gp: [N,k,chi] = [490,4,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,2,-1,4,5,-2,0,8,-26,10,-9]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 490 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(490)) S 4 n e w ( Γ 0 ( 4 9 0 ) ) :
T 3 + 1 T_{3} + 1 T 3 + 1
T3 + 1
T 11 + 9 T_{11} + 9 T 1 1 + 9
T11 + 9
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T − 2 T - 2 T − 2
T - 2
3 3 3
T + 1 T + 1 T + 1
T + 1
5 5 5
T − 5 T - 5 T − 5
T - 5
7 7 7
T T T
T
11 11 1 1
T + 9 T + 9 T + 9
T + 9
13 13 1 3
T + 51 T + 51 T + 5 1
T + 51
17 17 1 7
T + 81 T + 81 T + 8 1
T + 81
19 19 1 9
T + 86 T + 86 T + 8 6
T + 86
23 23 2 3
T − 48 T - 48 T − 4 8
T - 48
29 29 2 9
T − 211 T - 211 T − 2 1 1
T - 211
31 31 3 1
T + 254 T + 254 T + 2 5 4
T + 254
37 37 3 7
T + 20 T + 20 T + 2 0
T + 20
41 41 4 1
T + 74 T + 74 T + 7 4
T + 74
43 43 4 3
T + 318 T + 318 T + 3 1 8
T + 318
47 47 4 7
T − 167 T - 167 T − 1 6 7
T - 167
53 53 5 3
T + 170 T + 170 T + 1 7 0
T + 170
59 59 5 9
T + 854 T + 854 T + 8 5 4
T + 854
61 61 6 1
T − 580 T - 580 T − 5 8 0
T - 580
67 67 6 7
T + 58 T + 58 T + 5 8
T + 58
71 71 7 1
T − 152 T - 152 T − 1 5 2
T - 152
73 73 7 3
T + 702 T + 702 T + 7 0 2
T + 702
79 79 7 9
T + 419 T + 419 T + 4 1 9
T + 419
83 83 8 3
T + 124 T + 124 T + 1 2 4
T + 124
89 89 8 9
T − 768 T - 768 T − 7 6 8
T - 768
97 97 9 7
T + 1085 T + 1085 T + 1 0 8 5
T + 1085
show more
show less