Properties

Label 490.6.a.m.1.1
Level $490$
Weight $6$
Character 490.1
Self dual yes
Analytic conductor $78.588$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,6,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 490.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +17.0000 q^{3} +16.0000 q^{4} -25.0000 q^{5} +68.0000 q^{6} +64.0000 q^{8} +46.0000 q^{9} -100.000 q^{10} -715.000 q^{11} +272.000 q^{12} -331.000 q^{13} -425.000 q^{15} +256.000 q^{16} +1699.00 q^{17} +184.000 q^{18} +1718.00 q^{19} -400.000 q^{20} -2860.00 q^{22} -3950.00 q^{23} +1088.00 q^{24} +625.000 q^{25} -1324.00 q^{26} -3349.00 q^{27} +4579.00 q^{29} -1700.00 q^{30} -6756.00 q^{31} +1024.00 q^{32} -12155.0 q^{33} +6796.00 q^{34} +736.000 q^{36} -16518.0 q^{37} +6872.00 q^{38} -5627.00 q^{39} -1600.00 q^{40} -18876.0 q^{41} +2258.00 q^{43} -11440.0 q^{44} -1150.00 q^{45} -15800.0 q^{46} +537.000 q^{47} +4352.00 q^{48} +2500.00 q^{50} +28883.0 q^{51} -5296.00 q^{52} -10984.0 q^{53} -13396.0 q^{54} +17875.0 q^{55} +29206.0 q^{57} +18316.0 q^{58} +25956.0 q^{59} -6800.00 q^{60} -39188.0 q^{61} -27024.0 q^{62} +4096.00 q^{64} +8275.00 q^{65} -48620.0 q^{66} +4416.00 q^{67} +27184.0 q^{68} -67150.0 q^{69} -31880.0 q^{71} +2944.00 q^{72} +5018.00 q^{73} -66072.0 q^{74} +10625.0 q^{75} +27488.0 q^{76} -22508.0 q^{78} -27977.0 q^{79} -6400.00 q^{80} -68111.0 q^{81} -75504.0 q^{82} -37644.0 q^{83} -42475.0 q^{85} +9032.00 q^{86} +77843.0 q^{87} -45760.0 q^{88} +17216.0 q^{89} -4600.00 q^{90} -63200.0 q^{92} -114852. q^{93} +2148.00 q^{94} -42950.0 q^{95} +17408.0 q^{96} +63175.0 q^{97} -32890.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 17.0000 1.09055 0.545275 0.838257i \(-0.316425\pi\)
0.545275 + 0.838257i \(0.316425\pi\)
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) 68.0000 0.771136
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 46.0000 0.189300
\(10\) −100.000 −0.316228
\(11\) −715.000 −1.78166 −0.890829 0.454339i \(-0.849876\pi\)
−0.890829 + 0.454339i \(0.849876\pi\)
\(12\) 272.000 0.545275
\(13\) −331.000 −0.543212 −0.271606 0.962408i \(-0.587555\pi\)
−0.271606 + 0.962408i \(0.587555\pi\)
\(14\) 0 0
\(15\) −425.000 −0.487709
\(16\) 256.000 0.250000
\(17\) 1699.00 1.42584 0.712920 0.701245i \(-0.247372\pi\)
0.712920 + 0.701245i \(0.247372\pi\)
\(18\) 184.000 0.133856
\(19\) 1718.00 1.09179 0.545895 0.837854i \(-0.316190\pi\)
0.545895 + 0.837854i \(0.316190\pi\)
\(20\) −400.000 −0.223607
\(21\) 0 0
\(22\) −2860.00 −1.25982
\(23\) −3950.00 −1.55696 −0.778480 0.627669i \(-0.784009\pi\)
−0.778480 + 0.627669i \(0.784009\pi\)
\(24\) 1088.00 0.385568
\(25\) 625.000 0.200000
\(26\) −1324.00 −0.384109
\(27\) −3349.00 −0.884109
\(28\) 0 0
\(29\) 4579.00 1.01106 0.505529 0.862810i \(-0.331298\pi\)
0.505529 + 0.862810i \(0.331298\pi\)
\(30\) −1700.00 −0.344862
\(31\) −6756.00 −1.26266 −0.631329 0.775516i \(-0.717490\pi\)
−0.631329 + 0.775516i \(0.717490\pi\)
\(32\) 1024.00 0.176777
\(33\) −12155.0 −1.94299
\(34\) 6796.00 1.00822
\(35\) 0 0
\(36\) 736.000 0.0946502
\(37\) −16518.0 −1.98360 −0.991798 0.127816i \(-0.959203\pi\)
−0.991798 + 0.127816i \(0.959203\pi\)
\(38\) 6872.00 0.772012
\(39\) −5627.00 −0.592400
\(40\) −1600.00 −0.158114
\(41\) −18876.0 −1.75368 −0.876840 0.480782i \(-0.840353\pi\)
−0.876840 + 0.480782i \(0.840353\pi\)
\(42\) 0 0
\(43\) 2258.00 0.186231 0.0931157 0.995655i \(-0.470317\pi\)
0.0931157 + 0.995655i \(0.470317\pi\)
\(44\) −11440.0 −0.890829
\(45\) −1150.00 −0.0846577
\(46\) −15800.0 −1.10094
\(47\) 537.000 0.0354593 0.0177296 0.999843i \(-0.494356\pi\)
0.0177296 + 0.999843i \(0.494356\pi\)
\(48\) 4352.00 0.272638
\(49\) 0 0
\(50\) 2500.00 0.141421
\(51\) 28883.0 1.55495
\(52\) −5296.00 −0.271606
\(53\) −10984.0 −0.537119 −0.268560 0.963263i \(-0.586548\pi\)
−0.268560 + 0.963263i \(0.586548\pi\)
\(54\) −13396.0 −0.625159
\(55\) 17875.0 0.796782
\(56\) 0 0
\(57\) 29206.0 1.19065
\(58\) 18316.0 0.714925
\(59\) 25956.0 0.970751 0.485375 0.874306i \(-0.338683\pi\)
0.485375 + 0.874306i \(0.338683\pi\)
\(60\) −6800.00 −0.243855
\(61\) −39188.0 −1.34843 −0.674215 0.738535i \(-0.735518\pi\)
−0.674215 + 0.738535i \(0.735518\pi\)
\(62\) −27024.0 −0.892833
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 8275.00 0.242932
\(66\) −48620.0 −1.37390
\(67\) 4416.00 0.120183 0.0600914 0.998193i \(-0.480861\pi\)
0.0600914 + 0.998193i \(0.480861\pi\)
\(68\) 27184.0 0.712920
\(69\) −67150.0 −1.69794
\(70\) 0 0
\(71\) −31880.0 −0.750538 −0.375269 0.926916i \(-0.622450\pi\)
−0.375269 + 0.926916i \(0.622450\pi\)
\(72\) 2944.00 0.0669278
\(73\) 5018.00 0.110211 0.0551053 0.998481i \(-0.482451\pi\)
0.0551053 + 0.998481i \(0.482451\pi\)
\(74\) −66072.0 −1.40261
\(75\) 10625.0 0.218110
\(76\) 27488.0 0.545895
\(77\) 0 0
\(78\) −22508.0 −0.418890
\(79\) −27977.0 −0.504352 −0.252176 0.967681i \(-0.581146\pi\)
−0.252176 + 0.967681i \(0.581146\pi\)
\(80\) −6400.00 −0.111803
\(81\) −68111.0 −1.15347
\(82\) −75504.0 −1.24004
