Properties

Label 490.6.a.c.1.1
Level $490$
Weight $6$
Character 490.1
Self dual yes
Analytic conductor $78.588$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,6,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 490.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -11.0000 q^{3} +16.0000 q^{4} +25.0000 q^{5} +44.0000 q^{6} -64.0000 q^{8} -122.000 q^{9} +O(q^{10})\) \(q-4.00000 q^{2} -11.0000 q^{3} +16.0000 q^{4} +25.0000 q^{5} +44.0000 q^{6} -64.0000 q^{8} -122.000 q^{9} -100.000 q^{10} +83.0000 q^{11} -176.000 q^{12} +83.0000 q^{13} -275.000 q^{15} +256.000 q^{16} +177.000 q^{17} +488.000 q^{18} +2082.00 q^{19} +400.000 q^{20} -332.000 q^{22} -3170.00 q^{23} +704.000 q^{24} +625.000 q^{25} -332.000 q^{26} +4015.00 q^{27} -8681.00 q^{29} +1100.00 q^{30} -1636.00 q^{31} -1024.00 q^{32} -913.000 q^{33} -708.000 q^{34} -1952.00 q^{36} +4298.00 q^{37} -8328.00 q^{38} -913.000 q^{39} -1600.00 q^{40} -2356.00 q^{41} +8738.00 q^{43} +1328.00 q^{44} -3050.00 q^{45} +12680.0 q^{46} +3641.00 q^{47} -2816.00 q^{48} -2500.00 q^{50} -1947.00 q^{51} +1328.00 q^{52} +33268.0 q^{53} -16060.0 q^{54} +2075.00 q^{55} -22902.0 q^{57} +34724.0 q^{58} +30968.0 q^{59} -4400.00 q^{60} -4560.00 q^{61} +6544.00 q^{62} +4096.00 q^{64} +2075.00 q^{65} +3652.00 q^{66} +37788.0 q^{67} +2832.00 q^{68} +34870.0 q^{69} -59304.0 q^{71} +7808.00 q^{72} +8910.00 q^{73} -17192.0 q^{74} -6875.00 q^{75} +33312.0 q^{76} +3652.00 q^{78} +27589.0 q^{79} +6400.00 q^{80} -14519.0 q^{81} +9424.00 q^{82} -67676.0 q^{83} +4425.00 q^{85} -34952.0 q^{86} +95491.0 q^{87} -5312.00 q^{88} -10700.0 q^{89} +12200.0 q^{90} -50720.0 q^{92} +17996.0 q^{93} -14564.0 q^{94} +52050.0 q^{95} +11264.0 q^{96} -65075.0 q^{97} -10126.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −11.0000 −0.705650 −0.352825 0.935689i \(-0.614779\pi\)
−0.352825 + 0.935689i \(0.614779\pi\)
\(4\) 16.0000 0.500000
\(5\) 25.0000 0.447214
\(6\) 44.0000 0.498970
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −122.000 −0.502058
\(10\) −100.000 −0.316228
\(11\) 83.0000 0.206822 0.103411 0.994639i \(-0.467024\pi\)
0.103411 + 0.994639i \(0.467024\pi\)
\(12\) −176.000 −0.352825
\(13\) 83.0000 0.136213 0.0681067 0.997678i \(-0.478304\pi\)
0.0681067 + 0.997678i \(0.478304\pi\)
\(14\) 0 0
\(15\) −275.000 −0.315576
\(16\) 256.000 0.250000
\(17\) 177.000 0.148543 0.0742713 0.997238i \(-0.476337\pi\)
0.0742713 + 0.997238i \(0.476337\pi\)
\(18\) 488.000 0.355008
\(19\) 2082.00 1.32311 0.661556 0.749896i \(-0.269896\pi\)
0.661556 + 0.749896i \(0.269896\pi\)
\(20\) 400.000 0.223607
\(21\) 0 0
\(22\) −332.000 −0.146245
\(23\) −3170.00 −1.24951 −0.624755 0.780821i \(-0.714801\pi\)
−0.624755 + 0.780821i \(0.714801\pi\)
\(24\) 704.000 0.249485
\(25\) 625.000 0.200000
\(26\) −332.000 −0.0963174
\(27\) 4015.00 1.05993
\(28\) 0 0
\(29\) −8681.00 −1.91679 −0.958395 0.285444i \(-0.907859\pi\)
−0.958395 + 0.285444i \(0.907859\pi\)
\(30\) 1100.00 0.223146
\(31\) −1636.00 −0.305759 −0.152879 0.988245i \(-0.548855\pi\)
−0.152879 + 0.988245i \(0.548855\pi\)
\(32\) −1024.00 −0.176777
\(33\) −913.000 −0.145944
\(34\) −708.000 −0.105035
\(35\) 0 0
\(36\) −1952.00 −0.251029
\(37\) 4298.00 0.516134 0.258067 0.966127i \(-0.416915\pi\)
0.258067 + 0.966127i \(0.416915\pi\)
\(38\) −8328.00 −0.935582
\(39\) −913.000 −0.0961190
\(40\) −1600.00 −0.158114
\(41\) −2356.00 −0.218885 −0.109442 0.993993i \(-0.534907\pi\)
−0.109442 + 0.993993i \(0.534907\pi\)
\(42\) 0 0
\(43\) 8738.00 0.720677 0.360339 0.932822i \(-0.382661\pi\)
0.360339 + 0.932822i \(0.382661\pi\)
\(44\) 1328.00 0.103411
\(45\) −3050.00 −0.224527
\(46\) 12680.0 0.883537
\(47\) 3641.00 0.240423 0.120212 0.992748i \(-0.461643\pi\)
0.120212 + 0.992748i \(0.461643\pi\)
\(48\) −2816.00 −0.176413
\(49\) 0 0
\(50\) −2500.00 −0.141421
\(51\) −1947.00 −0.104819
\(52\) 1328.00 0.0681067
\(53\) 33268.0 1.62681 0.813405 0.581697i \(-0.197611\pi\)
0.813405 + 0.581697i \(0.197611\pi\)
\(54\) −16060.0 −0.749482
\(55\) 2075.00 0.0924935
\(56\) 0 0
\(57\) −22902.0 −0.933655
\(58\) 34724.0 1.35538
\(59\) 30968.0 1.15820 0.579099 0.815257i \(-0.303404\pi\)
0.579099 + 0.815257i \(0.303404\pi\)
\(60\) −4400.00 −0.157788
\(61\) −4560.00 −0.156906 −0.0784531 0.996918i \(-0.524998\pi\)
−0.0784531 + 0.996918i \(0.524998\pi\)
\(62\) 6544.00 0.216204
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 2075.00 0.0609165
\(66\) 3652.00 0.103198
\(67\) 37788.0 1.02841 0.514206 0.857667i \(-0.328087\pi\)
0.514206 + 0.857667i \(0.328087\pi\)
\(68\) 2832.00 0.0742713
\(69\) 34870.0 0.881717
\(70\) 0 0
\(71\) −59304.0 −1.39617 −0.698085 0.716015i \(-0.745964\pi\)
−0.698085 + 0.716015i \(0.745964\pi\)
\(72\) 7808.00 0.177504
\(73\) 8910.00 0.195691 0.0978454 0.995202i \(-0.468805\pi\)
0.0978454 + 0.995202i \(0.468805\pi\)
\(74\) −17192.0 −0.364962
\(75\) −6875.00 −0.141130
\(76\) 33312.0 0.661556
\(77\) 0 0
\(78\) 3652.00 0.0679664
\(79\) 27589.0 0.497357 0.248678 0.968586i \(-0.420004\pi\)
