Properties

Label 4900.2.a.w.1.1
Level $4900$
Weight $2$
Character 4900.1
Self dual yes
Analytic conductor $39.127$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4900.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(39.1266969904\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4900.1

$q$-expansion

\(f(q)\) \(=\) \(q+3.00000 q^{3} +6.00000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} +6.00000 q^{9} +3.00000 q^{11} +1.00000 q^{13} -5.00000 q^{17} +8.00000 q^{19} -2.00000 q^{23} +9.00000 q^{27} -1.00000 q^{29} +2.00000 q^{31} +9.00000 q^{33} -10.0000 q^{37} +3.00000 q^{39} +6.00000 q^{41} +4.00000 q^{43} +11.0000 q^{47} -15.0000 q^{51} -6.00000 q^{53} +24.0000 q^{57} +10.0000 q^{59} +10.0000 q^{67} -6.00000 q^{69} -10.0000 q^{73} -7.00000 q^{79} +9.00000 q^{81} +12.0000 q^{83} -3.00000 q^{87} -8.00000 q^{89} +6.00000 q^{93} +3.00000 q^{97} +18.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 6.00000 2.00000
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 0 0
\(19\) 8.00000 1.83533 0.917663 0.397360i \(-0.130073\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 9.00000 1.73205
\(28\) 0 0
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 9.00000 1.56670
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 3.00000 0.480384
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.0000 1.60451 0.802257 0.596978i \(-0.203632\pi\)
0.802257 + 0.596978i \(0.203632\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −15.0000 −2.10042
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 24.0000 3.17888
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.0000 1.22169 0.610847 0.791748i \(-0.290829\pi\)
0.610847 + 0.791748i \(0.290829\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.00000 −0.787562 −0.393781 0.919204i \(-0.628833\pi\)
−0.393781 + 0.919204i \(0.628833\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.00000 −0.321634
\(88\) 0 0
\(89\) −8.00000 −0.847998 −0.423999 0.905663i \(-0.639374\pi\)
−0.423999 + 0.905663i \(0.639374\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.00000 0.622171
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.00000 0.304604 0.152302 0.988334i \(-0.451331\pi\)
0.152302 + 0.988334i \(0.451331\pi\)
\(98\) 0 0
\(99\) 18.0000 1.80907
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) −5.00000 −0.492665 −0.246332 0.969185i \(-0.579225\pi\)
−0.246332 + 0.969185i \(0.579225\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) 0 0
\(111\) −30.0000 −2.84747
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00000 0.554700
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 18.0000 1.62301
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) −2.00000 −0.174741 −0.0873704 0.996176i \(-0.527846\pi\)
−0.0873704 + 0.996176i \(0.527846\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.00000 −0.341743 −0.170872 0.985293i \(-0.554658\pi\)
−0.170872 + 0.985293i \(0.554658\pi\)
\(138\) 0 0
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) 33.0000 2.77910
\(142\) 0 0
\(143\) 3.00000 0.250873
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 9.00000 0.732410 0.366205 0.930534i \(-0.380657\pi\)
0.366205 + 0.930534i \(0.380657\pi\)
\(152\) 0 0
\(153\) −30.0000 −2.42536
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 0 0
\(159\) −18.0000 −1.42749
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.00000 −0.469956 −0.234978 0.972001i \(-0.575502\pi\)
−0.234978 + 0.972001i \(0.575502\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 48.0000 3.67065
\(172\) 0 0
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 30.0000 2.25494
\(178\) 0 0
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −15.0000 −1.09691
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.00000 0.506502 0.253251 0.967401i \(-0.418500\pi\)
0.253251 + 0.967401i \(0.418500\pi\)
\(192\) 0 0
