Properties

Label 490.6.a.u
Level $490$
Weight $6$
Character orbit 490.a
Self dual yes
Analytic conductor $78.588$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,6,Mod(1,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1129}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 282 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1129})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + ( - \beta - 2) q^{3} + 16 q^{4} - 25 q^{5} + ( - 4 \beta - 8) q^{6} + 64 q^{8} + (5 \beta + 43) q^{9} - 100 q^{10} + ( - 13 \beta + 214) q^{11} + ( - 16 \beta - 32) q^{12} + (11 \beta - 220) q^{13}+ \cdots + (446 \beta - 9128) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 5 q^{3} + 32 q^{4} - 50 q^{5} - 20 q^{6} + 128 q^{8} + 91 q^{9} - 200 q^{10} + 415 q^{11} - 80 q^{12} - 429 q^{13} + 125 q^{15} + 512 q^{16} - 1319 q^{17} + 364 q^{18} - 1918 q^{19} - 800 q^{20}+ \cdots - 17810 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
17.3003
−16.3003
4.00000 −19.3003 16.0000 −25.0000 −77.2012 0 64.0000 129.501 −100.000
1.2 4.00000 14.3003 16.0000 −25.0000 57.2012 0 64.0000 −38.5015 −100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.6.a.u 2
7.b odd 2 1 70.6.a.h 2
21.c even 2 1 630.6.a.s 2
28.d even 2 1 560.6.a.k 2
35.c odd 2 1 350.6.a.p 2
35.f even 4 2 350.6.c.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.h 2 7.b odd 2 1
350.6.a.p 2 35.c odd 2 1
350.6.c.k 4 35.f even 4 2
490.6.a.u 2 1.a even 1 1 trivial
560.6.a.k 2 28.d even 2 1
630.6.a.s 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 5T_{3} - 276 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(490))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 5T - 276 \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 415T - 4644 \) Copy content Toggle raw display
$13$ \( T^{2} + 429T + 11858 \) Copy content Toggle raw display
$17$ \( T^{2} + 1319 T - 757566 \) Copy content Toggle raw display
$19$ \( T^{2} + 1918 T - 2748440 \) Copy content Toggle raw display
$23$ \( T^{2} + 1334 T - 2265840 \) Copy content Toggle raw display
$29$ \( T^{2} + 1131 T - 2121390 \) Copy content Toggle raw display
$31$ \( T^{2} - 5472 T - 49163008 \) Copy content Toggle raw display
$37$ \( T^{2} + 9156 T + 13732484 \) Copy content Toggle raw display
$41$ \( T^{2} - 7822 T + 11365872 \) Copy content Toggle raw display
$43$ \( T^{2} - 2078 T - 364446648 \) Copy content Toggle raw display
$47$ \( T^{2} - 8507 T - 572885328 \) Copy content Toggle raw display
$53$ \( T^{2} + 34242 T + 9748512 \) Copy content Toggle raw display
$59$ \( T^{2} + 6952 T - 48684720 \) Copy content Toggle raw display
$61$ \( T^{2} - 45138 T + 402952640 \) Copy content Toggle raw display
$67$ \( T^{2} + 54556 T + 649140384 \) Copy content Toggle raw display
$71$ \( T^{2} + 62272 T - 106007808 \) Copy content Toggle raw display
$73$ \( T^{2} + 40896 T - 405277060 \) Copy content Toggle raw display
$79$ \( T^{2} - 62069 T - 653150040 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 8986877424 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 1135587000 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 5804074010 \) Copy content Toggle raw display
show more
show less