Properties

Label 4900.2.e.l
Level $4900$
Weight $2$
Character orbit 4900.e
Analytic conductor $39.127$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4900.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(39.1266969904\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} + 2 q^{9} +O(q^{10})\) \( q + i q^{3} + 2 q^{9} + 3 q^{11} -i q^{13} + 3 i q^{17} + 2 q^{19} + 6 i q^{23} + 5 i q^{27} + 9 q^{29} -8 q^{31} + 3 i q^{33} -10 i q^{37} + q^{39} -2 i q^{43} + 3 i q^{47} -3 q^{51} + 2 i q^{57} + 12 q^{59} -8 q^{61} + 8 i q^{67} -6 q^{69} + 14 i q^{73} -5 q^{79} + q^{81} -12 i q^{83} + 9 i q^{87} + 12 q^{89} -8 i q^{93} -17 i q^{97} + 6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{9} + O(q^{10}) \) \( 2q + 4q^{9} + 6q^{11} + 4q^{19} + 18q^{29} - 16q^{31} + 2q^{39} - 6q^{51} + 24q^{59} - 16q^{61} - 12q^{69} - 10q^{79} + 2q^{81} + 24q^{89} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\) \(2451\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2549.1
1.00000i
1.00000i
0 1.00000i 0 0 0 0 0 2.00000 0
2549.2 0 1.00000i 0 0 0 0 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4900.2.e.l 2
5.b even 2 1 inner 4900.2.e.l 2
5.c odd 4 1 980.2.a.c 1
5.c odd 4 1 4900.2.a.p 1
7.b odd 2 1 700.2.e.c 2
15.e even 4 1 8820.2.a.r 1
20.e even 4 1 3920.2.a.u 1
21.c even 2 1 6300.2.k.c 2
28.d even 2 1 2800.2.g.j 2
35.c odd 2 1 700.2.e.c 2
35.f even 4 1 140.2.a.a 1
35.f even 4 1 700.2.a.d 1
35.k even 12 2 980.2.i.d 2
35.l odd 12 2 980.2.i.h 2
105.g even 2 1 6300.2.k.c 2
105.k odd 4 1 1260.2.a.c 1
105.k odd 4 1 6300.2.a.d 1
140.c even 2 1 2800.2.g.j 2
140.j odd 4 1 560.2.a.c 1
140.j odd 4 1 2800.2.a.y 1
280.s even 4 1 2240.2.a.g 1
280.y odd 4 1 2240.2.a.r 1
420.w even 4 1 5040.2.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.a.a 1 35.f even 4 1
560.2.a.c 1 140.j odd 4 1
700.2.a.d 1 35.f even 4 1
700.2.e.c 2 7.b odd 2 1
700.2.e.c 2 35.c odd 2 1
980.2.a.c 1 5.c odd 4 1
980.2.i.d 2 35.k even 12 2
980.2.i.h 2 35.l odd 12 2
1260.2.a.c 1 105.k odd 4 1
2240.2.a.g 1 280.s even 4 1
2240.2.a.r 1 280.y odd 4 1
2800.2.a.y 1 140.j odd 4 1
2800.2.g.j 2 28.d even 2 1
2800.2.g.j 2 140.c even 2 1
3920.2.a.u 1 20.e even 4 1
4900.2.a.p 1 5.c odd 4 1
4900.2.e.l 2 1.a even 1 1 trivial
4900.2.e.l 2 5.b even 2 1 inner
5040.2.a.h 1 420.w even 4 1
6300.2.a.d 1 105.k odd 4 1
6300.2.k.c 2 21.c even 2 1
6300.2.k.c 2 105.g even 2 1
8820.2.a.r 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4900, [\chi])\):

\( T_{3}^{2} + 1 \)
\( T_{11} - 3 \)
\( T_{19} - 2 \)
\( T_{31} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( -3 + T )^{2} \)
$13$ \( 1 + T^{2} \)
$17$ \( 9 + T^{2} \)
$19$ \( ( -2 + T )^{2} \)
$23$ \( 36 + T^{2} \)
$29$ \( ( -9 + T )^{2} \)
$31$ \( ( 8 + T )^{2} \)
$37$ \( 100 + T^{2} \)
$41$ \( T^{2} \)
$43$ \( 4 + T^{2} \)
$47$ \( 9 + T^{2} \)
$53$ \( T^{2} \)
$59$ \( ( -12 + T )^{2} \)
$61$ \( ( 8 + T )^{2} \)
$67$ \( 64 + T^{2} \)
$71$ \( T^{2} \)
$73$ \( 196 + T^{2} \)
$79$ \( ( 5 + T )^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( ( -12 + T )^{2} \)
$97$ \( 289 + T^{2} \)
show more
show less