Properties

Label 490.3.f.o.197.2
Level $490$
Weight $3$
Character 490.197
Analytic conductor $13.352$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,3,Mod(197,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.197"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 490.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,-2,0,2,-4,0,-16,0,6,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3515329537\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 2x^{5} + 730x^{4} - 1570x^{3} + 1682x^{2} + 4930x + 7225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 197.2
Root \(1.93183 - 1.93183i\) of defining polynomial
Character \(\chi\) \(=\) 490.197
Dual form 490.3.f.o.393.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +(-1.93183 + 1.93183i) q^{3} +2.00000i q^{4} +(4.87575 - 1.10773i) q^{5} -3.86367 q^{6} +(-2.00000 + 2.00000i) q^{8} +1.53604i q^{9} +(5.98348 + 3.76802i) q^{10} -20.0461 q^{11} +(-3.86367 - 3.86367i) q^{12} +(2.21546 - 2.21546i) q^{13} +(-7.27919 + 11.5591i) q^{15} -4.00000 q^{16} +(8.73498 + 8.73498i) q^{17} +(-1.53604 + 1.53604i) q^{18} +18.2374i q^{19} +(2.21546 + 9.75150i) q^{20} +(-20.0461 - 20.0461i) q^{22} +(-29.0830 + 29.0830i) q^{23} -7.72733i q^{24} +(22.5459 - 10.8020i) q^{25} +4.43092 q^{26} +(-20.3539 - 20.3539i) q^{27} +19.0242i q^{29} +(-18.8383 + 4.27990i) q^{30} +6.28154 q^{31} +(-4.00000 - 4.00000i) q^{32} +(38.7257 - 38.7257i) q^{33} +17.4700i q^{34} -3.07208 q^{36} +(-26.8360 - 26.8360i) q^{37} +(-18.2374 + 18.2374i) q^{38} +8.55979i q^{39} +(-7.53604 + 11.9670i) q^{40} -16.3689 q^{41} +(-4.26669 + 4.26669i) q^{43} -40.0922i q^{44} +(1.70152 + 7.48935i) q^{45} -58.1661 q^{46} +(8.73498 + 8.73498i) q^{47} +(7.72733 - 7.72733i) q^{48} +(33.3479 + 11.7439i) q^{50} -33.7490 q^{51} +(4.43092 + 4.43092i) q^{52} +(-37.8602 + 37.8602i) q^{53} -40.7077i q^{54} +(-97.7397 + 22.2056i) q^{55} +(-35.2316 - 35.2316i) q^{57} +(-19.0242 + 19.0242i) q^{58} -95.1326i q^{59} +(-23.1182 - 14.5584i) q^{60} +8.45917 q^{61} +(6.28154 + 6.28154i) q^{62} -8.00000i q^{64} +(8.34789 - 13.2561i) q^{65} +77.4514 q^{66} +(8.03738 + 8.03738i) q^{67} +(-17.4700 + 17.4700i) q^{68} -112.367i q^{69} +94.8180 q^{71} +(-3.07208 - 3.07208i) q^{72} +(-5.76760 + 5.76760i) q^{73} -53.6720i q^{74} +(-22.6872 + 64.4226i) q^{75} -36.4747 q^{76} +(-8.55979 + 8.55979i) q^{78} -17.4416i q^{79} +(-19.5030 + 4.43092i) q^{80} +64.8162 q^{81} +(-16.3689 - 16.3689i) q^{82} +(-63.0967 + 63.0967i) q^{83} +(52.2656 + 32.9136i) q^{85} -8.53337 q^{86} +(-36.7515 - 36.7515i) q^{87} +(40.0922 - 40.0922i) q^{88} +77.4582i q^{89} +(-5.78784 + 9.19087i) q^{90} +(-58.1661 - 58.1661i) q^{92} +(-12.1349 + 12.1349i) q^{93} +17.4700i q^{94} +(20.2021 + 88.9209i) q^{95} +15.4547 q^{96} +(105.134 + 105.134i) q^{97} -30.7916i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 2 q^{3} + 2 q^{5} - 4 q^{6} - 16 q^{8} + 6 q^{10} - 40 q^{11} - 4 q^{12} + 8 q^{13} - 10 q^{15} - 32 q^{16} - 46 q^{17} + 52 q^{18} + 8 q^{20} - 40 q^{22} - 54 q^{23} + 26 q^{25} + 16 q^{26}+ \cdots + 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) −1.93183 + 1.93183i −0.643944 + 0.643944i −0.951523 0.307578i \(-0.900481\pi\)
0.307578 + 0.951523i \(0.400481\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 4.87575 1.10773i 0.975150 0.221546i
\(6\) −3.86367 −0.643944
\(7\) 0 0
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 1.53604i 0.170671i
\(10\) 5.98348 + 3.76802i 0.598348 + 0.376802i
\(11\) −20.0461 −1.82237 −0.911186 0.411996i \(-0.864832\pi\)
−0.911186 + 0.411996i \(0.864832\pi\)
\(12\) −3.86367 3.86367i −0.321972 0.321972i
\(13\) 2.21546 2.21546i 0.170420 0.170420i −0.616744 0.787164i \(-0.711549\pi\)
0.787164 + 0.616744i \(0.211549\pi\)
\(14\) 0 0
\(15\) −7.27919 + 11.5591i −0.485279 + 0.770606i
\(16\) −4.00000 −0.250000
\(17\) 8.73498 + 8.73498i 0.513822 + 0.513822i 0.915695 0.401873i \(-0.131641\pi\)
−0.401873 + 0.915695i \(0.631641\pi\)
\(18\) −1.53604 + 1.53604i −0.0853356 + 0.0853356i
\(19\) 18.2374i 0.959862i 0.877306 + 0.479931i \(0.159338\pi\)
−0.877306 + 0.479931i \(0.840662\pi\)
\(20\) 2.21546 + 9.75150i 0.110773 + 0.487575i
\(21\) 0 0
\(22\) −20.0461 20.0461i −0.911186 0.911186i
\(23\) −29.0830 + 29.0830i −1.26448 + 1.26448i −0.315582 + 0.948898i \(0.602200\pi\)
−0.948898 + 0.315582i \(0.897800\pi\)
\(24\) 7.72733i 0.321972i
\(25\) 22.5459 10.8020i 0.901835 0.432081i
\(26\) 4.43092 0.170420
\(27\) −20.3539 20.3539i −0.753847 0.753847i
\(28\) 0 0
\(29\) 19.0242i 0.656006i 0.944677 + 0.328003i \(0.106376\pi\)
−0.944677 + 0.328003i \(0.893624\pi\)
\(30\) −18.8383 + 4.27990i −0.627942 + 0.142663i
\(31\) 6.28154 0.202630 0.101315 0.994854i \(-0.467695\pi\)
0.101315 + 0.994854i \(0.467695\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) 38.7257 38.7257i 1.17351 1.17351i
\(34\) 17.4700i 0.513822i
\(35\) 0 0
\(36\) −3.07208 −0.0853356
\(37\) −26.8360 26.8360i −0.725298 0.725298i 0.244381 0.969679i \(-0.421415\pi\)
−0.969679 + 0.244381i \(0.921415\pi\)
\(38\) −18.2374 + 18.2374i −0.479931 + 0.479931i
\(39\) 8.55979i 0.219482i
\(40\) −7.53604 + 11.9670i −0.188401 + 0.299174i
\(41\) −16.3689 −0.399242 −0.199621 0.979873i \(-0.563971\pi\)
−0.199621 + 0.979873i \(0.563971\pi\)
\(42\) 0 0
\(43\) −4.26669 + 4.26669i −0.0992252 + 0.0992252i −0.754977 0.655752i \(-0.772352\pi\)
