gp: [N,k,chi] = [490,6,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [1,4,17]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 − 17 T_{3} - 17 T 3 − 1 7
T3 - 17
acting on S 6 n e w ( Γ 0 ( 490 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(490)) S 6 n e w ( Γ 0 ( 4 9 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T − 4 T - 4 T − 4
T - 4
3 3 3
T − 17 T - 17 T − 1 7
T - 17
5 5 5
T + 25 T + 25 T + 2 5
T + 25
7 7 7
T T T
T
11 11 1 1
T + 715 T + 715 T + 7 1 5
T + 715
13 13 1 3
T + 331 T + 331 T + 3 3 1
T + 331
17 17 1 7
T − 1699 T - 1699 T − 1 6 9 9
T - 1699
19 19 1 9
T − 1718 T - 1718 T − 1 7 1 8
T - 1718
23 23 2 3
T + 3950 T + 3950 T + 3 9 5 0
T + 3950
29 29 2 9
T − 4579 T - 4579 T − 4 5 7 9
T - 4579
31 31 3 1
T + 6756 T + 6756 T + 6 7 5 6
T + 6756
37 37 3 7
T + 16518 T + 16518 T + 1 6 5 1 8
T + 16518
41 41 4 1
T + 18876 T + 18876 T + 1 8 8 7 6
T + 18876
43 43 4 3
T − 2258 T - 2258 T − 2 2 5 8
T - 2258
47 47 4 7
T − 537 T - 537 T − 5 3 7
T - 537
53 53 5 3
T + 10984 T + 10984 T + 1 0 9 8 4
T + 10984
59 59 5 9
T − 25956 T - 25956 T − 2 5 9 5 6
T - 25956
61 61 6 1
T + 39188 T + 39188 T + 3 9 1 8 8
T + 39188
67 67 6 7
T − 4416 T - 4416 T − 4 4 1 6
T - 4416
71 71 7 1
T + 31880 T + 31880 T + 3 1 8 8 0
T + 31880
73 73 7 3
T − 5018 T - 5018 T − 5 0 1 8
T - 5018
79 79 7 9
T + 27977 T + 27977 T + 2 7 9 7 7
T + 27977
83 83 8 3
T + 37644 T + 37644 T + 3 7 6 4 4
T + 37644
89 89 8 9
T − 17216 T - 17216 T − 1 7 2 1 6
T - 17216
97 97 9 7
T − 63175 T - 63175 T − 6 3 1 7 5
T - 63175
show more
show less