.0220945
\(540\) 0 0
\(541\) 19.8614 0.853907 0.426953 0.904274i \(-0.359587\pi\)
0.426953 + 0.904274i \(0.359587\pi\)
\(542\) 9.35149 0.401681
\(543\) 0.239104 0.0102609
\(544\) 43.3149 1.85711
\(545\) 0 0
\(546\) 0.736942 0.0315382
\(547\) −36.7007 −1.56921 −0.784605 0.619997i \(-0.787134\pi\)
−0.784605 + 0.619997i \(0.787134\pi\)
\(548\) 11.3379 0.484330
\(549\) 0.917833 0.0391721
\(550\) 0 0
\(551\) −53.1544 −2.26445
\(552\) −0.121494 −0.00517114
\(553\) −17.0087 −0.723282
\(554\) −33.8846 −1.43962
\(555\) 0 0
\(556\) −26.0160 −1.10333
\(557\) 16.1457 0.684116 0.342058 0.939679i \(-0.388876\pi\)
0.342058 + 0.939679i \(0.388876\pi\)
\(558\) −26.5300 −1.12310
\(559\) 59.8205 2.53014
\(560\) 0 0
\(561\) 0.524457 0.0221426
\(562\) −3.04682 −0.128522
\(563\) 3.67718 0.154975 0.0774873 0.996993i \(-0.475310\pi\)
0.0774873 + 0.996993i \(0.475310\pi\)
\(564\) 0.344233 0.0144948
\(565\) 0 0
\(566\) −41.4634 −1.74283
\(567\) 23.4950 0.986699
\(568\) 3.34296 0.140267
\(569\) −46.5398 −1.95105 −0.975526 0.219886i \(-0.929431\pi\)
−0.975526 + 0.219886i \(0.929431\pi\)
\(570\) 0 0
\(571\) 35.9928 1.50625 0.753125 0.657877i \(-0.228546\pi\)
0.753125 + 0.657877i \(0.228546\pi\)
\(572\) −23.1174 −0.966585
\(573\) −0.317048 −0.0132449
\(574\) 60.1173 2.50925
\(575\) 0 0
\(576\) 10.2639 0.427662
\(577\) 38.4625 1.60122 0.800608 0.599189i \(-0.204510\pi\)
0.800608 + 0.599189i \(0.204510\pi\)
\(578\) 40.6958 1.69272
\(579\) 0.315664 0.0131186
\(580\) 0 0
\(581\) −16.1337 −0.669339
\(582\) 0.154989 0.00642450
\(583\) −17.4325 −0.721980
\(584\) −13.7119 −0.567402
\(585\) 0 0
\(586\) −23.2543 −0.960628
\(587\) 6.00361 0.247796 0.123898 0.992295i \(-0.460461\pi\)
0.123898 + 0.992295i \(0.460461\pi\)
\(588\) −0.00733204 −0.000302368 0
\(589\) 36.5321 1.50528
\(590\) 0 0
\(591\) 0.0285304 0.00117359
\(592\) −35.0371 −1.44001
\(593\) −31.8022 −1.30596 −0.652981 0.757375i \(-0.726482\pi\)
−0.652981 + 0.757375i \(0.726482\pi\)
\(594\) 0.941757 0.0386408
\(595\) 0 0
\(596\) 30.6830 1.25682
\(597\) −0.133412 −0.00546019
\(598\) 43.2543 1.76880
\(599\) 18.0162 0.736121 0.368061 0.929802i \(-0.380022\pi\)
0.368061 + 0.929802i \(0.380022\pi\)
\(600\) 0 0
\(601\) 21.4146 0.873520 0.436760 0.899578i \(-0.356126\pi\)
0.436760 + 0.899578i \(0.356126\pi\)
\(602\) 54.9848 2.24101
\(603\) −38.4353 −1.56520
\(604\) 12.1924 0.496100
\(605\) 0 0
\(606\) −0.235740 −0.00957628
\(607\) 38.4079 1.55893 0.779463 0.626448i \(-0.215492\pi\)
0.779463 + 0.626448i \(0.215492\pi\)
\(608\) −53.5445 −2.17152
\(609\) −0.514427 −0.0208456
\(610\) 0 0
\(611\) 43.2719 1.75059
\(612\) 27.6212 1.11652
\(613\) 28.9559 1.16952 0.584759 0.811207i \(-0.301189\pi\)
0.584759 + 0.811207i \(0.301189\pi\)