0.248678 + 0.968586i \(0.420004\pi\)
\(80\) 6400.00 0.111803
\(81\) −14519.0 −0.245881
\(82\) 9424.00 0.154775
\(83\) −67676.0 −1.07830 −0.539150 0.842210i \(-0.681254\pi\)
−0.539150 + 0.842210i \(0.681254\pi\)
\(84\) 0 0
\(85\) 4425.00 0.0664303
\(86\) −34952.0 −0.509596
\(87\) 95491.0 1.35258
\(88\) −5312.00 −0.0731226
\(89\) −10700.0 −0.143189 −0.0715944 0.997434i \(-0.522809\pi\)
−0.0715944 + 0.997434i \(0.522809\pi\)
\(90\) 12200.0 0.158765
\(91\) 0 0
\(92\) −50720.0 −0.624755
\(93\) 17996.0 0.215759
\(94\) −14564.0 −0.170005
\(95\) 52050.0 0.591714
\(96\) 11264.0 0.124743
\(97\) −65075.0 −0.702239 −0.351119 0.936331i \(-0.614199\pi\)
−0.351119 + 0.936331i \(0.614199\pi\)
\(98\) 0 0
\(99\) −10126.0 −0.103836
\(100\) 10000.0 0.100000
\(101\) 149250. 1.45583 0.727915 0.685667i \(-0.240489\pi\)
0.727915 + 0.685667i \(0.240489\pi\)
\(102\) 7788.00 0.0741183
\(103\) −194315. −1.80473 −0.902367 0.430968i \(-0.858172\pi\)
−0.902367 + 0.430968i \(0.858172\pi\)
\(104\) −5312.00 −0.0481587
\(105\) 0 0
\(106\) −133072. −1.15033
\(107\) 40538.0 0.342297 0.171148 0.985245i \(-0.445252\pi\)
0.171148 + 0.985245i \(0.445252\pi\)
\(108\) 64240.0 0.529964
\(109\) −87651.0 −0.706628 −0.353314 0.935505i \(-0.614945\pi\)
−0.353314 + 0.935505i \(0.614945\pi\)
\(110\) −8300.00 −0.0654028
\(111\) −47278.0 −0.364210
\(112\) 0 0
\(113\) −76314.0 −0.562222 −0.281111 0.959675i \(-0.590703\pi\)
−0.281111 + 0.959675i \(0.590703\pi\)
\(114\) 91608.0 0.660194
\(115\) −79250.0 −0.558798
\(116\) −138896. −0.958395
\(117\) −10126.0 −0.0683870
\(118\) −123872. −0.818970
\(119\) 0 0
\(120\) 17600.0 0.111573
\(121\) −154162. −0.957225
\(122\) 18240.0 0.110949
\(123\) 25916.0 0.154456
\(124\) −26176.0 −0.152879
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −183128. −1.00750 −0.503750 0.863849i \(-0.668047\pi\)
−0.503750 + 0.863849i \(0.668047\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −96118.0 −0.508546
\(130\) −8300.00 −0.0430744
\(131\) −216190. −1.10067 −0.550335 0.834944i \(-0.685500\pi\)
−0.550335 + 0.834944i \(0.685500\pi\)
\(132\) −14608.0 −0.0729719
\(133\) 0 0
\(134\) −151152. −0.727197
\(135\) 100375. 0.474014
\(136\) −11328.0 −0.0525177
\(137\) −119844. −0.545525 −0.272763 0.962081i \(-0.587937\pi\)
−0.272763 + 0.962081i \(0.587937\pi\)
\(138\) −139480. −0.623468
\(139\) −259298. −1.13831 −0.569157 0.822229i \(-0.692730\pi\)
−0.569157 + 0.822229i \(0.692730\pi\)
\(140\) 0 0
\(141\) −40051.0 −0.169655
\(142\) 237216. 0.987241
\(143\) 6889.00 0.0281719
\(144\) −31232.0 −0.125514
\(145\) −217025. −0.857215
\(146\) −35640.0 −0.138374
\(147\) 0 0
\(148\) 68768.0 0.258067
\(149\) −88518.0 −0.326637 −0.163319 0.986573i \(-0.552220\pi\)
−0.163319 + 0.986573i \(0.552220\pi\)
\(150\) 27500.0 0.0997940
\(151\) 115053. 0.410635 0.205317 0.978695i \(-0.434177\pi\)
0.205317 + 0.978695i \(0.434177\pi\)
\(152\) −133248. −0.467791
\(153\) −21594.0 −0.0745769
\(154\) 0 0
\(155\) −40900.0 −0.136740
\(156\) −14608.0 −0.0480595
\(157\) 324370. 1.05025 0.525124 0.851026i \(-0.324019\pi\)
0.525124 + 0.851026i \(0.324019\pi\)
\(158\) −110356. −0.351685
\(159\) −365948. −1.14796
\(160\) −25600.0 −0.0790569
\(161\) 0 0
\(162\) 58076.0 0.173864
\(163\) 236470. 0.697119 0.348560 0.937287i \(-0.386671\pi\)
0.348560 + 0.937287i \(0.386671\pi\)
\(164\) −37696.0 −0.109442
\(165\) −22825.0 −0.0652681
\(166\) 270704. 0.762473
\(167\) 332853. 0.923552 0.461776 0.886997i \(-0.347212\pi\)
0.461776 + 0.886997i \(0.347212\pi\)
\(168\) 0 0
\(169\) −364404. −0.981446
\(170\) −17700.0 −0.0469733
\(171\) −254004. −0.664279
\(172\) 139808. 0.360339
\(173\) 435681. 1.10676 0.553380 0.832929i \(-0.313338\pi\)
0.553380 + 0.832929i \(0.313338\pi\)
\(174\) −381964. −0.956421
\(175\) 0 0
\(176\) 21248.0 0.0517055
\(177\) −340648. −0.817283
\(178\) 42800.0 0.101250
\(179\) −727852. −1.69789 −0.848947 0.528478i \(-0.822763\pi\)
−0.848947 + 0.528478i \(0.822763\pi\)
\(180\) −48800.0 −0.112263
\(181\) −287292. −0.651819 −0.325910 0.945401i \(-0.605670\pi\)
−0.325910 + 0.945401i \(0.605670\pi\)
\(182\) 0 0
\(183\) 50160.0 0.110721
\(184\) 202880. 0.441768
\(185\) 107450. 0.230822
\(186\) −71984.0 −0.152565
\(187\) 14691.0 0.0307218
\(188\) 58256.0 0.120212
\(189\) 0 0
\(190\) −208200. −0.418405
\(191\) −454581. −0.901629 −0.450814 0.892618i \(-0.648866\pi\)
−0.450814 + 0.892618i \(0.648866\pi\)
\(192\) −45056.0 −0.0882063
\(193\) −398780. −0.770620 −0.385310 0.922787i \(-0.625905\pi\)
−0.385310 + 0.922787i \(0.625905\pi\)
\(194\) 260300. 0.496558
\(195\) −22825.0 −0.0429857
\(196\) 0 0
\(197\) −959776. −1.76199 −0.880997 0.473122i \(-0.843127\pi\)
−0.880997 + 0.473122i \(0.843127\pi\)
\(198\) 40504.0 0.0734235
\(199\) −342024. −0.612243 −0.306122 0.951992i \(-0.599031\pi\)
−0.306122 + 0.951992i \(0.599031\pi\)
\(200\) −40000.0 −0.0707107
\(201\) −415668. −0.725699
\(202\) −597000. −1.02943
\(203\) 0 0
\(204\) −31152.0 −0.0524096
\(205\) −58900.0 −0.0978883
\(206\) 777260. 1.27614
\(207\) 386740. 0.627326