\(193\) −8.00000 −0.575853 −0.287926 0.957653i \(-0.592966\pi\)
−0.287926 + 0.957653i \(0.592966\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) 0 0
\(201\) 30.0000 2.11604
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) −3.00000 −0.206529 −0.103264 0.994654i \(-0.532929\pi\)
−0.103264 + 0.994654i \(0.532929\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −30.0000 −2.02721
\(220\) 0 0
\(221\) −5.00000 −0.336336
\(222\) 0 0
\(223\) 19.0000 1.27233 0.636167 0.771551i \(-0.280519\pi\)
0.636167 + 0.771551i \(0.280519\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 27.0000 1.79205 0.896026 0.444001i \(-0.146441\pi\)
0.896026 + 0.444001i \(0.146441\pi\)
\(228\) 0 0
\(229\) 26.0000 1.71813 0.859064 0.511868i \(-0.171046\pi\)
0.859064 + 0.511868i \(0.171046\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.0000 −1.04819 −0.524097 0.851658i \(-0.675597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −21.0000 −1.36410
\(238\) 0 0
\(239\) 5.00000 0.323423 0.161712 0.986838i \(-0.448299\pi\)
0.161712 + 0.986838i \(0.448299\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 36.0000 2.28141
\(250\) 0 0
\(251\) −2.00000 −0.126239 −0.0631194 0.998006i \(-0.520105\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −24.0000 −1.46878
\(268\) 0 0
\(269\) −2.00000 −0.121942 −0.0609711 0.998140i \(-0.519420\pi\)
−0.0609711 + 0.998140i \(0.519420\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 14.0000 0.841178 0.420589 0.907251i \(-0.361823\pi\)
0.420589 + 0.907251i \(0.361823\pi\)
\(278\) 0 0
\(279\) 12.0000 0.718421
\(280\) 0 0
\(281\) 15.0000 0.894825 0.447412 0.894328i \(-0.352346\pi\)
0.447412 + 0.894328i \(0.352346\pi\)
\(282\) 0 0
\(283\) −7.00000 −0.416107 −0.208053 0.978117i \(-0.566713\pi\)
−0.208053 + 0.978117i \(0.566713\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 9.00000 0.527589
\(292\) 0 0
\(293\) 15.0000 0.876309 0.438155 0.898900i \(-0.355632\pi\)
0.438155 + 0.898900i \(0.355632\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 27.0000 1.56670
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 36.0000 2.06815
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −19.0000 −1.08439 −0.542194 0.840254i \(-0.682406\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) 0 0
\(309\) −15.0000 −0.853320
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) −7.00000 −0.395663 −0.197832 0.980236i \(-0.563390\pi\)
−0.197832 + 0.980236i \(0.563390\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −28.0000 −1.57264 −0.786318 0.617822i \(-0.788015\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) −3.00000 −0.167968
\(320\) 0 0
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) −40.0000 −2.22566
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −21.0000 −1.16130
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) −60.0000 −3.28798
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 30.0000 1.62938
\(340\) 0 0
\(341\) 6.00000 0.324918
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) 0 0
\(349\) −36.0000 −1.92704 −0.963518 0.267644i \(-0.913755\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(350\) 0 0
\(351\) 9.00000 0.480384
\(352\) 0 0
\(353\) −9.00000 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.0000 1.47778 0.738892 0.673824i \(-0.235349\pi\)
0.738892 + 0.673824i \(0.235349\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 0 0
\(363\) −6.00000 −0.314918
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 19.0000 0.991792 0.495896 0.868382i \(-0.334840\pi\)
0.495896 + 0.868382i \(0.334840\pi\)
\(368\) 0 0
\(369\) 36.0000 1.87409
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.00000 −0.0515026
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 6.00000 0.307389
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 24.0000 1.21999
\(388\) 0 0
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) 10.0000 0.505722