\(83\) −37644.0 −0.599792 −0.299896 0.953972i \(-0.596952\pi\)
−0.299896 + 0.953972i \(0.596952\pi\)
\(84\) 0 0
\(85\) −42475.0 −0.637655
\(86\) 9032.00 0.131685
\(87\) 77843.0 1.10261
\(88\) −45760.0 −0.629911
\(89\) 17216.0 0.230387 0.115193 0.993343i \(-0.463251\pi\)
0.115193 + 0.993343i \(0.463251\pi\)
\(90\) −4600.00 −0.0598620
\(91\) 0 0
\(92\) −63200.0 −0.778480
\(93\) −114852. −1.37699
\(94\) 2148.00 0.0250735
\(95\) −42950.0 −0.488263
\(96\) 17408.0 0.192784
\(97\) 63175.0 0.681736 0.340868 0.940111i \(-0.389279\pi\)
0.340868 + 0.940111i \(0.389279\pi\)
\(98\) 0 0
\(99\) −32890.0 −0.337269
\(100\) 10000.0 0.100000
\(101\) 29250.0 0.285314 0.142657 0.989772i \(-0.454435\pi\)
0.142657 + 0.989772i \(0.454435\pi\)
\(102\) 115532. 1.09952
\(103\) 149189. 1.38562 0.692809 0.721121i \(-0.256373\pi\)
0.692809 + 0.721121i \(0.256373\pi\)
\(104\) −21184.0 −0.192055
\(105\) 0 0
\(106\) −43936.0 −0.379801
\(107\) 83742.0 0.707105 0.353552 0.935415i \(-0.384974\pi\)
0.353552 + 0.935415i \(0.384974\pi\)
\(108\) −53584.0 −0.442054
\(109\) 105377. 0.849532 0.424766 0.905303i \(-0.360356\pi\)
0.424766 + 0.905303i \(0.360356\pi\)
\(110\) 71500.0 0.563410
\(111\) −280806. −2.16321
\(112\) 0 0
\(113\) −122754. −0.904356 −0.452178 0.891928i \(-0.649353\pi\)
−0.452178 + 0.891928i \(0.649353\pi\)
\(114\) 116824. 0.841918
\(115\) 98750.0 0.696294
\(116\) 73264.0 0.505529
\(117\) −15226.0 −0.102830
\(118\) 103824. 0.686424
\(119\) 0 0
\(120\) −27200.0 −0.172431
\(121\) 350174. 2.17431
\(122\) −156752. −0.953484
\(123\) −320892. −1.91248
\(124\) −108096. −0.631329
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −219196. −1.20593 −0.602967 0.797766i \(-0.706015\pi\)
−0.602967 + 0.797766i \(0.706015\pi\)
\(128\) 16384.0 0.0883883
\(129\) 38386.0 0.203095
\(130\) 33100.0 0.171779
\(131\) 96682.0 0.492229 0.246115 0.969241i \(-0.420846\pi\)
0.246115 + 0.969241i \(0.420846\pi\)
\(132\) −194480. −0.971494
\(133\) 0 0
\(134\) 17664.0 0.0849820
\(135\) 83725.0 0.395385
\(136\) 108736. 0.504111
\(137\) 187288. 0.852528 0.426264 0.904599i \(-0.359830\pi\)
0.426264 + 0.904599i \(0.359830\pi\)
\(138\) −268600. −1.20063
\(139\) −176894. −0.776562 −0.388281 0.921541i \(-0.626931\pi\)
−0.388281 + 0.921541i \(0.626931\pi\)
\(140\) 0 0
\(141\) 9129.00 0.0386701
\(142\) −127520. −0.530710
\(143\) 236665. 0.967819
\(144\) 11776.0 0.0473251
\(145\) −114475. −0.452158
\(146\) 20072.0 0.0779307
\(147\) 0 0
\(148\) −264288. −0.991798
\(149\) −199078. −0.734611 −0.367306 0.930100i \(-0.619720\pi\)
−0.367306 + 0.930100i \(0.619720\pi\)
\(150\) 42500.0 0.154227
\(151\) 471583. 1.68312 0.841561 0.540162i \(-0.181637\pi\)
0.841561 + 0.540162i \(0.181637\pi\)
\(152\) 109952. 0.386006
\(153\) 78154.0 0.269912
\(154\) 0 0
\(155\) 168900. 0.564677
\(156\) −90032.0 −0.296200
\(157\) 72054.0 0.233297 0.116648 0.993173i \(-0.462785\pi\)
0.116648 + 0.993173i \(0.462785\pi\)
\(158\) −111908. −0.356630
\(159\) −186728. −0.585756
\(160\) −25600.0 −0.0790569
\(161\) 0 0
\(162\) −272444. −0.815623
\(163\) 385334. 1.13597 0.567987 0.823038i \(-0.307722\pi\)
0.567987 + 0.823038i \(0.307722\pi\)
\(164\) −302016. −0.876840
\(165\) 303875. 0.868931
\(166\) −150576. −0.424117
\(167\) 542957. 1.50652 0.753259 0.657724i \(-0.228481\pi\)
0.753259 + 0.657724i \(0.228481\pi\)
\(168\) 0 0
\(169\) −261732. −0.704920
\(170\) −169900. −0.450890
\(171\) 79028.0 0.206676
\(172\) 36128.0 0.0931157
\(173\) −370953. −0.942331 −0.471166 0.882045i \(-0.656167\pi\)
−0.471166 + 0.882045i \(0.656167\pi\)
\(174\) 311372. 0.779662
\(175\) 0 0
\(176\) −183040. −0.445414
\(177\) 441252. 1.05865
\(178\) 68864.0 0.162908
\(179\) −754172. −1.75929 −0.879646 0.475629i \(-0.842220\pi\)
−0.879646 + 0.475629i \(0.842220\pi\)
\(180\) −18400.0 −0.0423289
\(181\) −303840. −0.689364 −0.344682 0.938720i \(-0.612013\pi\)
−0.344682 + 0.938720i \(0.612013\pi\)
\(182\) 0 0
\(183\) −666196. −1.47053
\(184\) −252800. −0.550469
\(185\) 412950. 0.887091
\(186\) −459408. −0.973680
\(187\) −1.21478e6 −2.54036
\(188\) 8592.00 0.0177296
\(189\) 0 0
\(190\) −171800. −0.345254
\(191\) −186271. −0.369455 −0.184728 0.982790i \(-0.559140\pi\)
−0.184728 + 0.982790i \(0.559140\pi\)
\(192\) 69632.0 0.136319
\(193\) 92504.0 0.178759 0.0893794 0.995998i \(-0.471512\pi\)
0.0893794 + 0.995998i \(0.471512\pi\)
\(194\) 252700. 0.482060
\(195\) 140675. 0.264930
\(196\) 0 0
\(197\) −736368. −1.35185 −0.675926 0.736969i \(-0.736256\pi\)
−0.675926 + 0.736969i \(0.736256\pi\)
\(198\) −131560. −0.238485
\(199\) 481620. 0.862128 0.431064 0.902321i \(-0.358138\pi\)
0.431064 + 0.902321i \(0.358138\pi\)
\(200\) 40000.0 0.0707107
\(201\) 75072.0 0.131065
\(202\) 117000. 0.201747
\(203\) 0 0
\(204\) 462128. 0.777476
\(205\) 471900. 0.784269
\(206\) 596756. 0.979780
\(207\) −181700. −0.294733
\(208\) −84736.0 −0.135803
\(209\) −1.22837e6 −1.94520
\(210\) 0 0
\(211\) 189531. 0.293072 0.146536 0.989205i \(-0.453188\pi\)