\(208\) 21248.0 0.0340533
\(209\) 172806. 0.273649
\(210\) 0 0
\(211\) −255043. −0.394373 −0.197187 0.980366i \(-0.563180\pi\)
−0.197187 + 0.980366i \(0.563180\pi\)
\(212\) 532288. 0.813405
\(213\) 652344. 0.985207
\(214\) −162152. −0.242040
\(215\) 218450. 0.322297
\(216\) −256960. −0.374741
\(217\) 0 0
\(218\) 350604. 0.499661
\(219\) −98010.0 −0.138089
\(220\) 33200.0 0.0462468
\(221\) 14691.0 0.0202335
\(222\) 189112. 0.257535
\(223\) 198381. 0.267139 0.133570 0.991039i \(-0.457356\pi\)
0.133570 + 0.991039i \(0.457356\pi\)
\(224\) 0 0
\(225\) −76250.0 −0.100412
\(226\) 305256. 0.397551
\(227\) −544967. −0.701949 −0.350975 0.936385i \(-0.614150\pi\)
−0.350975 + 0.936385i \(0.614150\pi\)
\(228\) −366432. −0.466827
\(229\) 1.45584e6 1.83454 0.917268 0.398271i \(-0.130390\pi\)
0.917268 + 0.398271i \(0.130390\pi\)
\(230\) 317000. 0.395130
\(231\) 0 0
\(232\) 555584. 0.677688
\(233\) −65544.0 −0.0790939 −0.0395470 0.999218i \(-0.512591\pi\)
−0.0395470 + 0.999218i \(0.512591\pi\)
\(234\) 40504.0 0.0483569
\(235\) 91025.0 0.107520
\(236\) 495488. 0.579099
\(237\) −303479. −0.350960
\(238\) 0 0
\(239\) −621207. −0.703464 −0.351732 0.936101i \(-0.614407\pi\)
−0.351732 + 0.936101i \(0.614407\pi\)
\(240\) −70400.0 −0.0788941
\(241\) −1.02763e6 −1.13971 −0.569855 0.821745i \(-0.693001\pi\)
−0.569855 + 0.821745i \(0.693001\pi\)
\(242\) 616648. 0.676860
\(243\) −815936. −0.886422
\(244\) −72960.0 −0.0784531
\(245\) 0 0
\(246\) −103664. −0.109217
\(247\) 172806. 0.180226
\(248\) 104704. 0.108102
\(249\) 744436. 0.760902
\(250\) −62500.0 −0.0632456
\(251\) −1.79275e6 −1.79612 −0.898060 0.439873i \(-0.855024\pi\)
−0.898060 + 0.439873i \(0.855024\pi\)
\(252\) 0 0
\(253\) −263110. −0.258426
\(254\) 732512. 0.712411
\(255\) −48675.0 −0.0468765
\(256\) 65536.0 0.0625000
\(257\) −1.15843e6 −1.09405 −0.547025 0.837116i \(-0.684240\pi\)
−0.547025 + 0.837116i \(0.684240\pi\)
\(258\) 384472. 0.359596
\(259\) 0 0
\(260\) 33200.0 0.0304582
\(261\) 1.05908e6 0.962340
\(262\) 864760. 0.778292
\(263\) −639534. −0.570130 −0.285065 0.958508i \(-0.592015\pi\)
−0.285065 + 0.958508i \(0.592015\pi\)
\(264\) 58432.0 0.0515990
\(265\) 831700. 0.727532
\(266\) 0 0
\(267\) 117700. 0.101041
\(268\) 604608. 0.514206
\(269\) −2.19619e6 −1.85050 −0.925252 0.379353i \(-0.876147\pi\)
−0.925252 + 0.379353i \(0.876147\pi\)
\(270\) −401500. −0.335178
\(271\) −1.38063e6 −1.14197 −0.570985 0.820960i \(-0.693439\pi\)
−0.570985 + 0.820960i \(0.693439\pi\)
\(272\) 45312.0 0.0371356
\(273\) 0 0
\(274\) 479376. 0.385745
\(275\) 51875.0 0.0413644
\(276\) 557920. 0.440859
\(277\) 2.12298e6 1.66244 0.831222 0.555941i \(-0.187642\pi\)
0.831222 + 0.555941i \(0.187642\pi\)
\(278\) 1.03719e6 0.804910
\(279\) 199592. 0.153509
\(280\) 0 0
\(281\) 1.19699e6 0.904323 0.452162 0.891936i \(-0.350653\pi\)
0.452162 + 0.891936i \(0.350653\pi\)
\(282\) 160204. 0.119964
\(283\) −281449. −0.208898 −0.104449 0.994530i \(-0.533308\pi\)
−0.104449 + 0.994530i \(0.533308\pi\)
\(284\) −948864. −0.698085
\(285\) −572550. −0.417543
\(286\) −27556.0 −0.0199205
\(287\) 0 0
\(288\) 124928. 0.0887521
\(289\) −1.38853e6 −0.977935
\(290\) 868100. 0.606143
\(291\) 715825. 0.495535
\(292\) 142560. 0.0978454
\(293\) 2.71466e6 1.84734 0.923669 0.383190i \(-0.125175\pi\)
0.923669 + 0.383190i \(0.125175\pi\)
\(294\) 0 0
\(295\) 774200. 0.517962
\(296\) −275072. −0.182481
\(297\) 333245. 0.219216
\(298\) 354072. 0.230968
\(299\) −263110. −0.170200
\(300\) −110000. −0.0705650
\(301\) 0 0
\(302\) −460212. −0.290363
\(303\) −1.64175e6 −1.02731
\(304\) 532992. 0.330778
\(305\) −114000. −0.0701706
\(306\) 86376.0 0.0527339
\(307\) 2.68381e6 1.62519 0.812597 0.582826i \(-0.198053\pi\)
0.812597 + 0.582826i \(0.198053\pi\)
\(308\) 0 0
\(309\) 2.13746e6 1.27351
\(310\) 163600. 0.0966894
\(311\) −25542.0 −0.0149746 −0.00748728 0.999972i \(-0.502383\pi\)
−0.00748728 + 0.999972i \(0.502383\pi\)
\(312\) 58432.0 0.0339832
\(313\) 975975. 0.563090 0.281545 0.959548i \(-0.409153\pi\)
0.281545 + 0.959548i \(0.409153\pi\)
\(314\) −1.29748e6 −0.742637
\(315\) 0 0
\(316\) 441424. 0.248678
\(317\) −1.45540e6 −0.813457 −0.406729 0.913549i \(-0.633331\pi\)
−0.406729 + 0.913549i \(0.633331\pi\)
\(318\) 1.46379e6 0.811730
\(319\) −720523. −0.396434
\(320\) 102400. 0.0559017
\(321\) −445918. −0.241542
\(322\) 0 0
\(323\) 368514. 0.196539
\(324\) −232304. −0.122940
\(325\) 51875.0 0.0272427
\(326\) −945880. −0.492938
\(327\) 964161. 0.498632
\(328\) 150784. 0.0773875
\(329\) 0 0
\(330\) 91300.0 0.0461515
\(331\) −2.98186e6 −1.49595 −0.747975 0.663727i \(-0.768974\pi\)
−0.747975 + 0.663727i \(0.768974\pi\)
\(332\) −1.08282e6 −0.539150
\(333\) −524356. −0.259129
\(334\) −1.33141e6 −0.653050
\(335\) 944700. 0.459920
\(336\) 0 0
\(337\) −928698. −0.445451 −0.222725 0.974881i \(-0.571495\pi\)
−0.222725 + 0.974881i \(0.571495\pi\)
\(338\) 1.45762e6 0.693987
\(339\) 839454. 0.396732
\(340\) 70800.0 0.0332151
\(341\) −135788. −0.0632376
\(342\) 1.01602e6 0.469716