\(614\) −49.6991 −2.00569
\(615\) 0 0
\(616\) 7.50257 0.302287
\(617\) 6.39381 0.257405 0.128702 0.991683i \(-0.458919\pi\)
0.128702 + 0.991683i \(0.458919\pi\)
\(618\) −0.898749 −0.0361530
\(619\) 3.90869 0.157104 0.0785518 0.996910i \(-0.474970\pi\)
0.0785518 + 0.996910i \(0.474970\pi\)
\(620\) 0 0
\(621\) −0.748845 −0.0300501
\(622\) −21.6034 −0.866218
\(623\) −2.33159 −0.0934133
\(624\) −0.721643 −0.0288888
\(625\) 0 0
\(626\) −4.96252 −0.198342
\(627\) −0.648317 −0.0258913
\(628\) −19.9204 −0.794910
\(629\) −45.7525 −1.82427
\(630\) 0 0
\(631\) −29.9929 −1.19400 −0.596998 0.802243i \(-0.703640\pi\)
−0.596998 + 0.802243i \(0.703640\pi\)
\(632\) 6.33634 0.252046
\(633\) 0.462704 0.0183908
\(634\) 25.1808 1.00006
\(635\) 0 0
\(636\) 0.249176 0.00988046
\(637\) −0.921675 −0.0365181
\(638\) 37.9722 1.50333
\(639\) 10.3010 0.407500
\(640\) 0 0
\(641\) 19.5696 0.772952 0.386476 0.922299i \(-0.373692\pi\)
0.386476 + 0.922299i \(0.373692\pi\)
\(642\) −0.705844 −0.0278574
\(643\) −23.7483 −0.936541 −0.468271 0.883585i \(-0.655123\pi\)
−0.468271 + 0.883585i \(0.655123\pi\)
\(644\) 16.8960 0.665795
\(645\) 0 0
\(646\) −89.4988 −3.52128
\(647\) −14.3567 −0.564419 −0.282209 0.959353i \(-0.591067\pi\)
−0.282209 + 0.959353i \(0.591067\pi\)
\(648\) −8.75275 −0.343841
\(649\) 28.8665 1.13311
\(650\) 0 0
\(651\) 0.353556 0.0138570
\(652\) 5.77842 0.226300
\(653\) 48.0337 1.87970 0.939852 0.341581i \(-0.110962\pi\)
0.939852 + 0.341581i \(0.110962\pi\)
\(654\) 0.0606368 0.00237109
\(655\) 0 0
\(656\) −58.8692 −2.29846
\(657\) −42.2517 −1.64840
\(658\) 39.7739 1.55055
\(659\) 35.6174 1.38746 0.693729 0.720237i \(-0.255967\pi\)
0.693729 + 0.720237i \(0.255967\pi\)
\(660\) 0 0
\(661\) −17.0841 −0.664493 −0.332247 0.943193i \(-0.607807\pi\)
−0.332247 + 0.943193i \(0.607807\pi\)
\(662\) 2.08659 0.0810976
\(663\) −0.942343 −0.0365976
\(664\) 6.01038 0.233248
\(665\) 0 0
\(666\) −41.0729 −1.59154
\(667\) −30.1939 −1.16911
\(668\) 14.8333 0.573918
\(669\) 0.358658 0.0138665
\(670\) 0 0
\(671\) 0.902874 0.0348551
\(672\) −0.518202 −0.0199901
\(673\) −37.3974 −1.44156 −0.720781 0.693163i \(-0.756217\pi\)
−0.720781 + 0.693163i \(0.756217\pi\)
\(674\) −31.8559 −1.22704
\(675\) 0 0
\(676\) 22.3219 0.858534
\(677\) −16.5709 −0.636870 −0.318435 0.947945i \(-0.603157\pi\)
−0.318435 + 0.947945i \(0.603157\pi\)
\(678\) 0.485201 0.0186340
\(679\) 7.61042 0.292061
\(680\) 0 0
\(681\) −0.476549 −0.0182614
\(682\) −26.0976 −0.999329
\(683\) 8.22248 0.314625 0.157312 0.987549i \(-0.449717\pi\)
0.157312 + 0.987549i \(0.449717\pi\)
\(684\) −34.1444 −1.30555
\(685\) 0 0
\(686\) −34.9552 −1.33460
\(687\) 0.685167 0.0261408
\(688\) −53.8432 −2.05275
\(689\) 31.3227 1.19330
\(690\) 0 0
