gp: [N,k,chi] = [490,6,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [1,-4,5]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 − 5 T_{3} - 5 T 3 − 5
T3 - 5
acting on S 6 n e w ( Γ 0 ( 490 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(490)) S 6 n e w ( Γ 0 ( 4 9 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 4 T + 4 T + 4
T + 4
3 3 3
T − 5 T - 5 T − 5
T - 5
5 5 5
T − 25 T - 25 T − 2 5
T - 25
7 7 7
T T T
T
11 11 1 1
T − 198 T - 198 T − 1 9 8
T - 198
13 13 1 3
T − 340 T - 340 T − 3 4 0
T - 340
17 17 1 7
T + 1848 T + 1848 T + 1 8 4 8
T + 1848
19 19 1 9
T − 1210 T - 1210 T − 1 2 1 0
T - 1210
23 23 2 3
T − 2823 T - 2823 T − 2 8 2 3
T - 2823
29 29 2 9
T + 4539 T + 4539 T + 4 5 3 9
T + 4539
31 31 3 1
T − 712 T - 712 T − 7 1 2
T - 712
37 37 3 7
T + 7324 T + 7324 T + 7 3 2 4
T + 7324
41 41 4 1
T + 15633 T + 15633 T + 1 5 6 3 3
T + 15633
43 43 4 3
T − 15827 T - 15827 T − 1 5 8 2 7
T - 15827
47 47 4 7
T − 3192 T - 3192 T − 3 1 9 2
T - 3192
53 53 5 3
T + 20046 T + 20046 T + 2 0 0 4 6
T + 20046
59 59 5 9
T + 23046 T + 23046 T + 2 3 0 4 6
T + 23046
61 61 6 1
T − 379 T - 379 T − 3 7 9
T - 379
67 67 6 7
T + 35473 T + 35473 T + 3 5 4 7 3
T + 35473
71 71 7 1
T − 71814 T - 71814 T − 7 1 8 1 4
T - 71814
73 73 7 3
T + 31664 T + 31664 T + 3 1 6 6 4
T + 31664
79 79 7 9
T − 8534 T - 8534 T − 8 5 3 4
T - 8534
83 83 8 3
T − 106551 T - 106551 T − 1 0 6 5 5 1
T - 106551
89 89 8 9
T − 12303 T - 12303 T − 1 2 3 0 3
T - 12303
97 97 9 7
T − 102802 T - 102802 T − 1 0 2 8 0 2
T - 102802
show more
show less