0.146536 + 0.989205i \(0.453188\pi\)
\(212\) −175744. −0.268560
\(213\) −541960. −0.818499
\(214\) 334968. 0.499999
\(215\) −56450.0 −0.0832852
\(216\) −214336. −0.312580
\(217\) 0 0
\(218\) 421508. 0.600710
\(219\) 85306.0 0.120190
\(220\) 286000. 0.398391
\(221\) −562369. −0.774534
\(222\) −1.12322e6 −1.52962
\(223\) 22597.0 0.0304291 0.0152145 0.999884i \(-0.495157\pi\)
0.0152145 + 0.999884i \(0.495157\pi\)
\(224\) 0 0
\(225\) 28750.0 0.0378601
\(226\) −491016. −0.639476
\(227\) 998117. 1.28563 0.642816 0.766020i \(-0.277766\pi\)
0.642816 + 0.766020i \(0.277766\pi\)
\(228\) 467296. 0.595326
\(229\) 854644. 1.07695 0.538476 0.842641i \(-0.319000\pi\)
0.538476 + 0.842641i \(0.319000\pi\)
\(230\) 395000. 0.492354
\(231\) 0 0
\(232\) 293056. 0.357463
\(233\) 1.25818e6 1.51829 0.759144 0.650922i \(-0.225618\pi\)
0.759144 + 0.650922i \(0.225618\pi\)
\(234\) −60904.0 −0.0727120
\(235\) −13425.0 −0.0158579
\(236\) 415296. 0.485375
\(237\) −475609. −0.550021
\(238\) 0 0
\(239\) −706581. −0.800142 −0.400071 0.916484i \(-0.631015\pi\)
−0.400071 + 0.916484i \(0.631015\pi\)
\(240\) −108800. −0.121927
\(241\) −616330. −0.683551 −0.341775 0.939782i \(-0.611028\pi\)
−0.341775 + 0.939782i \(0.611028\pi\)
\(242\) 1.40070e6 1.53747
\(243\) −344080. −0.373804
\(244\) −627008. −0.674215
\(245\) 0 0
\(246\) −1.28357e6 −1.35233
\(247\) −568658. −0.593074
\(248\) −432384. −0.446417
\(249\) −639948. −0.654103
\(250\) −62500.0 −0.0632456
\(251\) −190842. −0.191201 −0.0956004 0.995420i \(-0.530477\pi\)
−0.0956004 + 0.995420i \(0.530477\pi\)
\(252\) 0 0
\(253\) 2.82425e6 2.77397
\(254\) −876784. −0.852724
\(255\) −722075. −0.695395
\(256\) 65536.0 0.0625000
\(257\) 1.13094e6 1.06809 0.534045 0.845456i \(-0.320671\pi\)
0.534045 + 0.845456i \(0.320671\pi\)
\(258\) 153544. 0.143610
\(259\) 0 0
\(260\) 132400. 0.121466
\(261\) 210634. 0.191394
\(262\) 386728. 0.348059
\(263\) −1.67377e6 −1.49213 −0.746065 0.665874i \(-0.768059\pi\)
−0.746065 + 0.665874i \(0.768059\pi\)
\(264\) −777920. −0.686950
\(265\) 274600. 0.240207
\(266\) 0 0
\(267\) 292672. 0.251248
\(268\) 70656.0 0.0600914
\(269\) 630942. 0.531629 0.265815 0.964024i \(-0.414359\pi\)
0.265815 + 0.964024i \(0.414359\pi\)
\(270\) 334900. 0.279580
\(271\) 372476. 0.308088 0.154044 0.988064i \(-0.450770\pi\)
0.154044 + 0.988064i \(0.450770\pi\)
\(272\) 434944. 0.356460
\(273\) 0 0
\(274\) 749152. 0.602828
\(275\) −446875. −0.356332
\(276\) −1.07440e6 −0.848972
\(277\) 867010. 0.678930 0.339465 0.940619i \(-0.389754\pi\)
0.339465 + 0.940619i \(0.389754\pi\)
\(278\) −707576. −0.549112
\(279\) −310776. −0.239021
\(280\) 0 0
\(281\) −1.94498e6 −1.46943 −0.734716 0.678375i \(-0.762685\pi\)
−0.734716 + 0.678375i \(0.762685\pi\)
\(282\) 36516.0 0.0273439
\(283\) −1.18501e6 −0.879543 −0.439771 0.898110i \(-0.644941\pi\)
−0.439771 + 0.898110i \(0.644941\pi\)
\(284\) −510080. −0.375269
\(285\) −730150. −0.532476
\(286\) 946660. 0.684351
\(287\) 0 0
\(288\) 47104.0 0.0334639
\(289\) 1.46674e6 1.03302
\(290\) −457900. −0.319724
\(291\) 1.07398e6 0.743467
\(292\) 80288.0 0.0551053
\(293\) −33669.0 −0.0229119 −0.0114560 0.999934i \(-0.503647\pi\)
−0.0114560 + 0.999934i \(0.503647\pi\)
\(294\) 0 0
\(295\) −648900. −0.434133
\(296\) −1.05715e6 −0.701307
\(297\) 2.39454e6 1.57518
\(298\) −796312. −0.519449
\(299\) 1.30745e6 0.845760
\(300\) 170000. 0.109055
\(301\) 0 0
\(302\) 1.88633e6 1.19015
\(303\) 497250. 0.311149
\(304\) 439808. 0.272948
\(305\) 979700. 0.603036
\(306\) 312616. 0.190857
\(307\) 27043.0 0.0163760 0.00818802 0.999966i \(-0.497394\pi\)
0.00818802 + 0.999966i \(0.497394\pi\)
\(308\) 0 0
\(309\) 2.53621e6 1.51109
\(310\) 675600. 0.399287
\(311\) −2.14919e6 −1.26001 −0.630004 0.776592i \(-0.716947\pi\)
−0.630004 + 0.776592i \(0.716947\pi\)
\(312\) −360128. −0.209445
\(313\) 2.67052e6 1.54076 0.770381 0.637583i \(-0.220066\pi\)
0.770381 + 0.637583i \(0.220066\pi\)
\(314\) 288216. 0.164966
\(315\) 0 0
\(316\) −447632. −0.252176
\(317\) −250514. −0.140018 −0.0700090 0.997546i \(-0.522303\pi\)
−0.0700090 + 0.997546i \(0.522303\pi\)
\(318\) −746912. −0.414192
\(319\) −3.27398e6 −1.80136
\(320\) −102400. −0.0559017
\(321\) 1.42361e6 0.771134
\(322\) 0 0
\(323\) 2.91888e6 1.55672
\(324\) −1.08978e6 −0.576733
\(325\) −206875. −0.108642
\(326\) 1.54134e6 0.803255
\(327\) 1.79141e6 0.926457
\(328\) −1.20806e6 −0.620019
\(329\) 0 0
\(330\) 1.21550e6 0.614427
\(331\) 1.05899e6 0.531277 0.265639 0.964073i \(-0.414417\pi\)
0.265639 + 0.964073i \(0.414417\pi\)
\(332\) −602304. −0.299896
\(333\) −759828. −0.375495
\(334\) 2.17183e6 1.06527
\(335\) −110400. −0.0537473
\(336\) 0 0
\(337\) −2.85025e6 −1.36712 −0.683562 0.729893i \(-0.739570\pi\)
−0.683562 + 0.729893i \(0.739570\pi\)
\(338\) −1.04693e6 −0.498454
\(339\) −2.08682e6 −0.986246
\(340\) −679600. −0.318828
\(341\) 4.83054e6 2.24962
\(342\) 316112. 0.146142
\(343\) 0 0
\(344\) 144512. 0.0658427
\(345\) 1.67875e6 0.759344
\(346\) −1.48381e6 −0.666329