\(691\) 37.2988 1.41891 0.709457 0.704749i \(-0.248940\pi\)
0.709457 + 0.704749i \(0.248940\pi\)
\(692\) 2.62811 0.0999059
\(693\) 23.1184 0.878195
\(694\) 13.2151 0.501638
\(695\) 0 0
\(696\) 0.191642 0.00726419
\(697\) −76.8732 −2.91178
\(698\) 7.56880 0.286483
\(699\) −0.301446 −0.0114017
\(700\) 0 0
\(701\) −40.5905 −1.53308 −0.766542 0.642194i \(-0.778024\pi\)
−0.766542 + 0.642194i \(0.778024\pi\)
\(702\) −1.69215 −0.0638660
\(703\) 56.5578 2.13312
\(704\) 10.0966 0.380531
\(705\) 0 0
\(706\) −12.1157 −0.455980
\(707\) −11.5755 −0.435343
\(708\) −0.412611 −0.0155069
\(709\) −44.6773 −1.67789 −0.838945 0.544216i \(-0.816827\pi\)
−0.838945 + 0.544216i \(0.816827\pi\)
\(710\) 0 0
\(711\) 19.5248 0.732236
\(712\) 0.868602 0.0325522
\(713\) 20.7517 0.777158
\(714\) −0.866167 −0.0324155
\(715\) 0 0
\(716\) 16.3447 0.610829
\(717\) −0.328240 −0.0122583
\(718\) 18.3129 0.683431
\(719\) 17.1234 0.638597 0.319298 0.947654i \(-0.396553\pi\)
0.319298 + 0.947654i \(0.396553\pi\)
\(720\) 0 0
\(721\) −44.1313 −1.64353
\(722\) 75.2012 2.79870
\(723\) −0.0385034 −0.00143196
\(724\) 12.3875 0.460377
\(725\) 0 0
\(726\) −0.122150 −0.00453342
\(727\) −2.63180 −0.0976079 −0.0488040 0.998808i \(-0.515541\pi\)
−0.0488040 + 0.998808i \(0.515541\pi\)
\(728\) −13.4806 −0.499625
\(729\) −26.9561 −0.998372
\(730\) 0 0
\(731\) −70.3102 −2.60052
\(732\) −0.0129055 −0.000476999 0
\(733\) −41.3253 −1.52638 −0.763192 0.646171i \(-0.776369\pi\)
−0.763192 + 0.646171i \(0.776369\pi\)
\(734\) 69.3197 2.55864
\(735\) 0 0
\(736\) −30.4155 −1.12113
\(737\) −37.8088 −1.39271
\(738\) −69.0105 −2.54031
\(739\) 7.96028 0.292824 0.146412 0.989224i \(-0.453228\pi\)
0.146412 + 0.989224i \(0.453228\pi\)
\(740\) 0 0
\(741\) 1.16489 0.0427935
\(742\) 28.7906 1.05694
\(743\) 1.80849 0.0663470 0.0331735 0.999450i \(-0.489439\pi\)
0.0331735 + 0.999450i \(0.489439\pi\)
\(744\) −0.131712 −0.00482881
\(745\) 0 0
\(746\) 45.6085 1.66984
\(747\) 18.5204 0.677625
\(748\) 27.1710 0.993471
\(749\) −34.6590 −1.26641
\(750\) 0 0
\(751\) 31.6702 1.15566 0.577831 0.816157i \(-0.303899\pi\)
0.577831 + 0.816157i \(0.303899\pi\)
\(752\) −38.9482 −1.42029
\(753\) 0.107120 0.00390368
\(754\) −68.2284 −2.48473
\(755\) 0 0
\(756\) −0.660987 −0.0240399
\(757\) −39.2174 −1.42538 −0.712690 0.701479i \(-0.752523\pi\)
−0.712690 + 0.701479i \(0.752523\pi\)
\(758\) −37.9629 −1.37888
\(759\) −0.368270 −0.0133674
\(760\) 0 0
\(761\) −44.0014 −1.59505 −0.797524 0.603287i \(-0.793857\pi\)
−0.797524 + 0.603287i \(0.793857\pi\)
\(762\) −0.969331 −0.0351152
\(763\) 2.97745 0.107791
\(764\) −16.4256 −0.594257
\(765\) 0 0
\(766\) 64.0306 2.31352
\(767\) −51.8673 −1.87282
\(768\) 0.595479 0.0214875
