Properties

Label 490.6.a.c
Level 490490
Weight 66
Character orbit 490.a
Self dual yes
Analytic conductor 78.58878.588
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,6,Mod(1,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 490=2572 490 = 2 \cdot 5 \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-4,-11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 78.588071708478.5880717084
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q4q211q3+16q4+25q5+44q664q8122q9100q10+83q11176q12+83q13275q15+256q16+177q17+488q18+2082q19+400q20+10126q99+O(q100) q - 4 q^{2} - 11 q^{3} + 16 q^{4} + 25 q^{5} + 44 q^{6} - 64 q^{8} - 122 q^{9} - 100 q^{10} + 83 q^{11} - 176 q^{12} + 83 q^{13} - 275 q^{15} + 256 q^{16} + 177 q^{17} + 488 q^{18} + 2082 q^{19} + 400 q^{20}+ \cdots - 10126 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−4.00000 −11.0000 16.0000 25.0000 44.0000 0 −64.0000 −122.000 −100.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.6.a.c 1
7.b odd 2 1 70.6.a.d 1
21.c even 2 1 630.6.a.l 1
28.d even 2 1 560.6.a.a 1
35.c odd 2 1 350.6.a.h 1
35.f even 4 2 350.6.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.d 1 7.b odd 2 1
350.6.a.h 1 35.c odd 2 1
350.6.c.c 2 35.f even 4 2
490.6.a.c 1 1.a even 1 1 trivial
560.6.a.a 1 28.d even 2 1
630.6.a.l 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+11 T_{3} + 11 acting on S6new(Γ0(490))S_{6}^{\mathrm{new}}(\Gamma_0(490)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+4 T + 4 Copy content Toggle raw display
33 T+11 T + 11 Copy content Toggle raw display
55 T25 T - 25 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T83 T - 83 Copy content Toggle raw display
1313 T83 T - 83 Copy content Toggle raw display
1717 T177 T - 177 Copy content Toggle raw display
1919 T2082 T - 2082 Copy content Toggle raw display
2323 T+3170 T + 3170 Copy content Toggle raw display
2929 T+8681 T + 8681 Copy content Toggle raw display
3131 T+1636 T + 1636 Copy content Toggle raw display
3737 T4298 T - 4298 Copy content Toggle raw display
4141 T+2356 T + 2356 Copy content Toggle raw display
4343 T8738 T - 8738 Copy content Toggle raw display
4747 T3641 T - 3641 Copy content Toggle raw display
5353 T33268 T - 33268 Copy content Toggle raw display
5959 T30968 T - 30968 Copy content Toggle raw display
6161 T+4560 T + 4560 Copy content Toggle raw display
6767 T37788 T - 37788 Copy content Toggle raw display
7171 T+59304 T + 59304 Copy content Toggle raw display
7373 T8910 T - 8910 Copy content Toggle raw display
7979 T27589 T - 27589 Copy content Toggle raw display
8383 T+67676 T + 67676 Copy content Toggle raw display
8989 T+10700 T + 10700 Copy content Toggle raw display
9797 T+65075 T + 65075 Copy content Toggle raw display
show more
show less