\(343\) 0 0
\(344\) −559232. −0.254798
\(345\) 871750. 0.394316
\(346\) −1.74272e6 −0.782597
\(347\) 1.75435e6 0.782156 0.391078 0.920357i \(-0.372102\pi\)
0.391078 + 0.920357i \(0.372102\pi\)
\(348\) 1.52786e6 0.676292
\(349\) 1.78606e6 0.784934 0.392467 0.919766i \(-0.371622\pi\)
0.392467 + 0.919766i \(0.371622\pi\)
\(350\) 0 0
\(351\) 333245. 0.144376
\(352\) −84992.0 −0.0365613
\(353\) −1.23308e6 −0.526687 −0.263344 0.964702i \(-0.584825\pi\)
−0.263344 + 0.964702i \(0.584825\pi\)
\(354\) 1.36259e6 0.577907
\(355\) −1.48260e6 −0.624386
\(356\) −171200. −0.0715944
\(357\) 0 0
\(358\) 2.91141e6 1.20059
\(359\) −1.69914e6 −0.695812 −0.347906 0.937529i \(-0.613107\pi\)
−0.347906 + 0.937529i \(0.613107\pi\)
\(360\) 195200. 0.0793823
\(361\) 1.85862e6 0.750626
\(362\) 1.14917e6 0.460906
\(363\) 1.69578e6 0.675466
\(364\) 0 0
\(365\) 222750. 0.0875156
\(366\) −200640. −0.0782915
\(367\) −1.82938e6 −0.708989 −0.354494 0.935058i \(-0.615347\pi\)
−0.354494 + 0.935058i \(0.615347\pi\)
\(368\) −811520. −0.312377
\(369\) 287432. 0.109893
\(370\) −429800. −0.163216
\(371\) 0 0
\(372\) 287936. 0.107879
\(373\) −1.03316e6 −0.384501 −0.192250 0.981346i \(-0.561579\pi\)
−0.192250 + 0.981346i \(0.561579\pi\)
\(374\) −58764.0 −0.0217236
\(375\) −171875. −0.0631153
\(376\) −233024. −0.0850024
\(377\) −720523. −0.261093
\(378\) 0 0
\(379\) 1.25601e6 0.449155 0.224577 0.974456i \(-0.427900\pi\)
0.224577 + 0.974456i \(0.427900\pi\)
\(380\) 832800. 0.295857
\(381\) 2.01441e6 0.710943
\(382\) 1.81832e6 0.637548
\(383\) −3.64322e6 −1.26908 −0.634539 0.772891i \(-0.718810\pi\)
−0.634539 + 0.772891i \(0.718810\pi\)
\(384\) 180224. 0.0623713
\(385\) 0 0
\(386\) 1.59512e6 0.544910
\(387\) −1.06604e6 −0.361822
\(388\) −1.04120e6 −0.351119
\(389\) 3.67368e6 1.23091 0.615457 0.788171i \(-0.288972\pi\)
0.615457 + 0.788171i \(0.288972\pi\)
\(390\) 91300.0 0.0303955
\(391\) −561090. −0.185605
\(392\) 0 0
\(393\) 2.37809e6 0.776689
\(394\) 3.83910e6 1.24592
\(395\) 689725. 0.222425
\(396\) −162016. −0.0519182
\(397\) 5.64367e6 1.79716 0.898578 0.438815i \(-0.144602\pi\)
0.898578 + 0.438815i \(0.144602\pi\)
\(398\) 1.36810e6 0.432921
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) −4.22249e6 −1.31132 −0.655658 0.755058i \(-0.727609\pi\)
−0.655658 + 0.755058i \(0.727609\pi\)
\(402\) 1.66267e6 0.513147
\(403\) −135788. −0.0416484
\(404\) 2.38800e6 0.727915
\(405\) −362975. −0.109961
\(406\) 0 0
\(407\) 356734. 0.106748
\(408\) 124608. 0.0370592
\(409\) −606470. −0.179267 −0.0896336 0.995975i \(-0.528570\pi\)
−0.0896336 + 0.995975i \(0.528570\pi\)
\(410\) 235600. 0.0692175
\(411\) 1.31828e6 0.384950
\(412\) −3.10904e6 −0.902367
\(413\) 0 0
\(414\) −1.54696e6 −0.443586
\(415\) −1.69190e6 −0.482230
\(416\) −84992.0 −0.0240793
\(417\) 2.85228e6 0.803252
\(418\) −691224. −0.193499
\(419\) 726668. 0.202209 0.101105 0.994876i \(-0.467762\pi\)
0.101105 + 0.994876i \(0.467762\pi\)
\(420\) 0 0
\(421\) −149315. −0.0410580 −0.0205290 0.999789i \(-0.506535\pi\)
−0.0205290 + 0.999789i \(0.506535\pi\)
\(422\) 1.02017e6 0.278864
\(423\) −444202. −0.120706
\(424\) −2.12915e6 −0.575164
\(425\) 110625. 0.0297085
\(426\) −2.60938e6 −0.696647
\(427\) 0 0
\(428\) 648608. 0.171148
\(429\) −75779.0 −0.0198795
\(430\) −873800. −0.227898
\(431\) −5.70872e6 −1.48029 −0.740143 0.672449i \(-0.765242\pi\)
−0.740143 + 0.672449i \(0.765242\pi\)
\(432\) 1.02784e6 0.264982
\(433\) 1.66009e6 0.425513 0.212757 0.977105i \(-0.431756\pi\)
0.212757 + 0.977105i \(0.431756\pi\)
\(434\) 0 0
\(435\) 2.38728e6 0.604894
\(436\) −1.40242e6 −0.353314
\(437\) −6.59994e6 −1.65324
\(438\) 392040. 0.0976439
\(439\) 6.06987e6 1.50321 0.751603 0.659616i \(-0.229281\pi\)
0.751603 + 0.659616i \(0.229281\pi\)
\(440\) −132800. −0.0327014
\(441\) 0 0
\(442\) −58764.0 −0.0143072
\(443\) 6.52331e6 1.57928 0.789639 0.613572i \(-0.210268\pi\)
0.789639 + 0.613572i \(0.210268\pi\)
\(444\) −756448. −0.182105
\(445\) −267500. −0.0640359
\(446\) −793524. −0.188896
\(447\) 973698. 0.230492
\(448\) 0 0
\(449\) 7.47982e6 1.75096 0.875478 0.483259i \(-0.160547\pi\)
0.875478 + 0.483259i \(0.160547\pi\)
\(450\) 305000. 0.0710017
\(451\) −195548. −0.0452702
\(452\) −1.22102e6 −0.281111
\(453\) −1.26558e6 −0.289764
\(454\) 2.17987e6 0.496353
\(455\) 0 0
\(456\) 1.46573e6 0.330097
\(457\) 6.18223e6 1.38470 0.692349 0.721563i \(-0.256576\pi\)
0.692349 + 0.721563i \(0.256576\pi\)
\(458\) −5.82338e6 −1.29721
\(459\) 710655. 0.157444
\(460\) −1.26800e6 −0.279399
\(461\) 1.01935e6 0.223394 0.111697 0.993742i \(-0.464371\pi\)
0.111697 + 0.993742i \(0.464371\pi\)
\(462\) 0 0
\(463\) 1.30513e6 0.282944 0.141472 0.989942i \(-0.454816\pi\)
0.141472 + 0.989942i \(0.454816\pi\)
\(464\) −2.22234e6 −0.479198
\(465\) 449900. 0.0964903
\(466\) 262176. 0.0559279
\(467\) 2.73130e6 0.579531 0.289766 0.957098i \(-0.406423\pi\)
0.289766 + 0.957098i \(0.406423\pi\)
\(468\) −162016. −0.0341935
\(469\) 0 0
\(470\) −364100. −0.0760284
\(471\) −3.56807e6 −0.741107