0.655752 + 0.754977i \(0.272352\pi\)
\(44\) 40.0922i 0.911186i
\(45\) 1.70152 + 7.48935i 0.0378115 + 0.166430i
\(46\) −58.1661 −1.26448
\(47\) 8.73498 + 8.73498i 0.185851 + 0.185851i 0.793900 0.608049i \(-0.208048\pi\)
−0.608049 + 0.793900i \(0.708048\pi\)
\(48\) 7.72733 7.72733i 0.160986 0.160986i
\(49\) 0 0
\(50\) 33.3479 + 11.7439i 0.666958 + 0.234877i
\(51\) −33.7490 −0.661746
\(52\) 4.43092 + 4.43092i 0.0852099 + 0.0852099i
\(53\) −37.8602 + 37.8602i −0.714343 + 0.714343i −0.967441 0.253098i \(-0.918551\pi\)
0.253098 + 0.967441i \(0.418551\pi\)
\(54\) 40.7077i 0.753847i
\(55\) −97.7397 + 22.2056i −1.77709 + 0.403739i
\(56\) 0 0
\(57\) −35.2316 35.2316i −0.618098 0.618098i
\(58\) −19.0242 + 19.0242i −0.328003 + 0.328003i
\(59\) 95.1326i 1.61242i −0.591631 0.806209i \(-0.701516\pi\)
0.591631 0.806209i \(-0.298484\pi\)
\(60\) −23.1182 14.5584i −0.385303 0.242640i
\(61\) 8.45917 0.138675 0.0693375 0.997593i \(-0.477911\pi\)
0.0693375 + 0.997593i \(0.477911\pi\)
\(62\) 6.28154 + 6.28154i 0.101315 + 0.101315i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 8.34789 13.2561i 0.128429 0.203941i
\(66\) 77.4514 1.17351
\(67\) 8.03738 + 8.03738i 0.119961 + 0.119961i 0.764539 0.644578i \(-0.222967\pi\)
−0.644578 + 0.764539i \(0.722967\pi\)
\(68\) −17.4700 + 17.4700i −0.256911 + 0.256911i
\(69\) 112.367i 1.62851i
\(70\) 0 0
\(71\) 94.8180 1.33547 0.667733 0.744401i \(-0.267265\pi\)
0.667733 + 0.744401i \(0.267265\pi\)
\(72\) −3.07208 3.07208i −0.0426678 0.0426678i
\(73\) −5.76760 + 5.76760i −0.0790083 + 0.0790083i −0.745507 0.666498i \(-0.767792\pi\)
0.666498 + 0.745507i \(0.267792\pi\)
\(74\) 53.6720i 0.725298i
\(75\) −22.6872 + 64.4226i −0.302496 + 0.858967i
\(76\) −36.4747 −0.479931
\(77\) 0 0
\(78\) −8.55979 + 8.55979i −0.109741 + 0.109741i
\(79\) 17.4416i 0.220780i −0.993888 0.110390i \(-0.964790\pi\)
0.993888 0.110390i \(-0.0352100\pi\)
\(80\) −19.5030 + 4.43092i −0.243787 + 0.0553865i
\(81\) 64.8162 0.800200
\(82\) −16.3689 16.3689i −0.199621 0.199621i
\(83\) −63.0967 + 63.0967i −0.760201 + 0.760201i −0.976359 0.216157i \(-0.930648\pi\)
0.216157 + 0.976359i \(0.430648\pi\)
\(84\) 0 0
\(85\) 52.2656 + 32.9136i 0.614889 + 0.387219i
\(86\) −8.53337 −0.0992252
\(87\) −36.7515 36.7515i −0.422431 0.422431i
\(88\) 40.0922 40.0922i 0.455593 0.455593i
\(89\) 77.4582i 0.870317i 0.900354 + 0.435158i \(0.143308\pi\)
−0.900354 + 0.435158i \(0.856692\pi\)
\(90\) −5.78784 + 9.19087i −0.0643093 + 0.102121i
\(91\) 0 0
\(92\) −58.1661 58.1661i −0.632240 0.632240i
\(93\) −12.1349 + 12.1349i −0.130483 + 0.130483i
\(94\) 17.4700i 0.185851i
\(95\) 20.2021 + 88.9209i 0.212653 + 0.936009i
\(96\) 15.4547 0.160986