\(347\) 1.89141e6 0.843259 0.421630 0.906768i \(-0.361458\pi\)
0.421630 + 0.906768i \(0.361458\pi\)
\(348\) 1.24549e6 0.551304
\(349\) 1.04232e6 0.458075 0.229038 0.973418i \(-0.426442\pi\)
0.229038 + 0.973418i \(0.426442\pi\)
\(350\) 0 0
\(351\) 1.10852e6 0.480259
\(352\) −732160. −0.314956
\(353\) 2.30309e6 0.983725 0.491862 0.870673i \(-0.336316\pi\)
0.491862 + 0.870673i \(0.336316\pi\)
\(354\) 1.76501e6 0.748581
\(355\) 797000. 0.335651
\(356\) 275456. 0.115193
\(357\) 0 0
\(358\) −3.01669e6 −1.24401
\(359\) −1.67594e6 −0.686315 −0.343157 0.939278i \(-0.611496\pi\)
−0.343157 + 0.939278i \(0.611496\pi\)
\(360\) −73600.0 −0.0299310
\(361\) 475425. 0.192006
\(362\) −1.21536e6 −0.487454
\(363\) 5.95296e6 2.37119
\(364\) 0 0
\(365\) −125450. −0.0492877
\(366\) −2.66478e6 −1.03982
\(367\) −94663.0 −0.0366872 −0.0183436 0.999832i \(-0.505839\pi\)
−0.0183436 + 0.999832i \(0.505839\pi\)
\(368\) −1.01120e6 −0.389240
\(369\) −868296. −0.331972
\(370\) 1.65180e6 0.627268
\(371\) 0 0
\(372\) −1.83763e6 −0.688496
\(373\) −953536. −0.354867 −0.177433 0.984133i \(-0.556779\pi\)
−0.177433 + 0.984133i \(0.556779\pi\)
\(374\) −4.85914e6 −1.79631
\(375\) −265625. −0.0975418
\(376\) 34368.0 0.0125367
\(377\) −1.51565e6 −0.549219
\(378\) 0 0
\(379\) 3.88824e6 1.39045 0.695225 0.718792i \(-0.255305\pi\)
0.695225 + 0.718792i \(0.255305\pi\)
\(380\) −687200. −0.244132
\(381\) −3.72633e6 −1.31513
\(382\) −745084. −0.261244
\(383\) −2.93636e6 −1.02285 −0.511425 0.859328i \(-0.670882\pi\)
−0.511425 + 0.859328i \(0.670882\pi\)
\(384\) 278528. 0.0963920
\(385\) 0 0
\(386\) 370016. 0.126402
\(387\) 103868. 0.0352537
\(388\) 1.01080e6 0.340868
\(389\) 1.70377e6 0.570871 0.285435 0.958398i \(-0.407862\pi\)
0.285435 + 0.958398i \(0.407862\pi\)
\(390\) 562700. 0.187333
\(391\) −6.71105e6 −2.21998
\(392\) 0 0
\(393\) 1.64359e6 0.536801
\(394\) −2.94547e6 −0.955904
\(395\) 699425. 0.225553
\(396\) −526240. −0.168634
\(397\) −1.19110e6 −0.379292 −0.189646 0.981853i \(-0.560734\pi\)
−0.189646 + 0.981853i \(0.560734\pi\)
\(398\) 1.92648e6 0.609617
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) −3.38330e6 −1.05070 −0.525351 0.850885i \(-0.676066\pi\)
−0.525351 + 0.850885i \(0.676066\pi\)
\(402\) 300288. 0.0926772
\(403\) 2.23624e6 0.685891
\(404\) 468000. 0.142657
\(405\) 1.70278e6 0.515846
\(406\) 0 0
\(407\) 1.18104e7 3.53409
\(408\) 1.84851e6 0.549758
\(409\) 1.33185e6 0.393682 0.196841 0.980435i \(-0.436932\pi\)
0.196841 + 0.980435i \(0.436932\pi\)
\(410\) 1.88760e6 0.554562
\(411\) 3.18390e6 0.929725
\(412\) 2.38702e6 0.692809
\(413\) 0 0
\(414\) −726800. −0.208408
\(415\) 941100. 0.268235
\(416\) −338944. −0.0960273
\(417\) −3.00720e6 −0.846880
\(418\) −4.91348e6 −1.37546
\(419\) −5.82786e6 −1.62171 −0.810856 0.585246i \(-0.800998\pi\)
−0.810856 + 0.585246i \(0.800998\pi\)
\(420\) 0 0
\(421\) 2.47430e6 0.680374 0.340187 0.940358i \(-0.389510\pi\)
0.340187 + 0.940358i \(0.389510\pi\)
\(422\) 758124. 0.207233
\(423\) 24702.0 0.00671245
\(424\) −702976. −0.189900
\(425\) 1.06188e6 0.285168
\(426\) −2.16784e6 −0.578766
\(427\) 0 0
\(428\) 1.33987e6 0.353552
\(429\) 4.02331e6 1.05546
\(430\) −225800. −0.0588915
\(431\) 4.61851e6 1.19759 0.598796 0.800902i \(-0.295646\pi\)
0.598796 + 0.800902i \(0.295646\pi\)
\(432\) −857344. −0.221027
\(433\) −58606.0 −0.0150218 −0.00751091 0.999972i \(-0.502391\pi\)
−0.00751091 + 0.999972i \(0.502391\pi\)
\(434\) 0 0
\(435\) −1.94608e6 −0.493102
\(436\) 1.68603e6 0.424766
\(437\) −6.78610e6 −1.69987
\(438\) 341224. 0.0849874
\(439\) −7.04298e6 −1.74419 −0.872097 0.489332i \(-0.837241\pi\)
−0.872097 + 0.489332i \(0.837241\pi\)
\(440\) 1.14400e6 0.281705
\(441\) 0 0
\(442\) −2.24948e6 −0.547678
\(443\) 1.46894e6 0.355627 0.177813 0.984064i \(-0.443098\pi\)
0.177813 + 0.984064i \(0.443098\pi\)
\(444\) −4.49290e6 −1.08161
\(445\) −430400. −0.103032
\(446\) 90388.0 0.0215166
\(447\) −3.38433e6 −0.801131
\(448\) 0 0
\(449\) −7.48414e6 −1.75197 −0.875983 0.482341i \(-0.839787\pi\)
−0.875983 + 0.482341i \(0.839787\pi\)
\(450\) 115000. 0.0267711
\(451\) 1.34963e7 3.12446
\(452\) −1.96406e6 −0.452178
\(453\) 8.01691e6 1.83553
\(454\) 3.99247e6 0.909079
\(455\) 0 0
\(456\) 1.86918e6 0.420959
\(457\) 170320. 0.0381483 0.0190741 0.999818i \(-0.493928\pi\)
0.0190741 + 0.999818i \(0.493928\pi\)
\(458\) 3.41858e6 0.761520
\(459\) −5.68995e6 −1.26060
\(460\) 1.58000e6 0.348147
\(461\) 4.28685e6 0.939476 0.469738 0.882806i \(-0.344348\pi\)
0.469738 + 0.882806i \(0.344348\pi\)
\(462\) 0 0
\(463\) 3.38317e6 0.733452 0.366726 0.930329i \(-0.380479\pi\)
0.366726 + 0.930329i \(0.380479\pi\)
\(464\) 1.17222e6 0.252764
\(465\) 2.87130e6 0.615809
\(466\) 5.03274e6 1.07359
\(467\) −5.18029e6 −1.09916 −0.549581 0.835440i \(-0.685213\pi\)
−0.549581 + 0.835440i \(0.685213\pi\)
\(468\) −243616. −0.0514152
\(469\) 0 0
\(470\) −53700.0 −0.0112132
\(471\) 1.22492e6 0.254422
\(472\) 1.66118e6 0.343212
\(473\) −1.61447e6 −0.331801
\(474\) −1.90244e6 −0.388924