\(472\) −1.98195e6 −0.409485
\(473\) 725254. 0.149052
\(474\) 1.21392e6 0.248166
\(475\) 1.30125e6 0.264622
\(476\) 0 0
\(477\) −4.05870e6 −0.816753
\(478\) 2.48483e6 0.497424
\(479\) 322322. 0.0641876 0.0320938 0.999485i \(-0.489782\pi\)
0.0320938 + 0.999485i \(0.489782\pi\)
\(480\) 281600. 0.0557866
\(481\) 356734. 0.0703043
\(482\) 4.11052e6 0.805896
\(483\) 0 0
\(484\) −2.46659e6 −0.478612
\(485\) −1.62688e6 −0.314051
\(486\) 3.26374e6 0.626795
\(487\) −2.87469e6 −0.549249 −0.274624 0.961552i \(-0.588554\pi\)
−0.274624 + 0.961552i \(0.588554\pi\)
\(488\) 291840. 0.0554747
\(489\) −2.60117e6 −0.491922
\(490\) 0 0
\(491\) −5.97817e6 −1.11909 −0.559544 0.828801i \(-0.689024\pi\)
−0.559544 + 0.828801i \(0.689024\pi\)
\(492\) 414656. 0.0772281
\(493\) −1.53654e6 −0.284725
\(494\) −691224. −0.127439
\(495\) −253150. −0.0464371
\(496\) −418816. −0.0764397
\(497\) 0 0
\(498\) −2.97774e6 −0.538039
\(499\) −4.91507e6 −0.883647 −0.441823 0.897102i \(-0.645668\pi\)
−0.441823 + 0.897102i \(0.645668\pi\)
\(500\) 250000. 0.0447214
\(501\) −3.66138e6 −0.651705
\(502\) 7.17100e6 1.27005
\(503\) −6.65935e6 −1.17358 −0.586789 0.809740i \(-0.699608\pi\)
−0.586789 + 0.809740i \(0.699608\pi\)
\(504\) 0 0
\(505\) 3.73125e6 0.651067
\(506\) 1.05244e6 0.182735
\(507\) 4.00844e6 0.692558
\(508\) −2.93005e6 −0.503750
\(509\) 1.11240e6 0.190312 0.0951559 0.995462i \(-0.469665\pi\)
0.0951559 + 0.995462i \(0.469665\pi\)
\(510\) 194700. 0.0331467
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 8.35923e6 1.40240
\(514\) 4.63372e6 0.773610
\(515\) −4.85788e6 −0.807102
\(516\) −1.53789e6 −0.254273
\(517\) 302203. 0.0497247
\(518\) 0 0
\(519\) −4.79249e6 −0.780985
\(520\) −132800. −0.0215372
\(521\) −2.31725e6 −0.374007 −0.187003 0.982359i \(-0.559878\pi\)
−0.187003 + 0.982359i \(0.559878\pi\)
\(522\) −4.23633e6 −0.680477
\(523\) −269108. −0.0430202 −0.0215101 0.999769i \(-0.506847\pi\)
−0.0215101 + 0.999769i \(0.506847\pi\)
\(524\) −3.45904e6 −0.550335
\(525\) 0 0
\(526\) 2.55814e6 0.403143
\(527\) −289572. −0.0454182
\(528\) −233728. −0.0364860
\(529\) 3.61256e6 0.561275
\(530\) −3.32680e6 −0.514443
\(531\) −3.77810e6 −0.581483
\(532\) 0 0
\(533\) −195548. −0.0298150
\(534\) −470800. −0.0714469
\(535\) 1.01345e6 0.153080
\(536\) −2.41843e6 −0.363598
\(537\) 8.00637e6 1.19812
\(538\) 8.78478e6 1.30850
\(539\) 0 0
\(540\) 1.60600e6 0.237007
\(541\) −1.13145e7 −1.66205 −0.831024 0.556236i \(-0.812245\pi\)
−0.831024 + 0.556236i \(0.812245\pi\)
\(542\) 5.52253e6 0.807495
\(543\) 3.16021e6 0.459956
\(544\) −181248. −0.0262589
\(545\) −2.19128e6 −0.316013
\(546\) 0 0
\(547\) −920240. −0.131502 −0.0657511 0.997836i \(-0.520944\pi\)
−0.0657511 + 0.997836i \(0.520944\pi\)
\(548\) −1.91750e6 −0.272763
\(549\) 556320. 0.0787760
\(550\) −207500. −0.0292490
\(551\) −1.80738e7 −2.53613
\(552\) −2.23168e6 −0.311734
\(553\) 0 0
\(554\) −8.49193e6 −1.17553
\(555\) −1.18195e6 −0.162880
\(556\) −4.14877e6 −0.569157
\(557\) 217416. 0.0296930 0.0148465 0.999890i \(-0.495274\pi\)
0.0148465 + 0.999890i \(0.495274\pi\)
\(558\) −798368. −0.108547
\(559\) 725254. 0.0981659
\(560\) 0 0
\(561\) −161601. −0.0216789
\(562\) −4.78795e6 −0.639453
\(563\) 7.58971e6 1.00915 0.504573 0.863369i \(-0.331650\pi\)
0.504573 + 0.863369i \(0.331650\pi\)
\(564\) −640816. −0.0848273
\(565\) −1.90785e6 −0.251433
\(566\) 1.12580e6 0.147713
\(567\) 0 0
\(568\) 3.79546e6 0.493620
\(569\) 1.06524e7 1.37933 0.689664 0.724130i \(-0.257758\pi\)
0.689664 + 0.724130i \(0.257758\pi\)
\(570\) 2.29020e6 0.295248
\(571\) −4.60492e6 −0.591061 −0.295530 0.955333i \(-0.595496\pi\)
−0.295530 + 0.955333i \(0.595496\pi\)
\(572\) 110224. 0.0140859
\(573\) 5.00039e6 0.636235
\(574\) 0 0
\(575\) −1.98125e6 −0.249902
\(576\) −499712. −0.0627572
\(577\) −1.08802e7 −1.36049 −0.680246 0.732983i \(-0.738127\pi\)
−0.680246 + 0.732983i \(0.738127\pi\)
\(578\) 5.55411e6 0.691505
\(579\) 4.38658e6 0.543788
\(580\) −3.47240e6 −0.428607
\(581\) 0 0
\(582\) −2.86330e6 −0.350396
\(583\) 2.76124e6 0.336460
\(584\) −570240. −0.0691872
\(585\) −253150. −0.0305836
\(586\) −1.08586e7 −1.30627
\(587\) −1.61205e7 −1.93100 −0.965500 0.260403i \(-0.916145\pi\)
−0.965500 + 0.260403i \(0.916145\pi\)
\(588\) 0 0
\(589\) −3.40615e6 −0.404553
\(590\) −3.09680e6 −0.366255
\(591\) 1.05575e7 1.24335
\(592\) 1.10029e6 0.129033
\(593\) −5.91061e6 −0.690233 −0.345117 0.938560i \(-0.612161\pi\)
−0.345117 + 0.938560i \(0.612161\pi\)
\(594\) −1.33298e6 −0.155009
\(595\) 0 0
\(596\) −1.41629e6 −0.163319
\(597\) 3.76226e6 0.432030
\(598\) 1.05244e6 0.120350
\(599\) 1.66052e7 1.89094 0.945471 0.325707i \(-0.105602\pi\)
0.945471 + 0.325707i \(0.105602\pi\)
\(600\) 440000. 0.0498970
\(601\) −6.63144e6 −0.748896 −0.374448 0.927248i \(-0.622168\pi\)
−0.374448 + 0.927248i \(0.622168\pi\)
\(602\) 0 0
\(603\) −4.61014e6 −0.516322
\(604\) 1.84085e6 0.205317
\(605\) −3.85405e6 −0.428084
\(606\) 6.56700e6 0.726416
\(607\) −7.31847e6 −0.806211 −0.403105 0.915154i \(-0.632069\pi\)
