Properties

Label 4900.2.e.g
Level $4900$
Weight $2$
Character orbit 4900.e
Analytic conductor $39.127$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4900.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(39.1266969904\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 700)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{3} - q^{9} +O(q^{10})\) \( q + 2 i q^{3} - q^{9} + 3 q^{11} + 4 i q^{13} + 2 q^{19} -3 i q^{23} + 4 i q^{27} -9 q^{29} -8 q^{31} + 6 i q^{33} -5 i q^{37} -8 q^{39} + 6 q^{41} + 11 i q^{43} + 6 i q^{47} + 6 i q^{53} + 4 i q^{57} + 10 q^{61} -5 i q^{67} + 6 q^{69} + 15 q^{71} + 10 i q^{73} + 7 q^{79} -11 q^{81} -12 i q^{83} -18 i q^{87} -12 q^{89} -16 i q^{93} + 8 i q^{97} -3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{9} + 6q^{11} + 4q^{19} - 18q^{29} - 16q^{31} - 16q^{39} + 12q^{41} + 20q^{61} + 12q^{69} + 30q^{71} + 14q^{79} - 22q^{81} - 24q^{89} - 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\) \(2451\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2549.1
1.00000i
1.00000i
0 2.00000i 0 0 0 0 0 −1.00000 0
2549.2 0 2.00000i 0 0 0 0 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4900.2.e.g 2
5.b even 2 1 inner 4900.2.e.g 2
5.c odd 4 1 4900.2.a.f 1
5.c odd 4 1 4900.2.a.t 1
7.b odd 2 1 700.2.e.b 2
21.c even 2 1 6300.2.k.d 2
28.d even 2 1 2800.2.g.e 2
35.c odd 2 1 700.2.e.b 2
35.f even 4 1 700.2.a.c 1
35.f even 4 1 700.2.a.i yes 1
105.g even 2 1 6300.2.k.d 2
105.k odd 4 1 6300.2.a.e 1
105.k odd 4 1 6300.2.a.s 1
140.c even 2 1 2800.2.g.e 2
140.j odd 4 1 2800.2.a.e 1
140.j odd 4 1 2800.2.a.ba 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
700.2.a.c 1 35.f even 4 1
700.2.a.i yes 1 35.f even 4 1
700.2.e.b 2 7.b odd 2 1
700.2.e.b 2 35.c odd 2 1
2800.2.a.e 1 140.j odd 4 1
2800.2.a.ba 1 140.j odd 4 1
2800.2.g.e 2 28.d even 2 1
2800.2.g.e 2 140.c even 2 1
4900.2.a.f 1 5.c odd 4 1
4900.2.a.t 1 5.c odd 4 1
4900.2.e.g 2 1.a even 1 1 trivial
4900.2.e.g 2 5.b even 2 1 inner
6300.2.a.e 1 105.k odd 4 1
6300.2.a.s 1 105.k odd 4 1
6300.2.k.d 2 21.c even 2 1
6300.2.k.d 2 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4900, [\chi])\):

\( T_{3}^{2} + 4 \)
\( T_{11} - 3 \)
\( T_{19} - 2 \)
\( T_{31} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 4 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( -3 + T )^{2} \)
$13$ \( 16 + T^{2} \)
$17$ \( T^{2} \)
$19$ \( ( -2 + T )^{2} \)
$23$ \( 9 + T^{2} \)
$29$ \( ( 9 + T )^{2} \)
$31$ \( ( 8 + T )^{2} \)
$37$ \( 25 + T^{2} \)
$41$ \( ( -6 + T )^{2} \)
$43$ \( 121 + T^{2} \)
$47$ \( 36 + T^{2} \)
$53$ \( 36 + T^{2} \)
$59$ \( T^{2} \)
$61$ \( ( -10 + T )^{2} \)
$67$ \( 25 + T^{2} \)
$71$ \( ( -15 + T )^{2} \)
$73$ \( 100 + T^{2} \)
$79$ \( ( -7 + T )^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( ( 12 + T )^{2} \)
$97$ \( 64 + T^{2} \)
show more
show less