Properties

Label 490.6.a.c
Level $490$
Weight $6$
Character orbit 490.a
Self dual yes
Analytic conductor $78.588$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,6,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{2} - 11 q^{3} + 16 q^{4} + 25 q^{5} + 44 q^{6} - 64 q^{8} - 122 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} - 11 q^{3} + 16 q^{4} + 25 q^{5} + 44 q^{6} - 64 q^{8} - 122 q^{9} - 100 q^{10} + 83 q^{11} - 176 q^{12} + 83 q^{13} - 275 q^{15} + 256 q^{16} + 177 q^{17} + 488 q^{18} + 2082 q^{19} + 400 q^{20} - 332 q^{22} - 3170 q^{23} + 704 q^{24} + 625 q^{25} - 332 q^{26} + 4015 q^{27} - 8681 q^{29} + 1100 q^{30} - 1636 q^{31} - 1024 q^{32} - 913 q^{33} - 708 q^{34} - 1952 q^{36} + 4298 q^{37} - 8328 q^{38} - 913 q^{39} - 1600 q^{40} - 2356 q^{41} + 8738 q^{43} + 1328 q^{44} - 3050 q^{45} + 12680 q^{46} + 3641 q^{47} - 2816 q^{48} - 2500 q^{50} - 1947 q^{51} + 1328 q^{52} + 33268 q^{53} - 16060 q^{54} + 2075 q^{55} - 22902 q^{57} + 34724 q^{58} + 30968 q^{59} - 4400 q^{60} - 4560 q^{61} + 6544 q^{62} + 4096 q^{64} + 2075 q^{65} + 3652 q^{66} + 37788 q^{67} + 2832 q^{68} + 34870 q^{69} - 59304 q^{71} + 7808 q^{72} + 8910 q^{73} - 17192 q^{74} - 6875 q^{75} + 33312 q^{76} + 3652 q^{78} + 27589 q^{79} + 6400 q^{80} - 14519 q^{81} + 9424 q^{82} - 67676 q^{83} + 4425 q^{85} - 34952 q^{86} + 95491 q^{87} - 5312 q^{88} - 10700 q^{89} + 12200 q^{90} - 50720 q^{92} + 17996 q^{93} - 14564 q^{94} + 52050 q^{95} + 11264 q^{96} - 65075 q^{97} - 10126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 −11.0000 16.0000 25.0000 44.0000 0 −64.0000 −122.000 −100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.6.a.c 1
7.b odd 2 1 70.6.a.d 1
21.c even 2 1 630.6.a.l 1
28.d even 2 1 560.6.a.a 1
35.c odd 2 1 350.6.a.h 1
35.f even 4 2 350.6.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.d 1 7.b odd 2 1
350.6.a.h 1 35.c odd 2 1
350.6.c.c 2 35.f even 4 2
490.6.a.c 1 1.a even 1 1 trivial
560.6.a.a 1 28.d even 2 1
630.6.a.l 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 11 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(490))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T + 11 \) Copy content Toggle raw display
$5$ \( T - 25 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 83 \) Copy content Toggle raw display
$13$ \( T - 83 \) Copy content Toggle raw display
$17$ \( T - 177 \) Copy content Toggle raw display
$19$ \( T - 2082 \) Copy content Toggle raw display
$23$ \( T + 3170 \) Copy content Toggle raw display
$29$ \( T + 8681 \) Copy content Toggle raw display
$31$ \( T + 1636 \) Copy content Toggle raw display
$37$ \( T - 4298 \) Copy content Toggle raw display
$41$ \( T + 2356 \) Copy content Toggle raw display
$43$ \( T - 8738 \) Copy content Toggle raw display
$47$ \( T - 3641 \) Copy content Toggle raw display
$53$ \( T - 33268 \) Copy content Toggle raw display
$59$ \( T - 30968 \) Copy content Toggle raw display
$61$ \( T + 4560 \) Copy content Toggle raw display
$67$ \( T - 37788 \) Copy content Toggle raw display
$71$ \( T + 59304 \) Copy content Toggle raw display
$73$ \( T - 8910 \) Copy content Toggle raw display
$79$ \( T - 27589 \) Copy content Toggle raw display
$83$ \( T + 67676 \) Copy content Toggle raw display
$89$ \( T + 10700 \) Copy content Toggle raw display
$97$ \( T + 65075 \) Copy content Toggle raw display
show more
show less