\(769\) −36.9417 −1.33215 −0.666076 0.745884i \(-0.732027\pi\)
−0.666076 + 0.745884i \(0.732027\pi\)
\(770\) 0 0
\(771\) −0.0682516 −0.00245802
\(772\) 16.3539 0.588590
\(773\) 23.1250 0.831748 0.415874 0.909422i \(-0.363476\pi\)
0.415874 + 0.909422i \(0.363476\pi\)
\(774\) −63.1188 −2.26876
\(775\) 0 0
\(776\) −2.83515 −0.101776
\(777\) 0.547364 0.0196366
\(778\) −9.56115 −0.342784
\(779\) 95.0282 3.40474
\(780\) 0 0
\(781\) 10.1331 0.362590
\(782\) −50.8390 −1.81800
\(783\) 1.18121 0.0422131
\(784\) 0.829581 0.0296279
\(785\) 0 0
\(786\) 0.446793 0.0159366
\(787\) −39.2036 −1.39746 −0.698728 0.715387i \(-0.746250\pi\)
−0.698728 + 0.715387i \(0.746250\pi\)
\(788\) 1.47810 0.0526553
\(789\) −0.136752 −0.00486850
\(790\) 0 0
\(791\) 23.8248 0.847113
\(792\) −8.61244 −0.306030
\(793\) −1.62228 −0.0576089
\(794\) −72.1198 −2.55944
\(795\) 0 0
\(796\) −6.91180 −0.244982
\(797\) −10.1373 −0.359081 −0.179540 0.983751i \(-0.557461\pi\)
−0.179540 + 0.983751i \(0.557461\pi\)
\(798\) 1.07073 0.0379033
\(799\) −50.8597 −1.79929
\(800\) 0 0
\(801\) 2.67651 0.0945697
\(802\) −29.4867 −1.04121
\(803\) −41.5631 −1.46673
\(804\) 0.540430 0.0190595
\(805\) 0 0
\(806\) 46.8922 1.65171
\(807\) −0.597996 −0.0210505
\(808\) 4.31230 0.151706
\(809\) 20.5503 0.722512 0.361256 0.932467i \(-0.382348\pi\)
0.361256 + 0.932467i \(0.382348\pi\)
\(810\) 0 0
\(811\) −5.73011 −0.201211 −0.100606 0.994926i \(-0.532078\pi\)
−0.100606 + 0.994926i \(0.532078\pi\)
\(812\) −26.6514 −0.935280
\(813\) 0.143060 0.00501733
\(814\) −40.4035 −1.41614
\(815\) 0 0
\(816\) 0.848184 0.0296924
\(817\) 86.9152 3.04078
\(818\) −26.2699 −0.918505
\(819\) −41.5391 −1.45149
\(820\) 0 0
\(821\) 21.0194 0.733582 0.366791 0.930303i \(-0.380456\pi\)
0.366791 + 0.930303i \(0.380456\pi\)
\(822\) 0.408138 0.0142354
\(823\) −11.2514 −0.392199 −0.196099 0.980584i \(-0.562828\pi\)
−0.196099 + 0.980584i \(0.562828\pi\)
\(824\) 16.4405 0.572731
\(825\) 0 0
\(826\) −47.6745 −1.65881
\(827\) −23.1918 −0.806456 −0.403228 0.915099i \(-0.632112\pi\)
−0.403228 + 0.915099i \(0.632112\pi\)
\(828\) −19.3954 −0.674038
\(829\) −35.2673 −1.22489 −0.612443 0.790515i \(-0.709813\pi\)
−0.612443 + 0.790515i \(0.709813\pi\)
\(830\) 0 0
\(831\) −0.518370 −0.0179821
\(832\) −18.1416 −0.628946
\(833\) 1.08329 0.0375339
\(834\) −0.936518 −0.0324290
\(835\) 0 0
\(836\) −33.5880 −1.16166
\(837\) −0.811827 −0.0280608
\(838\) 20.9830 0.724845
\(839\) 23.8919 0.824840 0.412420 0.910994i \(-0.364684\pi\)
0.412420 + 0.910994i \(0.364684\pi\)
\(840\) 0 0
\(841\) 18.6272 0.642318
\(842\) 64.9317 2.23769
\(843\) −0.0466105 −0.00160535
\(844\) 23.9717 0.825141
\(845\) 0 0
\(846\) −45.6577 −1.56974
\(847\) −5.99794 −0.206092
\(848\) −28.1929 −0.968148