\(475\) 1.07375e6 0.218358
\(476\) 0 0
\(477\) −505264. −0.101677
\(478\) −2.82632e6 −0.565786
\(479\) 8.76779e6 1.74603 0.873014 0.487695i \(-0.162162\pi\)
0.873014 + 0.487695i \(0.162162\pi\)
\(480\) −435200. −0.0862156
\(481\) 5.46746e6 1.07751
\(482\) −2.46532e6 −0.483343
\(483\) 0 0
\(484\) 5.60278e6 1.08715
\(485\) −1.57938e6 −0.304881
\(486\) −1.37632e6 −0.264319
\(487\) 270154. 0.0516166 0.0258083 0.999667i \(-0.491784\pi\)
0.0258083 + 0.999667i \(0.491784\pi\)
\(488\) −2.50803e6 −0.476742
\(489\) 6.55068e6 1.23884
\(490\) 0 0
\(491\) 4.85550e6 0.908930 0.454465 0.890765i \(-0.349830\pi\)
0.454465 + 0.890765i \(0.349830\pi\)
\(492\) −5.13427e6 −0.956238
\(493\) 7.77972e6 1.44161
\(494\) −2.27463e6 −0.419367
\(495\) 822250. 0.150831
\(496\) −1.72954e6 −0.315664
\(497\) 0 0
\(498\) −2.55979e6 −0.462521
\(499\) −2.98576e6 −0.536789 −0.268394 0.963309i \(-0.586493\pi\)
−0.268394 + 0.963309i \(0.586493\pi\)
\(500\) −250000. −0.0447214
\(501\) 9.23027e6 1.64293
\(502\) −763368. −0.135199
\(503\) 8.28783e6 1.46057 0.730283 0.683145i \(-0.239388\pi\)
0.730283 + 0.683145i \(0.239388\pi\)
\(504\) 0 0
\(505\) −731250. −0.127596
\(506\) 1.12970e7 1.96149
\(507\) −4.44944e6 −0.768751
\(508\) −3.50714e6 −0.602967
\(509\) −6.24307e6 −1.06808 −0.534040 0.845459i \(-0.679327\pi\)
−0.534040 + 0.845459i \(0.679327\pi\)
\(510\) −2.88830e6 −0.491719
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) −5.75358e6 −0.965261
\(514\) 4.52377e6 0.755253
\(515\) −3.72972e6 −0.619668
\(516\) 614176. 0.101547
\(517\) −383955. −0.0631763
\(518\) 0 0
\(519\) −6.30620e6 −1.02766
\(520\) 529600. 0.0858894
\(521\) −7.49509e6 −1.20971 −0.604856 0.796335i \(-0.706770\pi\)
−0.604856 + 0.796335i \(0.706770\pi\)
\(522\) 842536. 0.135336
\(523\) −3.80957e6 −0.609007 −0.304503 0.952511i \(-0.598490\pi\)
−0.304503 + 0.952511i \(0.598490\pi\)
\(524\) 1.54691e6 0.246115
\(525\) 0 0
\(526\) −6.69508e6 −1.05509
\(527\) −1.14784e7 −1.80035
\(528\) −3.11168e6 −0.485747
\(529\) 9.16616e6 1.42413
\(530\) 1.09840e6 0.169852
\(531\) 1.19398e6 0.183764
\(532\) 0 0
\(533\) 6.24796e6 0.952621
\(534\) 1.17069e6 0.177659
\(535\) −2.09355e6 −0.316227
\(536\) 282624. 0.0424910
\(537\) −1.28209e7 −1.91860
\(538\) 2.52377e6 0.375919
\(539\) 0 0
\(540\) 1.33960e6 0.197693
\(541\) 7.67156e6 1.12691 0.563457 0.826145i \(-0.309471\pi\)
0.563457 + 0.826145i \(0.309471\pi\)
\(542\) 1.48990e6 0.217851
\(543\) −5.16528e6 −0.751786
\(544\) 1.73978e6 0.252055
\(545\) −2.63442e6 −0.379922
\(546\) 0 0
\(547\) −9.53845e6 −1.36304 −0.681522 0.731798i \(-0.738681\pi\)
−0.681522 + 0.731798i \(0.738681\pi\)
\(548\) 2.99661e6 0.426264
\(549\) −1.80265e6 −0.255258
\(550\) −1.78750e6 −0.251964
\(551\) 7.86672e6 1.10386
\(552\) −4.29760e6 −0.600314
\(553\) 0 0
\(554\) 3.46804e6 0.480076
\(555\) 7.02015e6 0.967417
\(556\) −2.83030e6 −0.388281
\(557\) −7.45022e6 −1.01749 −0.508746 0.860916i \(-0.669891\pi\)
−0.508746 + 0.860916i \(0.669891\pi\)
\(558\) −1.24310e6 −0.169014
\(559\) −747398. −0.101163
\(560\) 0 0
\(561\) −2.06513e7 −2.77039
\(562\) −7.77992e6 −1.03905
\(563\) −3.36698e6 −0.447682 −0.223841 0.974626i \(-0.571860\pi\)
−0.223841 + 0.974626i \(0.571860\pi\)
\(564\) 146064. 0.0193351
\(565\) 3.06885e6 0.404440
\(566\) −4.74005e6 −0.621931
\(567\) 0 0
\(568\) −2.04032e6 −0.265355
\(569\) −4.05501e6 −0.525063 −0.262532 0.964923i \(-0.584557\pi\)
−0.262532 + 0.964923i \(0.584557\pi\)
\(570\) −2.92060e6 −0.376517
\(571\) 7.31585e6 0.939020 0.469510 0.882927i \(-0.344431\pi\)
0.469510 + 0.882927i \(0.344431\pi\)
\(572\) 3.78664e6 0.483909
\(573\) −3.16661e6 −0.402910
\(574\) 0 0
\(575\) −2.46875e6 −0.311392
\(576\) 188416. 0.0236626
\(577\) 9.76895e6 1.22154 0.610771 0.791807i \(-0.290860\pi\)
0.610771 + 0.791807i \(0.290860\pi\)
\(578\) 5.86698e6 0.730457
\(579\) 1.57257e6 0.194945
\(580\) −1.83160e6 −0.226079
\(581\) 0 0
\(582\) 4.29590e6 0.525711
\(583\) 7.85356e6 0.956963
\(584\) 321152. 0.0389653
\(585\) 380650. 0.0459871
\(586\) −134676. −0.0162012
\(587\) −3.75689e6 −0.450021 −0.225011 0.974356i \(-0.572242\pi\)
−0.225011 + 0.974356i \(0.572242\pi\)
\(588\) 0 0
\(589\) −1.16068e7 −1.37856
\(590\) −2.59560e6 −0.306978
\(591\) −1.25183e7 −1.47426
\(592\) −4.22861e6 −0.495899
\(593\) −2.89048e6 −0.337546 −0.168773 0.985655i \(-0.553980\pi\)
−0.168773 + 0.985655i \(0.553980\pi\)
\(594\) 9.57814e6 1.11382
\(595\) 0 0
\(596\) −3.18525e6 −0.367306
\(597\) 8.18754e6 0.940194
\(598\) 5.22980e6 0.598043
\(599\) 1.32233e7 1.50582 0.752910 0.658124i \(-0.228650\pi\)
0.752910 + 0.658124i \(0.228650\pi\)
\(600\) 680000. 0.0771136
\(601\) −3.47399e6 −0.392321 −0.196161 0.980572i \(-0.562847\pi\)
−0.196161 + 0.980572i \(0.562847\pi\)
\(602\) 0 0
\(603\) 203136. 0.0227506
\(604\) 7.54533e6 0.841561
\(605\) −8.75435e6 −0.972379
\(606\) 1.98900e6 0.220015
\(607\) −6.45088e6 −0.710636 −0.355318 0.934746i \(-0.615627\pi\)
−0.355318 + 0.934746i \(0.615627\pi\)
\(608\) 1.75923e6 0.193003
