Properties

Label 4900.2.a.w
Level $4900$
Weight $2$
Character orbit 4900.a
Self dual yes
Analytic conductor $39.127$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4900.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(39.1266969904\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 3q^{3} + 6q^{9} + O(q^{10}) \) \( q + 3q^{3} + 6q^{9} + 3q^{11} + q^{13} - 5q^{17} + 8q^{19} - 2q^{23} + 9q^{27} - q^{29} + 2q^{31} + 9q^{33} - 10q^{37} + 3q^{39} + 6q^{41} + 4q^{43} + 11q^{47} - 15q^{51} - 6q^{53} + 24q^{57} + 10q^{59} + 10q^{67} - 6q^{69} - 10q^{73} - 7q^{79} + 9q^{81} + 12q^{83} - 3q^{87} - 8q^{89} + 6q^{93} + 3q^{97} + 18q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 0 0 0 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4900.2.a.w 1
5.b even 2 1 4900.2.a.b 1
5.c odd 4 2 980.2.e.b 2
7.b odd 2 1 700.2.a.a 1
21.c even 2 1 6300.2.a.c 1
28.d even 2 1 2800.2.a.bf 1
35.c odd 2 1 700.2.a.j 1
35.f even 4 2 140.2.e.a 2
35.k even 12 4 980.2.q.f 4
35.l odd 12 4 980.2.q.c 4
105.g even 2 1 6300.2.a.t 1
105.k odd 4 2 1260.2.k.c 2
140.c even 2 1 2800.2.a.a 1
140.j odd 4 2 560.2.g.a 2
280.s even 4 2 2240.2.g.e 2
280.y odd 4 2 2240.2.g.f 2
420.w even 4 2 5040.2.t.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.e.a 2 35.f even 4 2
560.2.g.a 2 140.j odd 4 2
700.2.a.a 1 7.b odd 2 1
700.2.a.j 1 35.c odd 2 1
980.2.e.b 2 5.c odd 4 2
980.2.q.c 4 35.l odd 12 4
980.2.q.f 4 35.k even 12 4
1260.2.k.c 2 105.k odd 4 2
2240.2.g.e 2 280.s even 4 2
2240.2.g.f 2 280.y odd 4 2
2800.2.a.a 1 140.c even 2 1
2800.2.a.bf 1 28.d even 2 1
4900.2.a.b 1 5.b even 2 1
4900.2.a.w 1 1.a even 1 1 trivial
5040.2.t.s 2 420.w even 4 2
6300.2.a.c 1 21.c even 2 1
6300.2.a.t 1 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4900))\):

\( T_{3} - 3 \)
\( T_{11} - 3 \)
\( T_{13} - 1 \)
\( T_{19} - 8 \)
\( T_{23} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -3 + T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( -3 + T \)
$13$ \( -1 + T \)
$17$ \( 5 + T \)
$19$ \( -8 + T \)
$23$ \( 2 + T \)
$29$ \( 1 + T \)
$31$ \( -2 + T \)
$37$ \( 10 + T \)
$41$ \( -6 + T \)
$43$ \( -4 + T \)
$47$ \( -11 + T \)
$53$ \( 6 + T \)
$59$ \( -10 + T \)
$61$ \( T \)
$67$ \( -10 + T \)
$71$ \( T \)
$73$ \( 10 + T \)
$79$ \( 7 + T \)
$83$ \( -12 + T \)
$89$ \( 8 + T \)
$97$ \( -3 + T \)
show more
show less