\(849\) −0.634310 −0.0217695
\(850\) 0 0
\(851\) 32.1271 1.10130
\(852\) −0.144840 −0.00496213
\(853\) −53.3791 −1.82767 −0.913834 0.406089i \(-0.866892\pi\)
−0.913834 + 0.406089i \(0.866892\pi\)
\(854\) −1.49114 −0.0510258
\(855\) 0 0
\(856\) 12.9117 0.441314
\(857\) 12.6788 0.433099 0.216550 0.976272i \(-0.430520\pi\)
0.216550 + 0.976272i \(0.430520\pi\)
\(858\) −0.832172 −0.0284099
\(859\) 34.1078 1.16374 0.581871 0.813281i \(-0.302321\pi\)
0.581871 + 0.813281i \(0.302321\pi\)
\(860\) 0 0
\(861\) 0.919680 0.0313426
\(862\) 19.6199 0.668257
\(863\) 11.6070 0.395108 0.197554 0.980292i \(-0.436700\pi\)
0.197554 + 0.980292i \(0.436700\pi\)
\(864\) 1.18988 0.0404806
\(865\) 0 0
\(866\) 9.79331 0.332790
\(867\) 0.622568 0.0211435
\(868\) 18.3170 0.621720
\(869\) 19.2066 0.651538
\(870\) 0 0
\(871\) 67.9349 2.30189
\(872\) −1.10921 −0.0375625
\(873\) −8.73624 −0.295677
\(874\) 62.8455 2.12578
\(875\) 0 0
\(876\) 0.594093 0.0200725
\(877\) −16.2373 −0.548294 −0.274147 0.961688i \(-0.588395\pi\)
−0.274147 + 0.961688i \(0.588395\pi\)
\(878\) 19.3692 0.653680
\(879\) −0.355747 −0.0119991
\(880\) 0 0
\(881\) −35.6574 −1.20133 −0.600665 0.799501i \(-0.705097\pi\)
−0.600665 + 0.799501i \(0.705097\pi\)
\(882\) 0.972492 0.0327455
\(883\) 9.20448 0.309756 0.154878 0.987934i \(-0.450502\pi\)
0.154878 + 0.987934i \(0.450502\pi\)
\(884\) −48.8209 −1.64202
\(885\) 0 0
\(886\) −33.7602 −1.13420
\(887\) 12.8124 0.430197 0.215098 0.976592i \(-0.430993\pi\)
0.215098 + 0.976592i \(0.430993\pi\)
\(888\) −0.203913 −0.00684287
\(889\) −47.5970 −1.59635
\(890\) 0 0
\(891\) −26.5311 −0.888827
\(892\) 18.5813 0.622149
\(893\) 62.8711 2.10390
\(894\) 1.10452 0.0369406
\(895\) 0 0
\(896\) 19.6512 0.656501
\(897\) 0.661708 0.0220938
\(898\) −29.0115 −0.968125
\(899\) −32.7333 −1.09172
\(900\) 0 0
\(901\) −36.8152 −1.22649
\(902\) −67.8858 −2.26035
\(903\) 0.841162 0.0279921
\(904\) −8.87560 −0.295198
\(905\) 0 0
\(906\) 0.438897 0.0145814
\(907\) −48.6838 −1.61652 −0.808260 0.588825i \(-0.799591\pi\)
−0.808260 + 0.588825i \(0.799591\pi\)
\(908\) −24.6890 −0.819334
\(909\) 13.2879 0.440732
\(910\) 0 0
\(911\) 25.7556 0.853320 0.426660 0.904412i \(-0.359690\pi\)
0.426660 + 0.904412i \(0.359690\pi\)
\(912\) −1.04850 −0.0347192
\(913\) 18.2185 0.602946
\(914\) −55.4260 −1.83333
\(915\) 0 0
\(916\) 35.4971 1.17286
\(917\) 21.9389 0.724486
\(918\) 1.98887 0.0656425
\(919\) −17.7142 −0.584337 −0.292169 0.956367i \(-0.594377\pi\)
−0.292169 + 0.956367i \(0.594377\pi\)
\(920\) 0 0
\(921\) −0.760301 −0.0250528
\(922\) −36.0632 −1.18768
\(923\) −18.2071 −0.599295
\(924\) −0.325063 −0.0106938
\(925\) 0 0
\(926\) −1.67933 −0.0551861
\(927\) 50.6597 1.66388
\(928\) 47.9768 1.57491
