Properties

Label 490.4.a.p
Level $490$
Weight $4$
Character orbit 490.a
Self dual yes
Analytic conductor $28.911$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,4,Mod(1,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,-5,8,-10,10,0,-16,47,20,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.9109359028\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{177})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - \beta - 2) q^{3} + 4 q^{4} - 5 q^{5} + (2 \beta + 4) q^{6} - 8 q^{8} + (5 \beta + 21) q^{9} + 10 q^{10} - 5 \beta q^{11} + ( - 4 \beta - 8) q^{12} + ( - 3 \beta - 46) q^{13} + (5 \beta + 10) q^{15} + \cdots + ( - 130 \beta - 1100) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 5 q^{3} + 8 q^{4} - 10 q^{5} + 10 q^{6} - 16 q^{8} + 47 q^{9} + 20 q^{10} - 5 q^{11} - 20 q^{12} - 95 q^{13} + 25 q^{15} + 32 q^{16} + 25 q^{17} - 94 q^{18} + 120 q^{19} - 40 q^{20} + 10 q^{22}+ \cdots - 2330 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.15207
−6.15207
−2.00000 −9.15207 4.00000 −5.00000 18.3041 0 −8.00000 56.7603 10.0000
1.2 −2.00000 4.15207 4.00000 −5.00000 −8.30413 0 −8.00000 −9.76034 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.4.a.p 2
5.b even 2 1 2450.4.a.ca 2
7.b odd 2 1 490.4.a.u yes 2
7.c even 3 2 490.4.e.x 4
7.d odd 6 2 490.4.e.t 4
35.c odd 2 1 2450.4.a.bt 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
490.4.a.p 2 1.a even 1 1 trivial
490.4.a.u yes 2 7.b odd 2 1
490.4.e.t 4 7.d odd 6 2
490.4.e.x 4 7.c even 3 2
2450.4.a.bt 2 35.c odd 2 1
2450.4.a.ca 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(490))\):

\( T_{3}^{2} + 5T_{3} - 38 \) Copy content Toggle raw display
\( T_{11}^{2} + 5T_{11} - 1100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 5T - 38 \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 5T - 1100 \) Copy content Toggle raw display
$13$ \( T^{2} + 95T + 1858 \) Copy content Toggle raw display
$17$ \( T^{2} - 25T + 112 \) Copy content Toggle raw display
$19$ \( T^{2} - 120T + 2892 \) Copy content Toggle raw display
$23$ \( T^{2} - 124T - 13856 \) Copy content Toggle raw display
$29$ \( T^{2} - 213T - 16314 \) Copy content Toggle raw display
$31$ \( T^{2} + 70T + 1048 \) Copy content Toggle raw display
$37$ \( T^{2} + 134T - 35336 \) Copy content Toggle raw display
$41$ \( T^{2} + 370T - 29672 \) Copy content Toggle raw display
$43$ \( T^{2} + 82T - 2744 \) Copy content Toggle raw display
$47$ \( T^{2} + 115T - 301532 \) Copy content Toggle raw display
$53$ \( T^{2} + 1024 T + 244444 \) Copy content Toggle raw display
$59$ \( T^{2} + 760T + 87052 \) Copy content Toggle raw display
$61$ \( T^{2} - 790T - 36728 \) Copy content Toggle raw display
$67$ \( T^{2} - 850T + 176200 \) Copy content Toggle raw display
$71$ \( T^{2} - 372T - 407904 \) Copy content Toggle raw display
$73$ \( T^{2} + 190T - 488168 \) Copy content Toggle raw display
$79$ \( T^{2} - 425T - 88700 \) Copy content Toggle raw display
$83$ \( T^{2} + 2110 T + 1111432 \) Copy content Toggle raw display
$89$ \( T^{2} + 560 T - 1054400 \) Copy content Toggle raw display
$97$ \( T^{2} + 675T - 205800 \) Copy content Toggle raw display
show more
show less