\(609\) 0 0
\(610\) 3.91880e6 0.426411
\(611\) −177747. −0.0192619
\(612\) 1.25046e6 0.134956
\(613\) 8.43820e6 0.906982 0.453491 0.891261i \(-0.350178\pi\)
0.453491 + 0.891261i \(0.350178\pi\)
\(614\) 108172. 0.0115796
\(615\) 8.02230e6 0.855285
\(616\) 0 0
\(617\) 9.45501e6 0.999882 0.499941 0.866059i \(-0.333355\pi\)
0.499941 + 0.866059i \(0.333355\pi\)
\(618\) 1.01449e7 1.06850
\(619\) −1.43145e6 −0.150158 −0.0750790 0.997178i \(-0.523921\pi\)
−0.0750790 + 0.997178i \(0.523921\pi\)
\(620\) 2.70240e6 0.282339
\(621\) 1.32286e7 1.37652
\(622\) −8.59674e6 −0.890960
\(623\) 0 0
\(624\) −1.44051e6 −0.148100
\(625\) 390625. 0.0400000
\(626\) 1.06821e7 1.08948
\(627\) −2.08823e7 −2.12134
\(628\) 1.15286e6 0.116648
\(629\) −2.80641e7 −2.82829
\(630\) 0 0
\(631\) −1.01813e7 −1.01795 −0.508977 0.860780i \(-0.669976\pi\)
−0.508977 + 0.860780i \(0.669976\pi\)
\(632\) −1.79053e6 −0.178315
\(633\) 3.22203e6 0.319610
\(634\) −1.00206e6 −0.0990077
\(635\) 5.47990e6 0.539310
\(636\) −2.98765e6 −0.292878
\(637\) 0 0
\(638\) −1.30959e7 −1.27375
\(639\) −1.46648e6 −0.142077
\(640\) −409600. −0.0395285
\(641\) −1.76908e7 −1.70060 −0.850300 0.526298i \(-0.823580\pi\)
−0.850300 + 0.526298i \(0.823580\pi\)
\(642\) 5.69446e6 0.545274
\(643\) −1.82748e7 −1.74311 −0.871556 0.490296i \(-0.836889\pi\)
−0.871556 + 0.490296i \(0.836889\pi\)
\(644\) 0 0
\(645\) −959650. −0.0908267
\(646\) 1.16755e7 1.10077
\(647\) −1.52897e6 −0.143594 −0.0717972 0.997419i \(-0.522873\pi\)
−0.0717972 + 0.997419i \(0.522873\pi\)
\(648\) −4.35910e6 −0.407812
\(649\) −1.85585e7 −1.72955
\(650\) −827500. −0.0768218
\(651\) 0 0
\(652\) 6.16534e6 0.567987
\(653\) −9.10088e6 −0.835219 −0.417610 0.908627i \(-0.637132\pi\)
−0.417610 + 0.908627i \(0.637132\pi\)
\(654\) 7.16564e6 0.655104
\(655\) −2.41705e6 −0.220132
\(656\) −4.83226e6 −0.438420
\(657\) 230828. 0.0208629
\(658\) 0 0
\(659\) −430119. −0.0385811 −0.0192906 0.999814i \(-0.506141\pi\)
−0.0192906 + 0.999814i \(0.506141\pi\)
\(660\) 4.86200e6 0.434465
\(661\) −7.65248e6 −0.681238 −0.340619 0.940202i \(-0.610637\pi\)
−0.340619 + 0.940202i \(0.610637\pi\)
\(662\) 4.23595e6 0.375670
\(663\) −9.56027e6 −0.844669
\(664\) −2.40922e6 −0.212058
\(665\) 0 0
\(666\) −3.03931e6 −0.265515
\(667\) −1.80870e7 −1.57418
\(668\) 8.68731e6 0.753259
\(669\) 384149. 0.0331844
\(670\) −441600. −0.0380051
\(671\) 2.80194e7 2.40244
\(672\) 0 0
\(673\) −2.18404e7 −1.85876 −0.929378 0.369128i \(-0.879656\pi\)
−0.929378 + 0.369128i \(0.879656\pi\)
\(674\) −1.14010e7 −0.966702
\(675\) −2.09312e6 −0.176822
\(676\) −4.18771e6 −0.352460
\(677\) −1.39504e7 −1.16981 −0.584905 0.811102i \(-0.698868\pi\)
−0.584905 + 0.811102i \(0.698868\pi\)
\(678\) −8.34727e6 −0.697381
\(679\) 0 0
\(680\) −2.71840e6 −0.225445
\(681\) 1.69680e7 1.40205
\(682\) 1.93222e7 1.59072
\(683\) 2.29121e7 1.87937 0.939686 0.342040i \(-0.111118\pi\)
0.939686 + 0.342040i \(0.111118\pi\)
\(684\) 1.26445e6 0.103338
\(685\) −4.68220e6 −0.381262
\(686\) 0 0
\(687\) 1.45289e7 1.17447
\(688\) 578048. 0.0465578
\(689\) 3.63570e6 0.291770
\(690\) 6.71500e6 0.536937
\(691\) 1.69127e7 1.34747 0.673734 0.738974i \(-0.264690\pi\)
0.673734 + 0.738974i \(0.264690\pi\)
\(692\) −5.93525e6 −0.471166
\(693\) 0 0
\(694\) 7.56562e6 0.596274
\(695\) 4.42235e6 0.347289
\(696\) 4.98195e6 0.389831
\(697\) −3.20703e7 −2.50047
\(698\) 4.16927e6 0.323908
\(699\) 2.13891e7 1.65577
\(700\) 0 0
\(701\) −1.90087e7 −1.46102 −0.730510 0.682902i \(-0.760718\pi\)
−0.730510 + 0.682902i \(0.760718\pi\)
\(702\) 4.43408e6 0.339594
\(703\) −2.83779e7 −2.16567
\(704\) −2.92864e6 −0.222707
\(705\) −228225. −0.0172938
\(706\) 9.21235e6 0.695598
\(707\) 0 0
\(708\) 7.06003e6 0.529326
\(709\) 1.66079e7 1.24079 0.620396 0.784289i \(-0.286972\pi\)
0.620396 + 0.784289i \(0.286972\pi\)
\(710\) 3.18800e6 0.237341
\(711\) −1.28694e6 −0.0954740
\(712\) 1.10182e6 0.0814540
\(713\) 2.66862e7 1.96591
\(714\) 0 0
\(715\) −5.91662e6 −0.432822
\(716\) −1.20668e7 −0.879646
\(717\) −1.20119e7 −0.872596
\(718\) −6.70378e6 −0.485298
\(719\) −5.93610e6 −0.428232 −0.214116 0.976808i \(-0.568687\pi\)
−0.214116 + 0.976808i \(0.568687\pi\)
\(720\) −294400. −0.0211644
\(721\) 0 0
\(722\) 1.90170e6 0.135768
\(723\) −1.04776e7 −0.745447
\(724\) −4.86144e6 −0.344682
\(725\) 2.86188e6 0.202211
\(726\) 2.38118e7 1.67668
\(727\) −1.73276e7 −1.21591 −0.607957 0.793970i \(-0.708011\pi\)
−0.607957 + 0.793970i \(0.708011\pi\)
\(728\) 0 0
\(729\) 1.07016e7 0.745814
\(730\) −501800. −0.0348517
\(731\) 3.83634e6 0.265536
\(732\) −1.06591e7 −0.735266
\(733\) −1.39829e7 −0.961255 −0.480627 0.876925i \(-0.659591\pi\)
−0.480627 + 0.876925i \(0.659591\pi\)
\(734\) −378652. −0.0259418
\(735\) 0 0
\(736\) −4.04480e6 −0.275234
\(737\) −3.15744e6 −0.214125
\(738\) −3.47318e6 −0.234740
\(739\) −1.14263e7 −0.769649 −0.384824 0.922990i \(-0.625738\pi\)
−0.384824 + 0.922990i \(0.625738\pi\)
\(740\) 6.60720e6 0.443545
\(741\) −9.66719e6 −0.646777