\(929\) 3.51259 0.115244 0.0576221 0.998338i \(-0.481648\pi\)
0.0576221 + 0.998338i \(0.481648\pi\)
\(930\) 0 0
\(931\) −1.33913 −0.0438882
\(932\) −15.6173 −0.511562
\(933\) −0.330491 −0.0108198
\(934\) −8.59085 −0.281101
\(935\) 0 0
\(936\) 15.4748 0.505810
\(937\) −12.5179 −0.408942 −0.204471 0.978873i \(-0.565547\pi\)
−0.204471 + 0.978873i \(0.565547\pi\)
\(938\) 62.4432 2.03884
\(939\) −0.0759171 −0.00247746
\(940\) 0 0
\(941\) −19.0252 −0.620202 −0.310101 0.950704i \(-0.600363\pi\)
−0.310101 + 0.950704i \(0.600363\pi\)
\(942\) −0.717088 −0.0233640
\(943\) 53.9799 1.75783
\(944\) 46.6847 1.51946
\(945\) 0 0
\(946\) −62.0901 −2.01872
\(947\) −30.0889 −0.977757 −0.488878 0.872352i \(-0.662594\pi\)
−0.488878 + 0.872352i \(0.662594\pi\)
\(948\) −0.274534 −0.00891644
\(949\) 74.6806 2.42423
\(950\) 0 0
\(951\) 0.385218 0.0124915
\(952\) 15.8445 0.513522
\(953\) −35.3452 −1.14494 −0.572471 0.819925i \(-0.694015\pi\)
−0.572471 + 0.819925i \(0.694015\pi\)
\(954\) −33.0497 −1.07002
\(955\) 0 0
\(956\) −17.0054 −0.549995
\(957\) 0.580902 0.0187779
\(958\) −6.04982 −0.195461
\(959\) 20.0408 0.647150
\(960\) 0 0
\(961\) −8.50297 −0.274289
\(962\) 72.5969 2.34062
\(963\) 39.7862 1.28209
\(964\) −1.99478 −0.0642476
\(965\) 0 0
\(966\) 0.608217 0.0195691
\(967\) 20.9472 0.673617 0.336808 0.941573i \(-0.390653\pi\)
0.336808 + 0.941573i \(0.390653\pi\)
\(968\) 2.23445 0.0718179
\(969\) −1.36916 −0.0439838
\(970\) 0 0
\(971\) −53.8204 −1.72718 −0.863590 0.504195i \(-0.831789\pi\)
−0.863590 + 0.504195i \(0.831789\pi\)
\(972\) 1.13820 0.0365079
\(973\) −45.9858 −1.47424
\(974\) 12.5002 0.400531
\(975\) 0 0
\(976\) 1.46018 0.0467393
\(977\) 33.0686 1.05796 0.528980 0.848634i \(-0.322575\pi\)
0.528980 + 0.848634i \(0.322575\pi\)
\(978\) 0.208010 0.00665142
\(979\) 2.63289 0.0841474
\(980\) 0 0
\(981\) −3.41791 −0.109125
\(982\) 24.7823 0.790836
\(983\) 20.3930 0.650437 0.325219 0.945639i \(-0.394562\pi\)
0.325219 + 0.945639i \(0.394562\pi\)
\(984\) −0.342614 −0.0109221
\(985\) 0 0
\(986\) 80.1924 2.55385
\(987\) 0.608465 0.0193676
\(988\) 60.3508 1.92001
\(989\) 49.3714 1.56992
\(990\) 0 0
\(991\) 11.9938 0.380997 0.190499 0.981687i \(-0.438990\pi\)
0.190499 + 0.981687i \(0.438990\pi\)
\(992\) −32.9736 −1.04691
\(993\) 0.0319208 0.00101298
\(994\) −16.7353 −0.530812
\(995\) 0 0
\(996\) −0.260411 −0.00825145
\(997\) 40.4595 1.28136 0.640682 0.767806i \(-0.278652\pi\)
0.640682 + 0.767806i \(0.278652\pi\)
\(998\) 5.26104 0.166535
\(999\) −1.25684 −0.0397648
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.q.1.29 yes 37
5.4 even 2 4925.2.a.p.1.9 37
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4925.2.a.p.1.9 37 5.4 even 2
4925.2.a.q.1.29 yes 37 1.1 even 1 trivial