gp: [N,k,chi] = [490,6,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [1,-4,-11]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 + 11 T_{3} + 11 T 3 + 1 1
T3 + 11
acting on S 6 n e w ( Γ 0 ( 490 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(490)) S 6 n e w ( Γ 0 ( 4 9 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 4 T + 4 T + 4
T + 4
3 3 3
T + 11 T + 11 T + 1 1
T + 11
5 5 5
T − 25 T - 25 T − 2 5
T - 25
7 7 7
T T T
T
11 11 1 1
T − 83 T - 83 T − 8 3
T - 83
13 13 1 3
T − 83 T - 83 T − 8 3
T - 83
17 17 1 7
T − 177 T - 177 T − 1 7 7
T - 177
19 19 1 9
T − 2082 T - 2082 T − 2 0 8 2
T - 2082
23 23 2 3
T + 3170 T + 3170 T + 3 1 7 0
T + 3170
29 29 2 9
T + 8681 T + 8681 T + 8 6 8 1
T + 8681
31 31 3 1
T + 1636 T + 1636 T + 1 6 3 6
T + 1636
37 37 3 7
T − 4298 T - 4298 T − 4 2 9 8
T - 4298
41 41 4 1
T + 2356 T + 2356 T + 2 3 5 6
T + 2356
43 43 4 3
T − 8738 T - 8738 T − 8 7 3 8
T - 8738
47 47 4 7
T − 3641 T - 3641 T − 3 6 4 1
T - 3641
53 53 5 3
T − 33268 T - 33268 T − 3 3 2 6 8
T - 33268
59 59 5 9
T − 30968 T - 30968 T − 3 0 9 6 8
T - 30968
61 61 6 1
T + 4560 T + 4560 T + 4 5 6 0
T + 4560
67 67 6 7
T − 37788 T - 37788 T − 3 7 7 8 8
T - 37788
71 71 7 1
T + 59304 T + 59304 T + 5 9 3 0 4
T + 59304
73 73 7 3
T − 8910 T - 8910 T − 8 9 1 0
T - 8910
79 79 7 9
T − 27589 T - 27589 T − 2 7 5 8 9
T - 27589
83 83 8 3
T + 67676 T + 67676 T + 6 7 6 7 6
T + 67676
89 89 8 9
T + 10700 T + 10700 T + 1 0 7 0 0
T + 10700
97 97 9 7
T + 65075 T + 65075 T + 6 5 0 7 5
T + 65075
show more
show less