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −17.0000 −0.853206 −0.426603 0.904439i \(-0.640290\pi\)
−0.426603 + 0.904439i \(0.640290\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.0000 −1.34832 −0.674158 0.738587i \(-0.735493\pi\)
−0.674158 + 0.738587i \(0.735493\pi\)
\(402\) 0 0
\(403\) 2.00000 0.0996271
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −30.0000 −1.48704
\(408\) 0 0
\(409\) −4.00000 −0.197787 −0.0988936 0.995098i \(-0.531530\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −30.0000 −1.46911
\(418\) 0 0
\(419\) −2.00000 −0.0977064 −0.0488532 0.998806i \(-0.515557\pi\)
−0.0488532 + 0.998806i \(0.515557\pi\)
\(420\) 0 0
\(421\) −23.0000 −1.12095 −0.560476 0.828171i \(-0.689382\pi\)
−0.560476 + 0.828171i \(0.689382\pi\)
\(422\) 0 0
\(423\) 66.0000 3.20903
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 9.00000 0.434524
\(430\) 0 0
\(431\) −37.0000 −1.78223 −0.891114 0.453780i \(-0.850075\pi\)
−0.891114 + 0.453780i \(0.850075\pi\)
\(432\) 0 0
\(433\) −38.0000 −1.82616 −0.913082 0.407777i \(-0.866304\pi\)
−0.913082 + 0.407777i \(0.866304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16.0000 −0.765384
\(438\) 0 0
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −18.0000 −0.851371
\(448\) 0 0
\(449\) 11.0000 0.519122 0.259561 0.965727i \(-0.416422\pi\)
0.259561 + 0.965727i \(0.416422\pi\)
\(450\) 0 0
\(451\) 18.0000 0.847587
\(452\) 0 0
\(453\) 27.0000 1.26857
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 0 0
\(459\) −45.0000 −2.10042
\(460\) 0 0
\(461\) −28.0000 −1.30409 −0.652045 0.758180i \(-0.726089\pi\)
−0.652045 + 0.758180i \(0.726089\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.0000 −1.06431 −0.532157 0.846646i \(-0.678618\pi\)
−0.532157 + 0.846646i \(0.678618\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −54.0000 −2.48819
\(472\) 0 0
\(473\) 12.0000 0.551761
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −36.0000 −1.64833
\(478\) 0 0
\(479\) 18.0000 0.822441 0.411220 0.911536i \(-0.365103\pi\)
0.411220 + 0.911536i \(0.365103\pi\)
\(480\) 0 0
\(481\) −10.0000 −0.455961
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) 0 0
\(489\) −18.0000 −0.813988
\(490\) 0 0
\(491\) 33.0000 1.48927 0.744635 0.667472i \(-0.232624\pi\)
0.744635 + 0.667472i \(0.232624\pi\)
\(492\) 0 0
\(493\) 5.00000 0.225189
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −29.0000 −1.29822 −0.649109 0.760695i \(-0.724858\pi\)
−0.649109 + 0.760695i \(0.724858\pi\)
\(500\) 0 0
\(501\) 9.00000 0.402090
\(502\) 0 0
\(503\) 1.00000 0.0445878 0.0222939 0.999751i \(-0.492903\pi\)
0.0222939 + 0.999751i \(0.492903\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −36.0000 −1.59882
\(508\) 0 0
\(509\) −26.0000 −1.15243 −0.576215 0.817298i \(-0.695471\pi\)
−0.576215 + 0.817298i \(0.695471\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 72.0000 3.17888
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 33.0000 1.45134
\(518\) 0 0
\(519\) −27.0000 −1.18517
\(520\) 0 0
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.0000 −0.435607
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 60.0000 2.60378
\(532\) 0 0
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 0 0
\(543\) 30.0000 1.28742
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20.0000 −0.847427 −0.423714 0.905796i \(-0.639274\pi\)
−0.423714 + 0.905796i \(0.639274\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) −45.0000 −1.89990
\(562\) 0 0
\(563\) −16.0000 −0.674320 −0.337160 0.941447i \(-0.609466\pi\)
−0.337160 + 0.941447i \(0.609466\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 21.0000 0.877288
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 17.0000 0.707719 0.353860 0.935299i \(-0.384869\pi\)
0.353860 + 0.935299i \(0.384869\pi\)
\(578\) 0 0
\(579\) −24.0000 −0.997406
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) −30.0000 −1.23404
