Properties

Label 490.4.e.k
Level $490$
Weight $4$
Character orbit 490.e
Analytic conductor $28.911$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,4,Mod(361,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 490.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-4,-4,-5,-16,0,-16,11,10,-60] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.9109359028\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + (4 \zeta_{6} - 4) q^{3} + (4 \zeta_{6} - 4) q^{4} - 5 \zeta_{6} q^{5} - 8 q^{6} - 8 q^{8} + 11 \zeta_{6} q^{9} + ( - 10 \zeta_{6} + 10) q^{10} + (60 \zeta_{6} - 60) q^{11} - 16 \zeta_{6} q^{12} + \cdots - 660 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{3} - 4 q^{4} - 5 q^{5} - 16 q^{6} - 16 q^{8} + 11 q^{9} + 10 q^{10} - 60 q^{11} - 16 q^{12} + 76 q^{13} + 40 q^{15} - 16 q^{16} - 42 q^{17} - 22 q^{18} + 52 q^{19} + 40 q^{20} - 240 q^{22}+ \cdots - 1320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i −2.00000 + 3.46410i −2.00000 + 3.46410i −2.50000 4.33013i −8.00000 0 −8.00000 5.50000 + 9.52628i 5.00000 8.66025i
471.1 1.00000 1.73205i −2.00000 3.46410i −2.00000 3.46410i −2.50000 + 4.33013i −8.00000 0 −8.00000 5.50000 9.52628i 5.00000 + 8.66025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.4.e.k 2
7.b odd 2 1 490.4.e.q 2
7.c even 3 1 70.4.a.d 1
7.c even 3 1 inner 490.4.e.k 2
7.d odd 6 1 490.4.a.b 1
7.d odd 6 1 490.4.e.q 2
21.h odd 6 1 630.4.a.o 1
28.g odd 6 1 560.4.a.g 1
35.i odd 6 1 2450.4.a.bm 1
35.j even 6 1 350.4.a.o 1
35.l odd 12 2 350.4.c.d 2
56.k odd 6 1 2240.4.a.y 1
56.p even 6 1 2240.4.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.a.d 1 7.c even 3 1
350.4.a.o 1 35.j even 6 1
350.4.c.d 2 35.l odd 12 2
490.4.a.b 1 7.d odd 6 1
490.4.e.k 2 1.a even 1 1 trivial
490.4.e.k 2 7.c even 3 1 inner
490.4.e.q 2 7.b odd 2 1
490.4.e.q 2 7.d odd 6 1
560.4.a.g 1 28.g odd 6 1
630.4.a.o 1 21.h odd 6 1
2240.4.a.m 1 56.p even 6 1
2240.4.a.y 1 56.k odd 6 1
2450.4.a.bm 1 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(490, [\chi])\):

\( T_{3}^{2} + 4T_{3} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} + 60T_{11} + 3600 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 60T + 3600 \) Copy content Toggle raw display
$13$ \( (T - 38)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 42T + 1764 \) Copy content Toggle raw display
$19$ \( T^{2} - 52T + 2704 \) Copy content Toggle raw display
$23$ \( T^{2} + 120T + 14400 \) Copy content Toggle raw display
$29$ \( (T + 234)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 304T + 92416 \) Copy content Toggle raw display
$37$ \( T^{2} - 106T + 11236 \) Copy content Toggle raw display
$41$ \( (T + 54)^{2} \) Copy content Toggle raw display
$43$ \( (T + 196)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 336T + 112896 \) Copy content Toggle raw display
$53$ \( T^{2} + 438T + 191844 \) Copy content Toggle raw display
$59$ \( T^{2} - 444T + 197136 \) Copy content Toggle raw display
$61$ \( T^{2} + 38T + 1444 \) Copy content Toggle raw display
$67$ \( T^{2} - 988T + 976144 \) Copy content Toggle raw display
$71$ \( (T + 720)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 146T + 21316 \) Copy content Toggle raw display
$79$ \( T^{2} - 808T + 652864 \) Copy content Toggle raw display
$83$ \( (T - 612)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 1146 T + 1313316 \) Copy content Toggle raw display
$97$ \( (T + 70)^{2} \) Copy content Toggle raw display
show more
show less