Properties

Label 490.4.a.s
Level $490$
Weight $4$
Character orbit 490.a
Self dual yes
Analytic conductor $28.911$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,4,Mod(1,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,2,8,-10,-4,0,-16,-16,20,-26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.9109359028\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (3 \beta + 1) q^{3} + 4 q^{4} - 5 q^{5} + ( - 6 \beta - 2) q^{6} - 8 q^{8} + (6 \beta - 8) q^{9} + 10 q^{10} + (8 \beta - 13) q^{11} + (12 \beta + 4) q^{12} + (9 \beta - 51) q^{13} + ( - 15 \beta - 5) q^{15}+ \cdots + ( - 142 \beta + 200) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 2 q^{3} + 8 q^{4} - 10 q^{5} - 4 q^{6} - 16 q^{8} - 16 q^{9} + 20 q^{10} - 26 q^{11} + 8 q^{12} - 102 q^{13} - 10 q^{15} + 32 q^{16} + 186 q^{17} + 32 q^{18} + 36 q^{19} - 40 q^{20} + 52 q^{22}+ \cdots + 400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.00000 −3.24264 4.00000 −5.00000 6.48528 0 −8.00000 −16.4853 10.0000
1.2 −2.00000 5.24264 4.00000 −5.00000 −10.4853 0 −8.00000 0.485281 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.4.a.s yes 2
5.b even 2 1 2450.4.a.bu 2
7.b odd 2 1 490.4.a.q 2
7.c even 3 2 490.4.e.v 4
7.d odd 6 2 490.4.e.w 4
35.c odd 2 1 2450.4.a.by 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
490.4.a.q 2 7.b odd 2 1
490.4.a.s yes 2 1.a even 1 1 trivial
490.4.e.v 4 7.c even 3 2
490.4.e.w 4 7.d odd 6 2
2450.4.a.bu 2 5.b even 2 1
2450.4.a.by 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(490))\):

\( T_{3}^{2} - 2T_{3} - 17 \) Copy content Toggle raw display
\( T_{11}^{2} + 26T_{11} + 41 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 17 \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 26T + 41 \) Copy content Toggle raw display
$13$ \( T^{2} + 102T + 2439 \) Copy content Toggle raw display
$17$ \( T^{2} - 186T + 8071 \) Copy content Toggle raw display
$19$ \( T^{2} - 36T - 188 \) Copy content Toggle raw display
$23$ \( T^{2} + 44T - 19918 \) Copy content Toggle raw display
$29$ \( T^{2} + 46T - 9839 \) Copy content Toggle raw display
$31$ \( T^{2} - 140T - 20638 \) Copy content Toggle raw display
$37$ \( T^{2} - 132T - 73262 \) Copy content Toggle raw display
$41$ \( T^{2} + 132T - 37694 \) Copy content Toggle raw display
$43$ \( T^{2} - 324T + 22372 \) Copy content Toggle raw display
$47$ \( T^{2} - 242T + 7679 \) Copy content Toggle raw display
$53$ \( T^{2} - 208T - 92242 \) Copy content Toggle raw display
$59$ \( T^{2} - 780T + 118818 \) Copy content Toggle raw display
$61$ \( T^{2} - 216T - 28664 \) Copy content Toggle raw display
$67$ \( T^{2} + 256T - 539074 \) Copy content Toggle raw display
$71$ \( T^{2} + 692T + 97244 \) Copy content Toggle raw display
$73$ \( T^{2} - 832T + 170168 \) Copy content Toggle raw display
$79$ \( T^{2} + 1962 T + 903193 \) Copy content Toggle raw display
$83$ \( T^{2} - 1712 T + 386624 \) Copy content Toggle raw display
$89$ \( T^{2} - 1960 T + 808048 \) Copy content Toggle raw display
$97$ \( T^{2} - 102 T - 1371881 \) Copy content Toggle raw display
show more
show less