gp: [N,k,chi] = [490,4,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-2,-4,4,-5,8,0,-8,-11,10,60]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 490 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(490)) S 4 n e w ( Γ 0 ( 4 9 0 ) ) :
T 3 + 4 T_{3} + 4 T 3 + 4
T3 + 4
T 11 − 60 T_{11} - 60 T 1 1 − 6 0
T11 - 60
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T + 4 T + 4 T + 4
T + 4
5 5 5
T + 5 T + 5 T + 5
T + 5
7 7 7
T T T
T
11 11 1 1
T − 60 T - 60 T − 6 0
T - 60
13 13 1 3
T + 38 T + 38 T + 3 8
T + 38
17 17 1 7
T + 42 T + 42 T + 4 2
T + 42
19 19 1 9
T − 52 T - 52 T − 5 2
T - 52
23 23 2 3
T − 120 T - 120 T − 1 2 0
T - 120
29 29 2 9
T + 234 T + 234 T + 2 3 4
T + 234
31 31 3 1
T − 304 T - 304 T − 3 0 4
T - 304
37 37 3 7
T + 106 T + 106 T + 1 0 6
T + 106
41 41 4 1
T − 54 T - 54 T − 5 4
T - 54
43 43 4 3
T + 196 T + 196 T + 1 9 6
T + 196
47 47 4 7
T + 336 T + 336 T + 3 3 6
T + 336
53 53 5 3
T − 438 T - 438 T − 4 3 8
T - 438
59 59 5 9
T − 444 T - 444 T − 4 4 4
T - 444
61 61 6 1
T + 38 T + 38 T + 3 8
T + 38
67 67 6 7
T + 988 T + 988 T + 9 8 8
T + 988
71 71 7 1
T + 720 T + 720 T + 7 2 0
T + 720
73 73 7 3
T + 146 T + 146 T + 1 4 6
T + 146
79 79 7 9
T + 808 T + 808 T + 8 0 8
T + 808
83 83 8 3
T + 612 T + 612 T + 6 1 2
T + 612
89 89 8 9
T + 1146 T + 1146 T + 1 1 4 6
T + 1146
97 97 9 7
T − 70 T - 70 T − 7 0
T - 70
show more
show less