Properties

Label 490.6.a.g
Level $490$
Weight $6$
Character orbit 490.a
Self dual yes
Analytic conductor $78.588$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,6,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{2} + 9 q^{3} + 16 q^{4} - 25 q^{5} - 36 q^{6} - 64 q^{8} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} + 9 q^{3} + 16 q^{4} - 25 q^{5} - 36 q^{6} - 64 q^{8} - 162 q^{9} + 100 q^{10} - 187 q^{11} + 144 q^{12} - 627 q^{13} - 225 q^{15} + 256 q^{16} - 1813 q^{17} + 648 q^{18} - 258 q^{19} - 400 q^{20} + 748 q^{22} + 2970 q^{23} - 576 q^{24} + 625 q^{25} + 2508 q^{26} - 3645 q^{27} + 1299 q^{29} + 900 q^{30} - 1916 q^{31} - 1024 q^{32} - 1683 q^{33} + 7252 q^{34} - 2592 q^{36} + 6578 q^{37} + 1032 q^{38} - 5643 q^{39} + 1600 q^{40} - 6676 q^{41} + 3178 q^{43} - 2992 q^{44} + 4050 q^{45} - 11880 q^{46} + 22001 q^{47} + 2304 q^{48} - 2500 q^{50} - 16317 q^{51} - 10032 q^{52} + 26168 q^{53} + 14580 q^{54} + 4675 q^{55} - 2322 q^{57} - 5196 q^{58} - 3932 q^{59} - 3600 q^{60} + 48740 q^{61} + 7664 q^{62} + 4096 q^{64} + 15675 q^{65} + 6732 q^{66} - 44832 q^{67} - 29008 q^{68} + 26730 q^{69} + 63736 q^{71} + 10368 q^{72} - 60470 q^{73} - 26312 q^{74} + 5625 q^{75} - 4128 q^{76} + 22572 q^{78} - 43721 q^{79} - 6400 q^{80} + 6561 q^{81} + 26704 q^{82} - 97276 q^{83} + 45325 q^{85} - 12712 q^{86} + 11691 q^{87} + 11968 q^{88} - 45560 q^{89} - 16200 q^{90} + 47520 q^{92} - 17244 q^{93} - 88004 q^{94} + 6450 q^{95} - 9216 q^{96} + 57295 q^{97} + 30294 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 9.00000 16.0000 −25.0000 −36.0000 0 −64.0000 −162.000 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.6.a.g 1
7.b odd 2 1 70.6.a.b 1
21.c even 2 1 630.6.a.i 1
28.d even 2 1 560.6.a.e 1
35.c odd 2 1 350.6.a.l 1
35.f even 4 2 350.6.c.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.b 1 7.b odd 2 1
350.6.a.l 1 35.c odd 2 1
350.6.c.g 2 35.f even 4 2
490.6.a.g 1 1.a even 1 1 trivial
560.6.a.e 1 28.d even 2 1
630.6.a.i 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 9 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(490))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T - 9 \) Copy content Toggle raw display
$5$ \( T + 25 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 187 \) Copy content Toggle raw display
$13$ \( T + 627 \) Copy content Toggle raw display
$17$ \( T + 1813 \) Copy content Toggle raw display
$19$ \( T + 258 \) Copy content Toggle raw display
$23$ \( T - 2970 \) Copy content Toggle raw display
$29$ \( T - 1299 \) Copy content Toggle raw display
$31$ \( T + 1916 \) Copy content Toggle raw display
$37$ \( T - 6578 \) Copy content Toggle raw display
$41$ \( T + 6676 \) Copy content Toggle raw display
$43$ \( T - 3178 \) Copy content Toggle raw display
$47$ \( T - 22001 \) Copy content Toggle raw display
$53$ \( T - 26168 \) Copy content Toggle raw display
$59$ \( T + 3932 \) Copy content Toggle raw display
$61$ \( T - 48740 \) Copy content Toggle raw display
$67$ \( T + 44832 \) Copy content Toggle raw display
$71$ \( T - 63736 \) Copy content Toggle raw display
$73$ \( T + 60470 \) Copy content Toggle raw display
$79$ \( T + 43721 \) Copy content Toggle raw display
$83$ \( T + 97276 \) Copy content Toggle raw display
$89$ \( T + 45560 \) Copy content Toggle raw display
$97$ \( T - 57295 \) Copy content Toggle raw display
show more
show less