\(592\) 0 0
\(593\) −3.00000 −0.123195 −0.0615976 0.998101i \(-0.519620\pi\)
−0.0615976 + 0.998101i \(0.519620\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −54.0000 −2.21007
\(598\) 0 0
\(599\) −21.0000 −0.858037 −0.429018 0.903296i \(-0.641140\pi\)
−0.429018 + 0.903296i \(0.641140\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 0 0
\(603\) 60.0000 2.44339
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.00000 0.202944 0.101472 0.994838i \(-0.467645\pi\)
0.101472 + 0.994838i \(0.467645\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.0000 0.445012
\(612\) 0 0
\(613\) 12.0000 0.484675 0.242338 0.970192i \(-0.422086\pi\)
0.242338 + 0.970192i \(0.422086\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.0000 1.36879 0.684394 0.729112i \(-0.260067\pi\)
0.684394 + 0.729112i \(0.260067\pi\)
\(618\) 0 0
\(619\) 2.00000 0.0803868 0.0401934 0.999192i \(-0.487203\pi\)
0.0401934 + 0.999192i \(0.487203\pi\)
\(620\) 0 0
\(621\) −18.0000 −0.722315
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 72.0000 2.87540
\(628\) 0 0
\(629\) 50.0000 1.99363
\(630\) 0 0
\(631\) 15.0000 0.597141 0.298570 0.954388i \(-0.403490\pi\)
0.298570 + 0.954388i \(0.403490\pi\)
\(632\) 0 0
\(633\) −9.00000 −0.357718
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −26.0000 −1.02694 −0.513469 0.858108i \(-0.671640\pi\)
−0.513469 + 0.858108i \(0.671640\pi\)
\(642\) 0 0
\(643\) −5.00000 −0.197181 −0.0985904 0.995128i \(-0.531433\pi\)
−0.0985904 + 0.995128i \(0.531433\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 30.0000 1.17760
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −36.0000 −1.40879 −0.704394 0.709809i \(-0.748781\pi\)
−0.704394 + 0.709809i \(0.748781\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −60.0000 −2.34082
\(658\) 0 0
\(659\) 39.0000 1.51922 0.759612 0.650376i \(-0.225389\pi\)
0.759612 + 0.650376i \(0.225389\pi\)
\(660\) 0 0
\(661\) −28.0000 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(662\) 0 0
\(663\) −15.0000 −0.582552
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.00000 0.0774403
\(668\) 0 0
\(669\) 57.0000 2.20375
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11.0000 −0.422764 −0.211382 0.977403i \(-0.567796\pi\)
−0.211382 + 0.977403i \(0.567796\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 81.0000 3.10393
\(682\) 0 0
\(683\) −40.0000 −1.53056 −0.765279 0.643699i \(-0.777399\pi\)
−0.765279 + 0.643699i \(0.777399\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 78.0000 2.97589
\(688\) 0 0
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) −40.0000 −1.52167 −0.760836 0.648944i \(-0.775211\pi\)
−0.760836 + 0.648944i \(0.775211\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −30.0000 −1.13633
\(698\) 0 0
\(699\) −48.0000 −1.81553
\(700\) 0 0
\(701\) −25.0000 −0.944237 −0.472118 0.881535i \(-0.656511\pi\)
−0.472118 + 0.881535i \(0.656511\pi\)
\(702\) 0 0
\(703\) −80.0000 −3.01726
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 15.0000 0.563337 0.281668 0.959512i \(-0.409112\pi\)
0.281668 + 0.959512i \(0.409112\pi\)
\(710\) 0 0
\(711\) −42.0000 −1.57512
\(712\) 0 0
\(713\) −4.00000 −0.149801
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 15.0000 0.560185
\(718\) 0 0
\(719\) −2.00000 −0.0745874 −0.0372937 0.999304i \(-0.511874\pi\)
−0.0372937 + 0.999304i \(0.511874\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 54.0000 2.00828
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −20.0000 −0.739727
\(732\) 0 0
\(733\) 41.0000 1.51437 0.757185 0.653201i \(-0.226574\pi\)
0.757185 + 0.653201i \(0.226574\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 30.0000 1.10506
\(738\) 0 0
\(739\) −5.00000 −0.183928 −0.0919640 0.995762i \(-0.529314\pi\)
−0.0919640 + 0.995762i \(0.529314\pi\)
\(740\) 0 0
\(741\) 24.0000 0.881662
\(742\) 0 0
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 72.0000 2.63434