\(97\) 105.134 + 105.134i 1.08385 + 1.08385i 0.996147 + 0.0877043i \(0.0279531\pi\)
0.0877043 + 0.996147i \(0.472047\pi\)
\(98\) 0 0
\(99\) 30.7916i 0.311026i
\(100\) 21.6040 + 45.0917i 0.216040 + 0.450917i
\(101\) 127.439 1.26177 0.630887 0.775874i \(-0.282691\pi\)
0.630887 + 0.775874i \(0.282691\pi\)
\(102\) −33.7490 33.7490i −0.330873 0.330873i
\(103\) 5.31067 5.31067i 0.0515599 0.0515599i −0.680857 0.732417i \(-0.738392\pi\)
0.732417 + 0.680857i \(0.238392\pi\)
\(104\) 8.86183i 0.0852099i
\(105\) 0 0
\(106\) −75.7204 −0.714343
\(107\) 81.6414 + 81.6414i 0.763004 + 0.763004i 0.976864 0.213860i \(-0.0686038\pi\)
−0.213860 + 0.976864i \(0.568604\pi\)
\(108\) 40.7077 40.7077i 0.376924 0.376924i
\(109\) 42.6209i 0.391017i 0.980702 + 0.195509i \(0.0626357\pi\)
−0.980702 + 0.195509i \(0.937364\pi\)
\(110\) −119.945 75.5341i −1.09041 0.686673i
\(111\) 103.685 0.934103
\(112\) 0 0
\(113\) −13.6000 + 13.6000i −0.120354 + 0.120354i −0.764718 0.644365i \(-0.777122\pi\)
0.644365 + 0.764718i \(0.277122\pi\)
\(114\) 70.4631i 0.618098i
\(115\) −109.586 + 174.018i −0.952917 + 1.51320i
\(116\) −38.0483 −0.328003
\(117\) 3.40304 + 3.40304i 0.0290858 + 0.0290858i
\(118\) 95.1326 95.1326i 0.806209 0.806209i
\(119\) 0 0
\(120\) −8.55979 37.6765i −0.0713316 0.313971i
\(121\) 280.845 2.32104
\(122\) 8.45917 + 8.45917i 0.0693375 + 0.0693375i
\(123\) 31.6220 31.6220i 0.257090 0.257090i
\(124\) 12.5631i 0.101315i
\(125\) 97.9623 77.6427i 0.783699 0.621141i
\(126\) 0 0
\(127\) 24.7683 + 24.7683i 0.195026 + 0.195026i 0.797864 0.602838i \(-0.205963\pi\)
−0.602838 + 0.797864i \(0.705963\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 16.4850i 0.127791i
\(130\) 21.6040 4.90825i 0.166185 0.0377558i
\(131\) 144.724 1.10477 0.552383 0.833590i \(-0.313718\pi\)
0.552383 + 0.833590i \(0.313718\pi\)
\(132\) 77.4514 + 77.4514i 0.586753 + 0.586753i
\(133\) 0 0
\(134\) 16.0748i 0.119961i
\(135\) −121.787 76.6938i −0.902126 0.568102i
\(136\) −34.9399 −0.256911
\(137\) 33.3725 + 33.3725i 0.243595 + 0.243595i 0.818336 0.574741i \(-0.194897\pi\)
−0.574741 + 0.818336i \(0.694897\pi\)
\(138\) 112.367 112.367i 0.814255 0.814255i
\(139\) 121.473i 0.873910i 0.899483 + 0.436955i \(0.143943\pi\)
−0.899483 + 0.436955i \(0.856057\pi\)
\(140\) 0 0
\(141\) −33.7490 −0.239355
\(142\) 94.8180 + 94.8180i 0.667733 + 0.667733i
\(143\) −44.4113 + 44.4113i −0.310568 + 0.310568i
\(144\) 6.14417i 0.0426678i
\(145\) 21.0736 + 92.7571i 0.145335 + 0.639704i
\(146\) −11.5352 −0.0790083
\(147\) 0 0
\(148\) 53.6720 53.6720i 0.362649 0.362649i
\(149\) 135.757i 0.911119i −0.890205 0.455560i \(-0.849439\pi\)
0.890205 0.455560i \(-0.150561\pi\)
\(150\) −87.1097 + 41.7354i −0.580732 + 0.278236i