−0.403105 + 0.915154i \(0.632069\pi\)
\(608\) −2.13197e6 −0.233895
\(609\) 0 0
\(610\) 456000. 0.0496181
\(611\) 302203. 0.0327488
\(612\) −345504. −0.0372885
\(613\) −1.26540e7 −1.36012 −0.680061 0.733155i \(-0.738047\pi\)
−0.680061 + 0.733155i \(0.738047\pi\)
\(614\) −1.07352e7 −1.14919
\(615\) 647900. 0.0690749
\(616\) 0 0
\(617\) −6.39256e6 −0.676023 −0.338012 0.941142i \(-0.609754\pi\)
−0.338012 + 0.941142i \(0.609754\pi\)
\(618\) −8.54986e6 −0.900508
\(619\) 7.70898e6 0.808668 0.404334 0.914611i \(-0.367503\pi\)
0.404334 + 0.914611i \(0.367503\pi\)
\(620\) −654400. −0.0683698
\(621\) −1.27276e7 −1.32439
\(622\) 102168. 0.0105886
\(623\) 0 0
\(624\) −233728. −0.0240298
\(625\) 390625. 0.0400000
\(626\) −3.90390e6 −0.398165
\(627\) −1.90087e6 −0.193100
\(628\) 5.18992e6 0.525124
\(629\) 760746. 0.0766678
\(630\) 0 0
\(631\) 1.16280e7 1.16260 0.581302 0.813688i \(-0.302543\pi\)
0.581302 + 0.813688i \(0.302543\pi\)
\(632\) −1.76570e6 −0.175842
\(633\) 2.80547e6 0.278289
\(634\) 5.82161e6 0.575201
\(635\) −4.57820e6 −0.450568
\(636\) −5.85517e6 −0.573980
\(637\) 0 0
\(638\) 2.88209e6 0.280321
\(639\) 7.23509e6 0.700957
\(640\) −409600. −0.0395285
\(641\) −1.15719e7 −1.11239 −0.556197 0.831051i \(-0.687740\pi\)
−0.556197 + 0.831051i \(0.687740\pi\)
\(642\) 1.78367e6 0.170796
\(643\) 4.51688e6 0.430836 0.215418 0.976522i \(-0.430889\pi\)
0.215418 + 0.976522i \(0.430889\pi\)
\(644\) 0 0
\(645\) −2.40295e6 −0.227429
\(646\) −1.47406e6 −0.138974
\(647\) −6.71774e6 −0.630902 −0.315451 0.948942i \(-0.602156\pi\)
−0.315451 + 0.948942i \(0.602156\pi\)
\(648\) 929216. 0.0869319
\(649\) 2.57034e6 0.239541
\(650\) −207500. −0.0192635
\(651\) 0 0
\(652\) 3.78352e6 0.348560
\(653\) −1.26522e7 −1.16114 −0.580569 0.814211i \(-0.697170\pi\)
−0.580569 + 0.814211i \(0.697170\pi\)
\(654\) −3.85664e6 −0.352586
\(655\) −5.40475e6 −0.492235
\(656\) −603136. −0.0547212
\(657\) −1.08702e6 −0.0982481
\(658\) 0 0
\(659\) −1.20321e7 −1.07927 −0.539633 0.841900i \(-0.681437\pi\)
−0.539633 + 0.841900i \(0.681437\pi\)
\(660\) −365200. −0.0326340
\(661\) 2.14150e7 1.90640 0.953199 0.302343i \(-0.0977689\pi\)
0.953199 + 0.302343i \(0.0977689\pi\)
\(662\) 1.19274e7 1.05780
\(663\) −161601. −0.0142778
\(664\) 4.33126e6 0.381236
\(665\) 0 0
\(666\) 2.09742e6 0.183232
\(667\) 2.75188e7 2.39505
\(668\) 5.32565e6 0.461776
\(669\) −2.18219e6 −0.188507
\(670\) −3.77880e6 −0.325212
\(671\) −378480. −0.0324516
\(672\) 0 0
\(673\) −2.18091e7 −1.85610 −0.928048 0.372462i \(-0.878514\pi\)
−0.928048 + 0.372462i \(0.878514\pi\)
\(674\) 3.71479e6 0.314981
\(675\) 2.50938e6 0.211985
\(676\) −5.83046e6 −0.490723
\(677\) 1.71852e7 1.44106 0.720531 0.693423i \(-0.243898\pi\)
0.720531 + 0.693423i \(0.243898\pi\)
\(678\) −3.35782e6 −0.280532
\(679\) 0 0
\(680\) −283200. −0.0234866
\(681\) 5.99464e6 0.495331
\(682\) 543152. 0.0447157
\(683\) 2.63085e6 0.215796 0.107898 0.994162i \(-0.465588\pi\)
0.107898 + 0.994162i \(0.465588\pi\)
\(684\) −4.06406e6 −0.332139
\(685\) −2.99610e6 −0.243966
\(686\) 0 0
\(687\) −1.60143e7 −1.29454
\(688\) 2.23693e6 0.180169
\(689\) 2.76124e6 0.221593
\(690\) −3.48700e6 −0.278823
\(691\) −1.29911e7 −1.03503 −0.517513 0.855675i \(-0.673142\pi\)
−0.517513 + 0.855675i \(0.673142\pi\)
\(692\) 6.97090e6 0.553380
\(693\) 0 0
\(694\) −7.01742e6 −0.553068
\(695\) −6.48245e6 −0.509070
\(696\) −6.11142e6 −0.478211
\(697\) −417012. −0.0325137
\(698\) −7.14425e6 −0.555032
\(699\) 720984. 0.0558127
\(700\) 0 0
\(701\) −9.03664e6 −0.694564 −0.347282 0.937761i \(-0.612895\pi\)
−0.347282 + 0.937761i \(0.612895\pi\)
\(702\) −1.33298e6 −0.102089
\(703\) 8.94844e6 0.682903
\(704\) 339968. 0.0258527
\(705\) −1.00127e6 −0.0758718
\(706\) 4.93230e6 0.372424
\(707\) 0 0
\(708\) −5.45037e6 −0.408642
\(709\) 1.41423e7 1.05658 0.528292 0.849063i \(-0.322833\pi\)
0.528292 + 0.849063i \(0.322833\pi\)
\(710\) 5.93040e6 0.441508
\(711\) −3.36586e6 −0.249702
\(712\) 684800. 0.0506249
\(713\) 5.18612e6 0.382049
\(714\) 0 0
\(715\) 172225. 0.0125989
\(716\) −1.16456e7 −0.848947
\(717\) 6.83328e6 0.496399
\(718\) 6.79654e6 0.492014
\(719\) −6.27347e6 −0.452570 −0.226285 0.974061i \(-0.572658\pi\)
−0.226285 + 0.974061i \(0.572658\pi\)
\(720\) −780800. −0.0561317
\(721\) 0 0
\(722\) −7.43450e6 −0.530773
\(723\) 1.13039e7 0.804236
\(724\) −4.59667e6 −0.325910
\(725\) −5.42562e6 −0.383358
\(726\) −6.78313e6 −0.477627
\(727\) 5.20530e6 0.365267 0.182633 0.983181i \(-0.441538\pi\)
0.182633 + 0.983181i \(0.441538\pi\)
\(728\) 0 0
\(729\) 1.25034e7 0.871384
\(730\) −891000. −0.0618829
\(731\) 1.54663e6 0.107051
\(732\) 802560. 0.0553605
\(733\) 2.80490e7 1.92822 0.964111 0.265499i \(-0.0855368\pi\)
0.964111 + 0.265499i \(0.0855368\pi\)
\(734\) 7.31753e6 0.501331
\(735\) 0 0
\(736\) 3.24608e6 0.220884
\(737\) 3.13640e6 0.212698
\(738\) −1.14973e6 −0.0777059
\(739\) −4.42340e6 −0.297952 −0.148976 0.988841i \(-0.547598\pi\)
−0.148976 + 0.988841i \(0.547598\pi\)
\(740\) 1.71920e6 0.115411
