gp: [N,k,chi] = [490,4,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-2,1,4,5,-2,0,-8,-26,-10,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 490 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(490)) S 4 n e w ( Γ 0 ( 4 9 0 ) ) :
T 3 − 1 T_{3} - 1 T 3 − 1
T3 - 1
T 11 + 2 T_{11} + 2 T 1 1 + 2
T11 + 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T − 1 T - 1 T − 1
T - 1
5 5 5
T − 5 T - 5 T − 5
T - 5
7 7 7
T T T
T
11 11 1 1
T + 2 T + 2 T + 2
T + 2
13 13 1 3
T − 8 T - 8 T − 8
T - 8
17 17 1 7
T − 52 T - 52 T − 5 2
T - 52
19 19 1 9
T + 26 T + 26 T + 2 6
T + 26
23 23 2 3
T − 67 T - 67 T − 6 7
T - 67
29 29 2 9
T − 69 T - 69 T − 6 9
T - 69
31 31 3 1
T − 332 T - 332 T − 3 3 2
T - 332
37 37 3 7
T − 196 T - 196 T − 1 9 6
T - 196
41 41 4 1
T + 353 T + 353 T + 3 5 3
T + 353
43 43 4 3
T + 369 T + 369 T + 3 6 9
T + 369
47 47 4 7
T + 88 T + 88 T + 8 8
T + 88
53 53 5 3
T − 582 T - 582 T − 5 8 2
T - 582
59 59 5 9
T − 350 T - 350 T − 3 5 0
T - 350
61 61 6 1
T − 467 T - 467 T − 4 6 7
T - 467
67 67 6 7
T − 291 T - 291 T − 2 9 1
T - 291
71 71 7 1
T − 770 T - 770 T − 7 7 0
T - 770
73 73 7 3
T + 628 T + 628 T + 6 2 8
T + 628
79 79 7 9
T − 1170 T - 1170 T − 1 1 7 0
T - 1170
83 83 8 3
T + 525 T + 525 T + 5 2 5
T + 525
89 89 8 9
T + 89 T + 89 T + 8 9
T + 89
97 97 9 7
T − 290 T - 290 T − 2 9 0
T - 290
show more
show less