\(742\) 0 0
\(743\) 1.23126e7 0.818236 0.409118 0.912481i \(-0.365836\pi\)
0.409118 + 0.912481i \(0.365836\pi\)
\(744\) −7.35053e6 −0.486840
\(745\) 4.97695e6 0.328528
\(746\) −3.81414e6 −0.250929
\(747\) −1.73162e6 −0.113541
\(748\) −1.94366e7 −1.27018
\(749\) 0 0
\(750\) −1.06250e6 −0.0689725
\(751\) −1.43093e7 −0.925806 −0.462903 0.886409i \(-0.653192\pi\)
−0.462903 + 0.886409i \(0.653192\pi\)
\(752\) 137472. 0.00886481
\(753\) −3.24431e6 −0.208514
\(754\) −6.06260e6 −0.388356
\(755\) −1.17896e7 −0.752715
\(756\) 0 0
\(757\) −5.34505e6 −0.339010 −0.169505 0.985529i \(-0.554217\pi\)
−0.169505 + 0.985529i \(0.554217\pi\)
\(758\) 1.55530e7 0.983197
\(759\) 4.80122e7 3.02515
\(760\) −2.74880e6 −0.172627
\(761\) −6.22568e6 −0.389695 −0.194848 0.980834i \(-0.562421\pi\)
−0.194848 + 0.980834i \(0.562421\pi\)
\(762\) −1.49053e7 −0.929938
\(763\) 0 0
\(764\) −2.98034e6 −0.184728
\(765\) −1.95385e6 −0.120708
\(766\) −1.17454e7 −0.723264
\(767\) −8.59144e6 −0.527324
\(768\) 1.11411e6 0.0681594
\(769\) −1.57888e7 −0.962793 −0.481397 0.876503i \(-0.659870\pi\)
−0.481397 + 0.876503i \(0.659870\pi\)
\(770\) 0 0
\(771\) 1.92260e7 1.16481
\(772\) 1.48006e6 0.0893794
\(773\) 2.50453e7 1.50757 0.753785 0.657121i \(-0.228226\pi\)
0.753785 + 0.657121i \(0.228226\pi\)
\(774\) 415472. 0.0249281
\(775\) −4.22250e6 −0.252531
\(776\) 4.04320e6 0.241030
\(777\) 0 0
\(778\) 6.81509e6 0.403667
\(779\) −3.24290e7 −1.91465
\(780\) 2.25080e6 0.132465
\(781\) 2.27942e7 1.33720
\(782\) −2.68442e7 −1.56976
\(783\) −1.53351e7 −0.893884
\(784\) 0 0
\(785\) −1.80135e6 −0.104334
\(786\) 6.57438e6 0.379576
\(787\) 1.28020e6 0.0736784 0.0368392 0.999321i \(-0.488271\pi\)
0.0368392 + 0.999321i \(0.488271\pi\)
\(788\) −1.17819e7 −0.675926
\(789\) −2.84541e7 −1.62724
\(790\) 2.79770e6 0.159490
\(791\) 0 0
\(792\) −2.10496e6 −0.119242
\(793\) 1.29712e7 0.732484
\(794\) −4.76442e6 −0.268200
\(795\) 4.66820e6 0.261958
\(796\) 7.70592e6 0.431064
\(797\) 1.13798e7 0.634584 0.317292 0.948328i \(-0.397226\pi\)
0.317292 + 0.948328i \(0.397226\pi\)
\(798\) 0 0
\(799\) 912363. 0.0505593
\(800\) 640000. 0.0353553
\(801\) 791936. 0.0436123
\(802\) −1.35332e7 −0.742959
\(803\) −3.58787e6 −0.196358
\(804\) 1.20115e6 0.0655327
\(805\) 0 0
\(806\) 8.94494e6 0.484998
\(807\) 1.07260e7 0.579768
\(808\) 1.87200e6 0.100874
\(809\) −1.70542e7 −0.916138 −0.458069 0.888917i \(-0.651459\pi\)
−0.458069 + 0.888917i \(0.651459\pi\)
\(810\) 6.81110e6 0.364758
\(811\) 2.21494e7 1.18252 0.591262 0.806480i \(-0.298630\pi\)
0.591262 + 0.806480i \(0.298630\pi\)
\(812\) 0 0
\(813\) 6.33209e6 0.335986
\(814\) 4.72415e7 2.49898
\(815\) −9.63335e6 −0.508023
\(816\) 7.39405e6 0.388738
\(817\) 3.87924e6 0.203326
\(818\) 5.32738e6 0.278375
\(819\) 0 0
\(820\) 7.55040e6 0.392135
\(821\) −1.01068e7 −0.523307 −0.261654 0.965162i \(-0.584268\pi\)
−0.261654 + 0.965162i \(0.584268\pi\)
\(822\) 1.27356e7 0.657415
\(823\) −1.83993e7 −0.946895 −0.473447 0.880822i \(-0.656991\pi\)
−0.473447 + 0.880822i \(0.656991\pi\)
\(824\) 9.54810e6 0.489890
\(825\) −7.59688e6 −0.388598
\(826\) 0 0
\(827\) −2.48056e7 −1.26121 −0.630604 0.776105i \(-0.717193\pi\)
−0.630604 + 0.776105i \(0.717193\pi\)
\(828\) −2.90720e6 −0.147367
\(829\) 1.19708e6 0.0604976 0.0302488 0.999542i \(-0.490370\pi\)
0.0302488 + 0.999542i \(0.490370\pi\)
\(830\) 3.76440e6 0.189671
\(831\) 1.47392e7 0.740407
\(832\) −1.35578e6 −0.0679015
\(833\) 0 0
\(834\) −1.20288e7 −0.598835
\(835\) −1.35739e7 −0.673735
\(836\) −1.96539e7 −0.972598
\(837\) 2.26258e7 1.11633
\(838\) −2.33114e7 −1.14672
\(839\) 3.17171e7 1.55557 0.777783 0.628533i \(-0.216344\pi\)
0.777783 + 0.628533i \(0.216344\pi\)
\(840\) 0 0
\(841\) 456092. 0.0222363
\(842\) 9.89722e6 0.481097
\(843\) −3.30647e7 −1.60249
\(844\) 3.03250e6 0.146536
\(845\) 6.54330e6 0.315250
\(846\) 98808.0 0.00474642
\(847\) 0 0
\(848\) −2.81190e6 −0.134280
\(849\) −2.01452e7 −0.959186
\(850\) 4.24750e6 0.201644
\(851\) 6.52461e7 3.08838
\(852\) −8.67136e6 −0.409250
\(853\) −3.18237e7 −1.49754 −0.748769 0.662831i \(-0.769355\pi\)
−0.748769 + 0.662831i \(0.769355\pi\)
\(854\) 0 0
\(855\) −1.97570e6 −0.0924285
\(856\) 5.35949e6 0.249999
\(857\) −2.27853e7 −1.05975 −0.529874 0.848076i \(-0.677761\pi\)
−0.529874 + 0.848076i \(0.677761\pi\)
\(858\) 1.60932e7 0.746319
\(859\) 1.85966e7 0.859907 0.429953 0.902851i \(-0.358530\pi\)
0.429953 + 0.902851i \(0.358530\pi\)
\(860\) −903200. −0.0416426
\(861\) 0 0
\(862\) 1.84740e7 0.846825
\(863\) −2.77046e7 −1.26627 −0.633133 0.774043i \(-0.718231\pi\)
−0.633133 + 0.774043i \(0.718231\pi\)
\(864\) −3.42938e6 −0.156290
\(865\) 9.27382e6 0.421423
\(866\) −234424. −0.0106220
\(867\) 2.49346e7 1.12656
\(868\) 0 0
\(869\) 2.00036e7 0.898582
\(870\) −7.78430e6 −0.348676
\(871\) −1.46170e6 −0.0652847
\(872\) 6.74413e6 0.300355
\(873\) 2.90605e6 0.129053
\(874\) −2.71444e7 −1.20199
\(875\) 0 0
\(876\) 1.36490e6 0.0600951
\(877\) −2.41150e7 −1.05874 −0.529370 0.848391i \(-0.677572\pi\)
