Properties

Label 490.6.a.k
Level 490
Weight 6
Character orbit 490.a
Self dual yes
Analytic conductor 78.588
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 4q^{2} - 6q^{3} + 16q^{4} + 25q^{5} - 24q^{6} + 64q^{8} - 207q^{9} + O(q^{10}) \) \( q + 4q^{2} - 6q^{3} + 16q^{4} + 25q^{5} - 24q^{6} + 64q^{8} - 207q^{9} + 100q^{10} + 192q^{11} - 96q^{12} - 1106q^{13} - 150q^{15} + 256q^{16} - 762q^{17} - 828q^{18} + 2740q^{19} + 400q^{20} + 768q^{22} + 1566q^{23} - 384q^{24} + 625q^{25} - 4424q^{26} + 2700q^{27} + 5910q^{29} - 600q^{30} + 6868q^{31} + 1024q^{32} - 1152q^{33} - 3048q^{34} - 3312q^{36} - 5518q^{37} + 10960q^{38} + 6636q^{39} + 1600q^{40} + 378q^{41} - 2434q^{43} + 3072q^{44} - 5175q^{45} + 6264q^{46} - 13122q^{47} - 1536q^{48} + 2500q^{50} + 4572q^{51} - 17696q^{52} - 9174q^{53} + 10800q^{54} + 4800q^{55} - 16440q^{57} + 23640q^{58} + 34980q^{59} - 2400q^{60} + 9838q^{61} + 27472q^{62} + 4096q^{64} - 27650q^{65} - 4608q^{66} + 33722q^{67} - 12192q^{68} - 9396q^{69} + 70212q^{71} - 13248q^{72} - 21986q^{73} - 22072q^{74} - 3750q^{75} + 43840q^{76} + 26544q^{78} + 4520q^{79} + 6400q^{80} + 34101q^{81} + 1512q^{82} + 109074q^{83} - 19050q^{85} - 9736q^{86} - 35460q^{87} + 12288q^{88} - 38490q^{89} - 20700q^{90} + 25056q^{92} - 41208q^{93} - 52488q^{94} + 68500q^{95} - 6144q^{96} + 1918q^{97} - 39744q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 −6.00000 16.0000 25.0000 −24.0000 0 64.0000 −207.000 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.6.a.k 1
7.b odd 2 1 10.6.a.c 1
21.c even 2 1 90.6.a.b 1
28.d even 2 1 80.6.a.c 1
35.c odd 2 1 50.6.a.b 1
35.f even 4 2 50.6.b.b 2
56.e even 2 1 320.6.a.k 1
56.h odd 2 1 320.6.a.f 1
84.h odd 2 1 720.6.a.v 1
105.g even 2 1 450.6.a.u 1
105.k odd 4 2 450.6.c.f 2
140.c even 2 1 400.6.a.i 1
140.j odd 4 2 400.6.c.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.6.a.c 1 7.b odd 2 1
50.6.a.b 1 35.c odd 2 1
50.6.b.b 2 35.f even 4 2
80.6.a.c 1 28.d even 2 1
90.6.a.b 1 21.c even 2 1
320.6.a.f 1 56.h odd 2 1
320.6.a.k 1 56.e even 2 1
400.6.a.i 1 140.c even 2 1
400.6.c.i 2 140.j odd 4 2
450.6.a.u 1 105.g even 2 1
450.6.c.f 2 105.k odd 4 2
490.6.a.k 1 1.a even 1 1 trivial
720.6.a.v 1 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 6 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(490))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 4 T \)
$3$ \( 1 + 6 T + 243 T^{2} \)
$5$ \( 1 - 25 T \)
$7$ 1
$11$ \( 1 - 192 T + 161051 T^{2} \)
$13$ \( 1 + 1106 T + 371293 T^{2} \)
$17$ \( 1 + 762 T + 1419857 T^{2} \)
$19$ \( 1 - 2740 T + 2476099 T^{2} \)
$23$ \( 1 - 1566 T + 6436343 T^{2} \)
$29$ \( 1 - 5910 T + 20511149 T^{2} \)
$31$ \( 1 - 6868 T + 28629151 T^{2} \)
$37$ \( 1 + 5518 T + 69343957 T^{2} \)
$41$ \( 1 - 378 T + 115856201 T^{2} \)
$43$ \( 1 + 2434 T + 147008443 T^{2} \)
$47$ \( 1 + 13122 T + 229345007 T^{2} \)
$53$ \( 1 + 9174 T + 418195493 T^{2} \)
$59$ \( 1 - 34980 T + 714924299 T^{2} \)
$61$ \( 1 - 9838 T + 844596301 T^{2} \)
$67$ \( 1 - 33722 T + 1350125107 T^{2} \)
$71$ \( 1 - 70212 T + 1804229351 T^{2} \)
$73$ \( 1 + 21986 T + 2073071593 T^{2} \)
$79$ \( 1 - 4520 T + 3077056399 T^{2} \)
$83$ \( 1 - 109074 T + 3939040643 T^{2} \)
$89$ \( 1 + 38490 T + 5584059449 T^{2} \)
$97$ \( 1 - 1918 T + 8587340257 T^{2} \)
show more
show less