# Properties

 Label 4900.2.e.f Level $4900$ Weight $2$ Character orbit 4900.e Analytic conductor $39.127$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4900 = 2^{2} \cdot 5^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4900.e (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$39.1266969904$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 20) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 i q^{3} - q^{9} +O(q^{10})$$ $$q + 2 i q^{3} - q^{9} -2 i q^{13} -6 i q^{17} -4 q^{19} + 6 i q^{23} + 4 i q^{27} -6 q^{29} + 4 q^{31} -2 i q^{37} + 4 q^{39} -6 q^{41} -10 i q^{43} -6 i q^{47} + 12 q^{51} -6 i q^{53} -8 i q^{57} + 12 q^{59} -2 q^{61} -2 i q^{67} -12 q^{69} -12 q^{71} -2 i q^{73} -8 q^{79} -11 q^{81} -6 i q^{83} -12 i q^{87} -6 q^{89} + 8 i q^{93} + 2 i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{9} + O(q^{10})$$ $$2q - 2q^{9} - 8q^{19} - 12q^{29} + 8q^{31} + 8q^{39} - 12q^{41} + 24q^{51} + 24q^{59} - 4q^{61} - 24q^{69} - 24q^{71} - 16q^{79} - 22q^{81} - 12q^{89} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4900\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$1177$$ $$2451$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2549.1
 − 1.00000i 1.00000i
0 2.00000i 0 0 0 0 0 −1.00000 0
2549.2 0 2.00000i 0 0 0 0 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4900.2.e.f 2
5.b even 2 1 inner 4900.2.e.f 2
5.c odd 4 1 980.2.a.h 1
5.c odd 4 1 4900.2.a.e 1
7.b odd 2 1 100.2.c.a 2
15.e even 4 1 8820.2.a.g 1
20.e even 4 1 3920.2.a.h 1
21.c even 2 1 900.2.d.c 2
28.d even 2 1 400.2.c.b 2
35.c odd 2 1 100.2.c.a 2
35.f even 4 1 20.2.a.a 1
35.f even 4 1 100.2.a.a 1
35.k even 12 2 980.2.i.i 2
35.l odd 12 2 980.2.i.c 2
56.e even 2 1 1600.2.c.e 2
56.h odd 2 1 1600.2.c.d 2
84.h odd 2 1 3600.2.f.j 2
105.g even 2 1 900.2.d.c 2
105.k odd 4 1 180.2.a.a 1
105.k odd 4 1 900.2.a.b 1
140.c even 2 1 400.2.c.b 2
140.j odd 4 1 80.2.a.b 1
140.j odd 4 1 400.2.a.c 1
280.c odd 2 1 1600.2.c.d 2
280.n even 2 1 1600.2.c.e 2
280.s even 4 1 320.2.a.f 1
280.s even 4 1 1600.2.a.c 1
280.y odd 4 1 320.2.a.a 1
280.y odd 4 1 1600.2.a.w 1
315.cb even 12 2 1620.2.i.h 2
315.cf odd 12 2 1620.2.i.b 2
385.l odd 4 1 2420.2.a.a 1
420.o odd 2 1 3600.2.f.j 2
420.w even 4 1 720.2.a.h 1
420.w even 4 1 3600.2.a.be 1
455.n odd 4 1 3380.2.f.b 2
455.s even 4 1 3380.2.a.c 1
455.w odd 4 1 3380.2.f.b 2
560.r even 4 1 1280.2.d.c 2
560.u odd 4 1 1280.2.d.g 2
560.bm odd 4 1 1280.2.d.g 2
560.bn even 4 1 1280.2.d.c 2
595.l even 4 1 5780.2.c.a 2
595.p even 4 1 5780.2.a.f 1
595.r even 4 1 5780.2.c.a 2
665.n odd 4 1 7220.2.a.f 1
840.bm even 4 1 2880.2.a.f 1
840.bp odd 4 1 2880.2.a.m 1
1540.x even 4 1 9680.2.a.ba 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.2.a.a 1 35.f even 4 1
80.2.a.b 1 140.j odd 4 1
100.2.a.a 1 35.f even 4 1
100.2.c.a 2 7.b odd 2 1
100.2.c.a 2 35.c odd 2 1
180.2.a.a 1 105.k odd 4 1
320.2.a.a 1 280.y odd 4 1
320.2.a.f 1 280.s even 4 1
400.2.a.c 1 140.j odd 4 1
400.2.c.b 2 28.d even 2 1
400.2.c.b 2 140.c even 2 1
720.2.a.h 1 420.w even 4 1
900.2.a.b 1 105.k odd 4 1
900.2.d.c 2 21.c even 2 1
900.2.d.c 2 105.g even 2 1
980.2.a.h 1 5.c odd 4 1
980.2.i.c 2 35.l odd 12 2
980.2.i.i 2 35.k even 12 2
1280.2.d.c 2 560.r even 4 1
1280.2.d.c 2 560.bn even 4 1
1280.2.d.g 2 560.u odd 4 1
1280.2.d.g 2 560.bm odd 4 1
1600.2.a.c 1 280.s even 4 1
1600.2.a.w 1 280.y odd 4 1
1600.2.c.d 2 56.h odd 2 1
1600.2.c.d 2 280.c odd 2 1
1600.2.c.e 2 56.e even 2 1
1600.2.c.e 2 280.n even 2 1
1620.2.i.b 2 315.cf odd 12 2
1620.2.i.h 2 315.cb even 12 2
2420.2.a.a 1 385.l odd 4 1
2880.2.a.f 1 840.bm even 4 1
2880.2.a.m 1 840.bp odd 4 1
3380.2.a.c 1 455.s even 4 1
3380.2.f.b 2 455.n odd 4 1
3380.2.f.b 2 455.w odd 4 1
3600.2.a.be 1 420.w even 4 1
3600.2.f.j 2 84.h odd 2 1
3600.2.f.j 2 420.o odd 2 1
3920.2.a.h 1 20.e even 4 1
4900.2.a.e 1 5.c odd 4 1
4900.2.e.f 2 1.a even 1 1 trivial
4900.2.e.f 2 5.b even 2 1 inner
5780.2.a.f 1 595.p even 4 1
5780.2.c.a 2 595.l even 4 1
5780.2.c.a 2 595.r even 4 1
7220.2.a.f 1 665.n odd 4 1
8820.2.a.g 1 15.e even 4 1
9680.2.a.ba 1 1540.x even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4900, [\chi])$$:

 $$T_{3}^{2} + 4$$ $$T_{11}$$ $$T_{19} + 4$$ $$T_{31} - 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$4 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$4 + T^{2}$$
$17$ $$36 + T^{2}$$
$19$ $$( 4 + T )^{2}$$
$23$ $$36 + T^{2}$$
$29$ $$( 6 + T )^{2}$$
$31$ $$( -4 + T )^{2}$$
$37$ $$4 + T^{2}$$
$41$ $$( 6 + T )^{2}$$
$43$ $$100 + T^{2}$$
$47$ $$36 + T^{2}$$
$53$ $$36 + T^{2}$$
$59$ $$( -12 + T )^{2}$$
$61$ $$( 2 + T )^{2}$$
$67$ $$4 + T^{2}$$
$71$ $$( 12 + T )^{2}$$
$73$ $$4 + T^{2}$$
$79$ $$( 8 + T )^{2}$$
$83$ $$36 + T^{2}$$
$89$ $$( 6 + T )^{2}$$
$97$ $$4 + T^{2}$$