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 13.0000 0.474377 0.237188 0.971464i \(-0.423774\pi\)
0.237188 + 0.971464i \(0.423774\pi\)
\(752\) 0 0
\(753\) −6.00000 −0.218652
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 48.0000 1.74459 0.872295 0.488980i \(-0.162631\pi\)
0.872295 + 0.488980i \(0.162631\pi\)
\(758\) 0 0
\(759\) −18.0000 −0.653359
\(760\) 0 0
\(761\) 38.0000 1.37750 0.688749 0.724999i \(-0.258160\pi\)
0.688749 + 0.724999i \(0.258160\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.0000 0.361079
\(768\) 0 0
\(769\) −16.0000 −0.576975 −0.288487 0.957484i \(-0.593152\pi\)
−0.288487 + 0.957484i \(0.593152\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) −27.0000 −0.971123 −0.485561 0.874203i \(-0.661385\pi\)
−0.485561 + 0.874203i \(0.661385\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 48.0000 1.71978
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −9.00000 −0.321634
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 3.00000 0.106938 0.0534692 0.998569i \(-0.482972\pi\)
0.0534692 + 0.998569i \(0.482972\pi\)
\(788\) 0 0
\(789\) 72.0000 2.56327
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 43.0000 1.52314 0.761569 0.648084i \(-0.224429\pi\)
0.761569 + 0.648084i \(0.224429\pi\)
\(798\) 0 0
\(799\) −55.0000 −1.94576
\(800\) 0 0
\(801\) −48.0000 −1.69600
\(802\) 0 0
\(803\) −30.0000 −1.05868
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.00000 −0.211210
\(808\) 0 0
\(809\) −11.0000 −0.386739 −0.193370 0.981126i \(-0.561942\pi\)
−0.193370 + 0.981126i \(0.561942\pi\)
\(810\) 0 0
\(811\) −6.00000 −0.210688 −0.105344 0.994436i \(-0.533594\pi\)
−0.105344 + 0.994436i \(0.533594\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 45.0000 1.57051 0.785255 0.619172i \(-0.212532\pi\)
0.785255 + 0.619172i \(0.212532\pi\)
\(822\) 0 0
\(823\) 18.0000 0.627441 0.313720 0.949515i \(-0.398425\pi\)
0.313720 + 0.949515i \(0.398425\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.0000 0.765015 0.382507 0.923952i \(-0.375061\pi\)
0.382507 + 0.923952i \(0.375061\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) 42.0000 1.45696
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 18.0000 0.622171
\(838\) 0 0
\(839\) 46.0000 1.58810 0.794048 0.607855i \(-0.207970\pi\)
0.794048 + 0.607855i \(0.207970\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0 0
\(843\) 45.0000 1.54988
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −21.0000 −0.720718
\(850\) 0 0
\(851\) 20.0000 0.685591
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) −24.0000 −0.818869 −0.409435 0.912339i \(-0.634274\pi\)
−0.409435 + 0.912339i \(0.634274\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46.0000 −1.56586 −0.782929 0.622111i \(-0.786275\pi\)
−0.782929 + 0.622111i \(0.786275\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 24.0000 0.815083
\(868\) 0 0
\(869\) −21.0000 −0.712376
\(870\) 0 0
\(871\) 10.0000 0.338837
\(872\) 0 0
\(873\) 18.0000 0.609208
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −40.0000 −1.35070 −0.675352 0.737496i \(-0.736008\pi\)
−0.675352 + 0.737496i \(0.736008\pi\)
\(878\) 0 0
\(879\) 45.0000 1.51781
\(880\) 0 0
\(881\) 48.0000 1.61716 0.808581 0.588386i \(-0.200236\pi\)
0.808581 + 0.588386i \(0.200236\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 27.0000 0.904534
\(892\) 0 0
\(893\) 88.0000 2.94481
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −6.00000 −0.200334
\(898\) 0 0
\(899\) −2.00000 −0.0667037
\(900\) 0 0
\(901\) 30.0000 0.999445
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −38.0000 −1.26177 −0.630885 0.775877i \(-0.717308\pi\)
−0.630885 + 0.775877i \(0.717308\pi\)
\(908\) 0 0
\(909\) 72.0000 2.38809
\(910\) 0 0
\(911\) −52.0000 −1.72284 −0.861418 0.507896i \(-0.830423\pi\)
−0.861418 + 0.507896i \(0.830423\pi\)
\(912\) 0 0
\(913\) 36.0000 1.19143