\(741\) −1.90087e6 −0.127176
\(742\) 0 0
\(743\) −2.08246e7 −1.38390 −0.691950 0.721945i \(-0.743248\pi\)
−0.691950 + 0.721945i \(0.743248\pi\)
\(744\) −1.15174e6 −0.0762823
\(745\) −2.21295e6 −0.146077
\(746\) 4.13266e6 0.271883
\(747\) 8.25647e6 0.541369
\(748\) 235056. 0.0153609
\(749\) 0 0
\(750\) 687500. 0.0446292
\(751\) 2.13899e7 1.38391 0.691957 0.721939i \(-0.256749\pi\)
0.691957 + 0.721939i \(0.256749\pi\)
\(752\) 932096. 0.0601058
\(753\) 1.97202e7 1.26743
\(754\) 2.88209e6 0.184620
\(755\) 2.87632e6 0.183641
\(756\) 0 0
\(757\) 1.99739e7 1.26685 0.633423 0.773806i \(-0.281649\pi\)
0.633423 + 0.773806i \(0.281649\pi\)
\(758\) −5.02405e6 −0.317600
\(759\) 2.89421e6 0.182358
\(760\) −3.33120e6 −0.209202
\(761\) −1.52078e7 −0.951932 −0.475966 0.879464i \(-0.657902\pi\)
−0.475966 + 0.879464i \(0.657902\pi\)
\(762\) −8.05763e6 −0.502713
\(763\) 0 0
\(764\) −7.27330e6 −0.450814
\(765\) −539850. −0.0333518
\(766\) 1.45729e7 0.897374
\(767\) 2.57034e6 0.157762
\(768\) −720896. −0.0441031
\(769\) 1.75417e7 1.06969 0.534843 0.844951i \(-0.320371\pi\)
0.534843 + 0.844951i \(0.320371\pi\)
\(770\) 0 0
\(771\) 1.27427e7 0.772016
\(772\) −6.38048e6 −0.385310
\(773\) 2.01261e7 1.21146 0.605732 0.795669i \(-0.292881\pi\)
0.605732 + 0.795669i \(0.292881\pi\)
\(774\) 4.26414e6 0.255846
\(775\) −1.02250e6 −0.0611518
\(776\) 4.16480e6 0.248279
\(777\) 0 0
\(778\) −1.46947e7 −0.870387
\(779\) −4.90519e6 −0.289609
\(780\) −365200. −0.0214929
\(781\) −4.92223e6 −0.288758
\(782\) 2.24436e6 0.131243
\(783\) −3.48542e7 −2.03166
\(784\) 0 0
\(785\) 8.10925e6 0.469685
\(786\) −9.51236e6 −0.549202
\(787\) −2.41718e7 −1.39114 −0.695571 0.718458i \(-0.744848\pi\)
−0.695571 + 0.718458i \(0.744848\pi\)
\(788\) −1.53564e7 −0.880997
\(789\) 7.03487e6 0.402313
\(790\) −2.75890e6 −0.157278
\(791\) 0 0
\(792\) 648064. 0.0367117
\(793\) −378480. −0.0213727
\(794\) −2.25747e7 −1.27078
\(795\) −9.14870e6 −0.513383
\(796\) −5.47238e6 −0.306122
\(797\) 2.67019e7 1.48901 0.744503 0.667619i \(-0.232687\pi\)
0.744503 + 0.667619i \(0.232687\pi\)
\(798\) 0 0
\(799\) 644457. 0.0357131
\(800\) −640000. −0.0353553
\(801\) 1.30540e6 0.0718890
\(802\) 1.68899e7 0.927240
\(803\) 739530. 0.0404731
\(804\) −6.65069e6 −0.362849
\(805\) 0 0
\(806\) 543152. 0.0294499
\(807\) 2.41581e7 1.30581
\(808\) −9.55200e6 −0.514714
\(809\) 2.15124e7 1.15562 0.577812 0.816170i \(-0.303907\pi\)
0.577812 + 0.816170i \(0.303907\pi\)
\(810\) 1.45190e6 0.0777543
\(811\) −3.50935e7 −1.87359 −0.936794 0.349882i \(-0.886222\pi\)
−0.936794 + 0.349882i \(0.886222\pi\)
\(812\) 0 0
\(813\) 1.51870e7 0.805832
\(814\) −1.42694e6 −0.0754820
\(815\) 5.91175e6 0.311761
\(816\) −498432. −0.0262048
\(817\) 1.81925e7 0.953537
\(818\) 2.42588e6 0.126761
\(819\) 0 0
\(820\) −942400. −0.0489441
\(821\) −1.26329e7 −0.654100 −0.327050 0.945007i \(-0.606055\pi\)
−0.327050 + 0.945007i \(0.606055\pi\)
\(822\) −5.27314e6 −0.272201
\(823\) 1.55348e7 0.799475 0.399737 0.916630i \(-0.369101\pi\)
0.399737 + 0.916630i \(0.369101\pi\)
\(824\) 1.24362e7 0.638070
\(825\) −570625. −0.0291888
\(826\) 0 0
\(827\) −3.89597e7 −1.98085 −0.990426 0.138043i \(-0.955919\pi\)
−0.990426 + 0.138043i \(0.955919\pi\)
\(828\) 6.18784e6 0.313663
\(829\) −1.35099e7 −0.682757 −0.341379 0.939926i \(-0.610894\pi\)
−0.341379 + 0.939926i \(0.610894\pi\)
\(830\) 6.76760e6 0.340988
\(831\) −2.33528e7 −1.17310
\(832\) 339968. 0.0170267
\(833\) 0 0
\(834\) −1.14091e7 −0.567985
\(835\) 8.32132e6 0.413025
\(836\) 2.76490e6 0.136824
\(837\) −6.56854e6 −0.324082
\(838\) −2.90667e6 −0.142984
\(839\) 250486. 0.0122851 0.00614255 0.999981i \(-0.498045\pi\)
0.00614255 + 0.999981i \(0.498045\pi\)
\(840\) 0 0
\(841\) 5.48486e7 2.67409
\(842\) 597260. 0.0290324
\(843\) −1.31669e7 −0.638136
\(844\) −4.08069e6 −0.197187
\(845\) −9.11010e6 −0.438916
\(846\) 1.77681e6 0.0853522
\(847\) 0 0
\(848\) 8.51661e6 0.406703
\(849\) 3.09594e6 0.147409
\(850\) −442500. −0.0210071
\(851\) −1.36247e7 −0.644914
\(852\) 1.04375e7 0.492604
\(853\) −2.87228e7 −1.35162 −0.675809 0.737077i \(-0.736206\pi\)
−0.675809 + 0.737077i \(0.736206\pi\)
\(854\) 0 0
\(855\) −6.35010e6 −0.297074
\(856\) −2.59443e6 −0.121020
\(857\) −1.61269e7 −0.750066 −0.375033 0.927011i \(-0.622369\pi\)
−0.375033 + 0.927011i \(0.622369\pi\)
\(858\) 303116. 0.0140569
\(859\) 4.03773e7 1.86704 0.933521 0.358523i \(-0.116719\pi\)
0.933521 + 0.358523i \(0.116719\pi\)
\(860\) 3.49520e6 0.161148
\(861\) 0 0
\(862\) 2.28349e7 1.04672
\(863\) −2.57025e7 −1.17476 −0.587378 0.809312i \(-0.699840\pi\)
−0.587378 + 0.809312i \(0.699840\pi\)
\(864\) −4.11136e6 −0.187370
\(865\) 1.08920e7 0.494958
\(866\) −6.64038e6 −0.300883
\(867\) 1.52738e7 0.690080
\(868\) 0 0
\(869\) 2.28989e6 0.102864
\(870\) −9.54910e6 −0.427725
\(871\) 3.13640e6 0.140083
\(872\) 5.60966e6 0.249831
\(873\) 7.93915e6 0.352564
\(874\) 2.63998e7 1.16902
\(875\) 0 0
\(876\) −1.56816e6 −0.0690447
\(877\) −1.75541e7 −0.770689 −0.385344 0.922773i \(-0.625917\pi\)
