# Properties

 Label 4900.2.e.b Level $4900$ Weight $2$ Character orbit 4900.e Analytic conductor $39.127$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4900 = 2^{2} \cdot 5^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4900.e (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$39.1266969904$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{17}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 140) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 i q^{3} -6 q^{9} +O(q^{10})$$ $$q + 3 i q^{3} -6 q^{9} -2 q^{11} + 6 i q^{13} + 2 i q^{17} -9 i q^{23} -9 i q^{27} -3 q^{29} -2 q^{31} -6 i q^{33} -8 i q^{37} -18 q^{39} -5 q^{41} + i q^{43} + 8 i q^{47} -6 q^{51} + 4 i q^{53} -8 q^{59} -7 q^{61} + 3 i q^{67} + 27 q^{69} + 8 q^{71} -14 i q^{73} -4 q^{79} + 9 q^{81} + i q^{83} -9 i q^{87} + 13 q^{89} -6 i q^{93} -10 i q^{97} + 12 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 12q^{9} + O(q^{10})$$ $$2q - 12q^{9} - 4q^{11} - 6q^{29} - 4q^{31} - 36q^{39} - 10q^{41} - 12q^{51} - 16q^{59} - 14q^{61} + 54q^{69} + 16q^{71} - 8q^{79} + 18q^{81} + 26q^{89} + 24q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4900\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$1177$$ $$2451$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2549.1
 − 1.00000i 1.00000i
0 3.00000i 0 0 0 0 0 −6.00000 0
2549.2 0 3.00000i 0 0 0 0 0 −6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4900.2.e.b 2
5.b even 2 1 inner 4900.2.e.b 2
5.c odd 4 1 980.2.a.i 1
5.c odd 4 1 4900.2.a.a 1
7.b odd 2 1 4900.2.e.c 2
7.d odd 6 2 700.2.r.c 4
15.e even 4 1 8820.2.a.k 1
20.e even 4 1 3920.2.a.d 1
35.c odd 2 1 4900.2.e.c 2
35.f even 4 1 980.2.a.a 1
35.f even 4 1 4900.2.a.v 1
35.i odd 6 2 700.2.r.c 4
35.k even 12 2 140.2.i.b 2
35.k even 12 2 700.2.i.a 2
35.l odd 12 2 980.2.i.a 2
105.k odd 4 1 8820.2.a.w 1
105.w odd 12 2 1260.2.s.b 2
140.j odd 4 1 3920.2.a.bi 1
140.x odd 12 2 560.2.q.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.i.b 2 35.k even 12 2
560.2.q.a 2 140.x odd 12 2
700.2.i.a 2 35.k even 12 2
700.2.r.c 4 7.d odd 6 2
700.2.r.c 4 35.i odd 6 2
980.2.a.a 1 35.f even 4 1
980.2.a.i 1 5.c odd 4 1
980.2.i.a 2 35.l odd 12 2
1260.2.s.b 2 105.w odd 12 2
3920.2.a.d 1 20.e even 4 1
3920.2.a.bi 1 140.j odd 4 1
4900.2.a.a 1 5.c odd 4 1
4900.2.a.v 1 35.f even 4 1
4900.2.e.b 2 1.a even 1 1 trivial
4900.2.e.b 2 5.b even 2 1 inner
4900.2.e.c 2 7.b odd 2 1
4900.2.e.c 2 35.c odd 2 1
8820.2.a.k 1 15.e even 4 1
8820.2.a.w 1 105.k odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4900, [\chi])$$:

 $$T_{3}^{2} + 9$$ $$T_{11} + 2$$ $$T_{19}$$ $$T_{31} + 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$9 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$( 2 + T )^{2}$$
$13$ $$36 + T^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$T^{2}$$
$23$ $$81 + T^{2}$$
$29$ $$( 3 + T )^{2}$$
$31$ $$( 2 + T )^{2}$$
$37$ $$64 + T^{2}$$
$41$ $$( 5 + T )^{2}$$
$43$ $$1 + T^{2}$$
$47$ $$64 + T^{2}$$
$53$ $$16 + T^{2}$$
$59$ $$( 8 + T )^{2}$$
$61$ $$( 7 + T )^{2}$$
$67$ $$9 + T^{2}$$
$71$ $$( -8 + T )^{2}$$
$73$ $$196 + T^{2}$$
$79$ $$( 4 + T )^{2}$$
$83$ $$1 + T^{2}$$
$89$ $$( -13 + T )^{2}$$
$97$ $$100 + T^{2}$$