−0.529370 + 0.848391i \(0.677572\pi\)
\(878\) −2.81719e7 −1.23333
\(879\) −572373. −0.0249866
\(880\) 4.57600e6 0.199195
\(881\) 1.26207e7 0.547827 0.273914 0.961754i \(-0.411682\pi\)
0.273914 + 0.961754i \(0.411682\pi\)
\(882\) 0 0
\(883\) −6.01876e6 −0.259780 −0.129890 0.991528i \(-0.541462\pi\)
−0.129890 + 0.991528i \(0.541462\pi\)
\(884\) −8.99790e6 −0.387267
\(885\) −1.10313e7 −0.473444
\(886\) 5.87575e6 0.251466
\(887\) −2.36901e7 −1.01102 −0.505509 0.862821i \(-0.668695\pi\)
−0.505509 + 0.862821i \(0.668695\pi\)
\(888\) −1.79716e7 −0.764811
\(889\) 0 0
\(890\) −1.72160e6 −0.0728546
\(891\) 4.86994e7 2.05508
\(892\) 361552. 0.0152145
\(893\) 922566. 0.0387141
\(894\) −1.35373e7 −0.566485
\(895\) 1.88543e7 0.786779
\(896\) 0 0
\(897\) 2.22266e7 0.922344
\(898\) −2.99365e7 −1.23883
\(899\) −3.09357e7 −1.27662
\(900\) 460000. 0.0189300
\(901\) −1.86618e7 −0.765847
\(902\) 5.39854e7 2.20933
\(903\) 0 0
\(904\) −7.85626e6 −0.319738
\(905\) 7.59600e6 0.308293
\(906\) 3.20676e7 1.29792
\(907\) −1.10583e7 −0.446346 −0.223173 0.974779i \(-0.571641\pi\)
−0.223173 + 0.974779i \(0.571641\pi\)
\(908\) 1.59699e7 0.642816
\(909\) 1.34550e6 0.0540100
\(910\) 0 0
\(911\) 3.07573e6 0.122787 0.0613934 0.998114i \(-0.480446\pi\)
0.0613934 + 0.998114i \(0.480446\pi\)
\(912\) 7.47674e6 0.297663
\(913\) 2.69155e7 1.06862
\(914\) 681280. 0.0269749
\(915\) 1.66549e7 0.657642
\(916\) 1.36743e7 0.538476
\(917\) 0 0
\(918\) −2.27598e7 −0.891378
\(919\) −1.89018e7 −0.738270 −0.369135 0.929376i \(-0.620346\pi\)
−0.369135 + 0.929376i \(0.620346\pi\)
\(920\) 6.32000e6 0.246177
\(921\) 459731. 0.0178589
\(922\) 1.71474e7 0.664310
\(923\) 1.05523e7 0.407701
\(924\) 0 0
\(925\) −1.03238e7 −0.396719
\(926\) 1.35327e7 0.518629
\(927\) 6.86269e6 0.262298
\(928\) 4.68890e6 0.178731
\(929\) 1.81458e7 0.689821 0.344911 0.938636i \(-0.387909\pi\)
0.344911 + 0.938636i \(0.387909\pi\)
\(930\) 1.14852e7 0.435443
\(931\) 0 0
\(932\) 2.01309e7 0.759144
\(933\) −3.65362e7 −1.37410
\(934\) −2.07212e7 −0.777225
\(935\) 3.03696e7 1.13608
\(936\) −974464. −0.0363560
\(937\) 2.17350e7 0.808744 0.404372 0.914595i \(-0.367490\pi\)
0.404372 + 0.914595i \(0.367490\pi\)
\(938\) 0 0
\(939\) 4.53989e7 1.68028
\(940\) −214800. −0.00792893
\(941\) −1.86808e7 −0.687735 −0.343868 0.939018i \(-0.611737\pi\)
−0.343868 + 0.939018i \(0.611737\pi\)
\(942\) 4.89967e6 0.179904
\(943\) 7.45602e7 2.73041
\(944\) 6.64474e6 0.242688
\(945\) 0 0
\(946\) −6.45788e6 −0.234618
\(947\) −2.24778e6 −0.0814476 −0.0407238 0.999170i \(-0.512966\pi\)
−0.0407238 + 0.999170i \(0.512966\pi\)
\(948\) −7.60974e6 −0.275010
\(949\) −1.66096e6 −0.0598678
\(950\) 4.29500e6 0.154402
\(951\) −4.25874e6 −0.152697
\(952\) 0 0
\(953\) −3.73293e7 −1.33143 −0.665714 0.746207i \(-0.731873\pi\)
−0.665714 + 0.746207i \(0.731873\pi\)
\(954\) −2.02106e6 −0.0718964
\(955\) 4.65678e6 0.165225
\(956\) −1.13053e7 −0.400071
\(957\) −5.56577e7 −1.96447
\(958\) 3.50711e7 1.23463
\(959\) 0 0
\(960\) −1.74080e6 −0.0609636
\(961\) 1.70144e7 0.594303
\(962\) 2.18698e7 0.761917
\(963\) 3.85213e6 0.133855
\(964\) −9.86128e6 −0.341775
\(965\) −2.31260e6 −0.0799433
\(966\) 0 0
\(967\) 2.61870e7 0.900573 0.450287 0.892884i \(-0.351322\pi\)
0.450287 + 0.892884i \(0.351322\pi\)
\(968\) 2.24111e7 0.768733
\(969\) 4.96210e7 1.69768
\(970\) −6.31750e6 −0.215584
\(971\) 3.91957e7 1.33410 0.667052 0.745011i \(-0.267556\pi\)
0.667052 + 0.745011i \(0.267556\pi\)
\(972\) −5.50528e6 −0.186902
\(973\) 0 0
\(974\) 1.08062e6 0.0364984
\(975\) −3.51688e6 −0.118480
\(976\) −1.00321e7 −0.337108
\(977\) 3.03935e6 0.101870 0.0509348 0.998702i \(-0.483780\pi\)
0.0509348 + 0.998702i \(0.483780\pi\)
\(978\) 2.62027e7 0.875990
\(979\) −1.23094e7 −0.410470
\(980\) 0 0
\(981\) 4.84734e6 0.160817
\(982\) 1.94220e7 0.642711
\(983\) 1.59937e7 0.527915 0.263957 0.964534i \(-0.414972\pi\)
0.263957 + 0.964534i \(0.414972\pi\)
\(984\) −2.05371e7 −0.676163
\(985\) 1.84092e7 0.604567
\(986\) 3.11189e7 1.01937
\(987\) 0 0
\(988\) −9.09853e6 −0.296537
\(989\) −8.91910e6 −0.289955
\(990\) 3.28900e6 0.106654
\(991\) 3.63186e6 0.117475 0.0587375 0.998273i \(-0.481293\pi\)
0.0587375 + 0.998273i \(0.481293\pi\)
\(992\) −6.91814e6 −0.223208
\(993\) 1.80028e7 0.579384
\(994\) 0 0
\(995\) −1.20405e7 −0.385555
\(996\) −1.02392e7 −0.327052
\(997\) 4.33287e7 1.38051 0.690253 0.723568i \(-0.257499\pi\)
0.690253 + 0.723568i \(0.257499\pi\)
\(998\) −1.19430e7 −0.379567
\(999\) 5.53188e7 1.75371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.6.a.m.1.1 1
7.6 odd 2 70.6.a.e.1.1 1
21.20 even 2 630.6.a.b.1.1 1
28.27 even 2 560.6.a.h.1.1 1
35.13 even 4 350.6.c.a.99.1 2
35.27 even 4 350.6.c.a.99.2 2
35.34 odd 2 350.6.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.e.1.1 1 7.6 odd 2
350.6.a.e.1.1 1 35.34 odd 2
350.6.c.a.99.1 2 35.13 even 4
350.6.c.a.99.2 2 35.27 even 4
490.6.a.m.1.1 1 1.1 even 1 trivial
560.6.a.h.1.1 1 28.27 even 2
630.6.a.b.1.1 1 21.20 even 2