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −55.0000 −1.81428 −0.907141 0.420826i \(-0.861740\pi\)
−0.907141 + 0.420826i \(0.861740\pi\)
\(920\) 0 0
\(921\) −57.0000 −1.87821
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −30.0000 −0.985329
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −36.0000 −1.17859
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 7.00000 0.228680 0.114340 0.993442i \(-0.463525\pi\)
0.114340 + 0.993442i \(0.463525\pi\)
\(938\) 0 0
\(939\) −21.0000 −0.685309
\(940\) 0 0
\(941\) 40.0000 1.30396 0.651981 0.758235i \(-0.273938\pi\)
0.651981 + 0.758235i \(0.273938\pi\)
\(942\) 0 0
\(943\) −12.0000 −0.390774
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.00000 −0.194974 −0.0974869 0.995237i \(-0.531080\pi\)
−0.0974869 + 0.995237i \(0.531080\pi\)
\(948\) 0 0
\(949\) −10.0000 −0.324614
\(950\) 0 0
\(951\) −84.0000 −2.72389
\(952\) 0 0
\(953\) 42.0000 1.36051 0.680257 0.732974i \(-0.261868\pi\)
0.680257 + 0.732974i \(0.261868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −9.00000 −0.290929
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −48.0000 −1.54678
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 0 0
\(969\) −120.000 −3.85496
\(970\) 0 0
\(971\) −18.0000 −0.577647 −0.288824 0.957382i \(-0.593264\pi\)
−0.288824 + 0.957382i \(0.593264\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 60.0000 1.91957 0.959785 0.280736i \(-0.0905785\pi\)
0.959785 + 0.280736i \(0.0905785\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) −42.0000 −1.34096
\(982\) 0 0
\(983\) 13.0000 0.414636 0.207318 0.978274i \(-0.433527\pi\)
0.207318 + 0.978274i \(0.433527\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 60.0000 1.90404
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −53.0000 −1.67853 −0.839263 0.543725i \(-0.817013\pi\)
−0.839263 + 0.543725i \(0.817013\pi\)
\(998\) 0 0
\(999\) −90.0000 −2.84747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4900.2.a.w.1.1 1
5.2 odd 4 980.2.e.b.589.1 2
5.3 odd 4 980.2.e.b.589.2 2
5.4 even 2 4900.2.a.b.1.1 1
7.6 odd 2 700.2.a.a.1.1 1
21.20 even 2 6300.2.a.c.1.1 1
28.27 even 2 2800.2.a.bf.1.1 1
35.2 odd 12 980.2.q.c.949.2 4
35.3 even 12 980.2.q.f.569.1 4
35.12 even 12 980.2.q.f.949.1 4
35.13 even 4 140.2.e.a.29.1 2
35.17 even 12 980.2.q.f.569.2 4
35.18 odd 12 980.2.q.c.569.2 4
35.23 odd 12 980.2.q.c.949.1 4
35.27 even 4 140.2.e.a.29.2 yes 2
35.32 odd 12 980.2.q.c.569.1 4
35.33 even 12 980.2.q.f.949.2 4
35.34 odd 2 700.2.a.j.1.1 1
105.62 odd 4 1260.2.k.c.1009.1 2
105.83 odd 4 1260.2.k.c.1009.2 2
105.104 even 2 6300.2.a.t.1.1 1
140.27 odd 4 560.2.g.a.449.1 2
140.83 odd 4 560.2.g.a.449.2 2
140.139 even 2 2800.2.a.a.1.1 1
280.13 even 4 2240.2.g.e.449.2 2
280.27 odd 4 2240.2.g.f.449.2 2
280.83 odd 4 2240.2.g.f.449.1 2
280.237 even 4 2240.2.g.e.449.1 2
420.83 even 4 5040.2.t.s.1009.2 2
420.167 even 4 5040.2.t.s.1009.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.e.a.29.1 2 35.13 even 4
140.2.e.a.29.2 yes 2 35.27 even 4
560.2.g.a.449.1 2 140.27 odd 4
560.2.g.a.449.2 2 140.83 odd 4
700.2.a.a.1.1 1 7.6 odd 2
700.2.a.j.1.1 1 35.34 odd 2
980.2.e.b.589.1 2 5.2 odd 4
980.2.e.b.589.2 2 5.3 odd 4
980.2.q.c.569.1 4 35.32 odd 12
980.2.q.c.569.2 4 35.18 odd 12
980.2.q.c.949.1 4 35.23 odd 12
980.2.q.c.949.2 4 35.2 odd 12
980.2.q.f.569.1 4 35.3 even 12
980.2.q.f.569.2 4 35.17 even 12
980.2.q.f.949.1 4 35.12 even 12
980.2.q.f.949.2 4 35.33 even 12
1260.2.k.c.1009.1 2 105.62 odd 4
1260.2.k.c.1009.2 2 105.83 odd 4
2240.2.g.e.449.1 2 280.237 even 4
2240.2.g.e.449.2 2 280.13 even 4
2240.2.g.f.449.1 2 280.83 odd 4
2240.2.g.f.449.2 2 280.27 odd 4
2800.2.a.a.1.1 1 140.139 even 2
2800.2.a.bf.1.1 1 28.27 even 2
4900.2.a.b.1.1 1 5.4 even 2
4900.2.a.w.1.1 1 1.1 even 1 trivial
5040.2.t.s.1009.1 2 420.167 even 4
5040.2.t.s.1009.2 2 420.83 even 4
6300.2.a.c.1.1 1 21.20 even 2
6300.2.a.t.1.1 1 105.104 even 2