−0.385344 + 0.922773i \(0.625917\pi\)
\(878\) −2.42795e7 −1.06293
\(879\) −2.98613e7 −1.30358
\(880\) 531200. 0.0231234
\(881\) 2.13350e7 0.926088 0.463044 0.886335i \(-0.346757\pi\)
0.463044 + 0.886335i \(0.346757\pi\)
\(882\) 0 0
\(883\) 3.95442e7 1.70679 0.853397 0.521261i \(-0.174538\pi\)
0.853397 + 0.521261i \(0.174538\pi\)
\(884\) 235056. 0.0101167
\(885\) −8.51620e6 −0.365500
\(886\) −2.60932e7 −1.11672
\(887\) 3.42741e7 1.46271 0.731353 0.681999i \(-0.238889\pi\)
0.731353 + 0.681999i \(0.238889\pi\)
\(888\) 3.02579e6 0.128768
\(889\) 0 0
\(890\) 1.07000e6 0.0452802
\(891\) −1.20508e6 −0.0508535
\(892\) 3.17410e6 0.133570
\(893\) 7.58056e6 0.318107
\(894\) −3.89479e6 −0.162982
\(895\) −1.81963e7 −0.759321
\(896\) 0 0
\(897\) 2.89421e6 0.120102
\(898\) −2.99193e7 −1.23811
\(899\) 1.42021e7 0.586076
\(900\) −1.22000e6 −0.0502058
\(901\) 5.88844e6 0.241651
\(902\) 782192. 0.0320108
\(903\) 0 0
\(904\) 4.88410e6 0.198776
\(905\) −7.18230e6 −0.291502
\(906\) 5.06233e6 0.204894
\(907\) 3.72968e7 1.50541 0.752703 0.658361i \(-0.228750\pi\)
0.752703 + 0.658361i \(0.228750\pi\)
\(908\) −8.71947e6 −0.350975
\(909\) −1.82085e7 −0.730911
\(910\) 0 0
\(911\) 2.83311e7 1.13101 0.565505 0.824745i \(-0.308681\pi\)
0.565505 + 0.824745i \(0.308681\pi\)
\(912\) −5.86291e6 −0.233414
\(913\) −5.61711e6 −0.223016
\(914\) −2.47289e7 −0.979129
\(915\) 1.25400e6 0.0495159
\(916\) 2.32935e7 0.917268
\(917\) 0 0
\(918\) −2.84262e6 −0.111330
\(919\) −9.27364e6 −0.362211 −0.181105 0.983464i \(-0.557968\pi\)
−0.181105 + 0.983464i \(0.557968\pi\)
\(920\) 5.07200e6 0.197565
\(921\) −2.95219e7 −1.14682
\(922\) −4.07741e6 −0.157964
\(923\) −4.92223e6 −0.190177
\(924\) 0 0
\(925\) 2.68625e6 0.103227
\(926\) −5.22051e6 −0.200072
\(927\) 2.37064e7 0.906081
\(928\) 8.88934e6 0.338844
\(929\) −1.39068e7 −0.528674 −0.264337 0.964430i \(-0.585153\pi\)
−0.264337 + 0.964430i \(0.585153\pi\)
\(930\) −1.79960e6 −0.0682289
\(931\) 0 0
\(932\) −1.04870e6 −0.0395470
\(933\) 280962. 0.0105668
\(934\) −1.09252e7 −0.409791
\(935\) 367275. 0.0137392
\(936\) 648064. 0.0241784
\(937\) 1.93922e6 0.0721570 0.0360785 0.999349i \(-0.488513\pi\)
0.0360785 + 0.999349i \(0.488513\pi\)
\(938\) 0 0
\(939\) −1.07357e7 −0.397345
\(940\) 1.45640e6 0.0537602
\(941\) 2.44080e7 0.898582 0.449291 0.893385i \(-0.351677\pi\)
0.449291 + 0.893385i \(0.351677\pi\)
\(942\) 1.42723e7 0.524042
\(943\) 7.46852e6 0.273499
\(944\) 7.92781e6 0.289550
\(945\) 0 0
\(946\) −2.90102e6 −0.105396
\(947\) 36592.0 0.00132590 0.000662951 1.00000i \(-0.499789\pi\)
0.000662951 1.00000i \(0.499789\pi\)
\(948\) −4.85566e6 −0.175480
\(949\) 739530. 0.0266557
\(950\) −5.20500e6 −0.187116
\(951\) 1.60094e7 0.574016
\(952\) 0 0
\(953\) 2.75598e7 0.982978 0.491489 0.870884i \(-0.336453\pi\)
0.491489 + 0.870884i \(0.336453\pi\)
\(954\) 1.62348e7 0.577531
\(955\) −1.13645e7 −0.403221
\(956\) −9.93931e6 −0.351732
\(957\) 7.92575e6 0.279744
\(958\) −1.28929e6 −0.0453875
\(959\) 0 0
\(960\) −1.12640e6 −0.0394471
\(961\) −2.59527e7 −0.906512
\(962\) −1.42694e6 −0.0497126
\(963\) −4.94564e6 −0.171853
\(964\) −1.64421e7 −0.569855
\(965\) −9.96950e6 −0.344632
\(966\) 0 0
\(967\) −1.42984e7 −0.491725 −0.245863 0.969305i \(-0.579071\pi\)
−0.245863 + 0.969305i \(0.579071\pi\)
\(968\) 9.86637e6 0.338430
\(969\) −4.05365e6 −0.138687
\(970\) 6.50750e6 0.222067
\(971\) −2.29801e7 −0.782176 −0.391088 0.920353i \(-0.627901\pi\)
−0.391088 + 0.920353i \(0.627901\pi\)
\(972\) −1.30550e7 −0.443211
\(973\) 0 0
\(974\) 1.14988e7 0.388378
\(975\) −570625. −0.0192238
\(976\) −1.16736e6 −0.0392266
\(977\) −2.07391e7 −0.695111 −0.347556 0.937659i \(-0.612988\pi\)
−0.347556 + 0.937659i \(0.612988\pi\)
\(978\) 1.04047e7 0.347842
\(979\) −888100. −0.0296146
\(980\) 0 0
\(981\) 1.06934e7 0.354768
\(982\) 2.39127e7 0.791315
\(983\) −2.95326e7 −0.974807 −0.487403 0.873177i \(-0.662056\pi\)
−0.487403 + 0.873177i \(0.662056\pi\)
\(984\) −1.65862e6 −0.0546085
\(985\) −2.39944e7 −0.787987
\(986\) 6.14615e6 0.201331
\(987\) 0 0
\(988\) 2.76490e6 0.0901128
\(989\) −2.76995e7 −0.900493
\(990\) 1.01260e6 0.0328360
\(991\) −3.56883e7 −1.15436 −0.577181 0.816616i \(-0.695847\pi\)
−0.577181 + 0.816616i \(0.695847\pi\)
\(992\) 1.67526e6 0.0540510
\(993\) 3.28005e7 1.05562
\(994\) 0 0
\(995\) −8.55060e6 −0.273803
\(996\) 1.19110e7 0.380451
\(997\) −3.48937e7 −1.11176 −0.555878 0.831264i \(-0.687618\pi\)
−0.555878 + 0.831264i \(0.687618\pi\)
\(998\) 1.96603e7 0.624832
\(999\) 1.72565e7 0.547064
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.6.a.c.1.1 1
7.6 odd 2 70.6.a.d.1.1 1
21.20 even 2 630.6.a.l.1.1 1
28.27 even 2 560.6.a.a.1.1 1
35.13 even 4 350.6.c.c.99.2 2
35.27 even 4 350.6.c.c.99.1 2
35.34 odd 2 350.6.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.d.1.1 1 7.6 odd 2
350.6.a.h.1.1 1 35.34 odd 2
350.6.c.c.99.1 2 35.27 even 4
350.6.c.c.99.2 2 35.13 even 4
490.6.a.c.1.1 1 1.1 even 1 trivial
560.6.a.a.1.1 1 28.27 even 2
630.6.a.l.1.1 1 21.20 even 2