\(151\) 82.7236 0.547839 0.273919 0.961753i \(-0.411680\pi\)
0.273919 + 0.961753i \(0.411680\pi\)
\(152\) −36.4747 36.4747i −0.239965 0.239965i
\(153\) −13.4173 + 13.4173i −0.0876947 + 0.0876947i
\(154\) 0 0
\(155\) 30.6272 6.95825i 0.197595 0.0448919i
\(156\) −17.1196 −0.109741
\(157\) −27.7332 27.7332i −0.176645 0.176645i 0.613247 0.789891i \(-0.289863\pi\)
−0.789891 + 0.613247i \(0.789863\pi\)
\(158\) 17.4416 17.4416i 0.110390 0.110390i
\(159\) 146.279i 0.919994i
\(160\) −23.9339 15.0721i −0.149587 0.0942005i
\(161\) 0 0
\(162\) 64.8162 + 64.8162i 0.400100 + 0.400100i
\(163\) −87.3885 + 87.3885i −0.536126 + 0.536126i −0.922389 0.386263i \(-0.873766\pi\)
0.386263 + 0.922389i \(0.373766\pi\)
\(164\) 32.7378i 0.199621i
\(165\) 145.919 231.714i 0.884359 1.40433i
\(166\) −126.193 −0.760201
\(167\) −173.339 173.339i −1.03796 1.03796i −0.999251 0.0387094i \(-0.987675\pi\)
−0.0387094 0.999251i \(-0.512325\pi\)
\(168\) 0 0
\(169\) 159.183i 0.941914i
\(170\) 19.3520 + 85.1791i 0.113835 + 0.501054i
\(171\) −28.0134 −0.163821
\(172\) −8.53337 8.53337i −0.0496126 0.0496126i
\(173\) −171.272 + 171.272i −0.990012 + 0.990012i −0.999951 0.00993824i \(-0.996837\pi\)
0.00993824 + 0.999951i \(0.496837\pi\)
\(174\) 73.5030i 0.422431i
\(175\) 0 0
\(176\) 80.1843 0.455593
\(177\) 183.780 + 183.780i 1.03831 + 1.03831i
\(178\) −77.4582 + 77.4582i −0.435158 + 0.435158i
\(179\) 173.381i 0.968608i 0.874900 + 0.484304i \(0.160927\pi\)
−0.874900 + 0.484304i \(0.839073\pi\)
\(180\) −14.9787 + 3.40304i −0.0832151 + 0.0189058i
\(181\) 237.263 1.31085 0.655424 0.755262i \(-0.272490\pi\)
0.655424 + 0.755262i \(0.272490\pi\)
\(182\) 0 0
\(183\) −16.3417 + 16.3417i −0.0892989 + 0.0892989i
\(184\) 116.332i 0.632240i
\(185\) −160.573 101.119i −0.867961 0.546587i
\(186\) −24.2698 −0.130483
\(187\) −175.102 175.102i −0.936375 0.936375i
\(188\) −17.4700 + 17.4700i −0.0929253 + 0.0929253i
\(189\) 0 0
\(190\) −68.7188 + 109.123i −0.361678 + 0.574331i
\(191\) 20.9842 0.109865 0.0549324 0.998490i \(-0.482506\pi\)
0.0549324 + 0.998490i \(0.482506\pi\)
\(192\) 15.4547 + 15.4547i 0.0804930 + 0.0804930i
\(193\) −35.3917 + 35.3917i −0.183377 + 0.183377i −0.792826 0.609449i \(-0.791391\pi\)
0.609449 + 0.792826i \(0.291391\pi\)
\(194\) 210.267i 1.08385i
\(195\) 9.48193 + 41.7354i 0.0486253 + 0.214028i
\(196\) 0 0
\(197\) −85.5963 85.5963i −0.434499 0.434499i 0.455657 0.890156i \(-0.349404\pi\)
−0.890156 + 0.455657i \(0.849404\pi\)
\(198\) 30.7916 30.7916i 0.155513 0.155513i
\(199\) 307.461i 1.54503i −0.634996 0.772515i \(-0.718998\pi\)
0.634996 0.772515i \(-0.281002\pi\)
\(200\) −23.4877 + 66.6958i −0.117439 + 0.333479i
\(201\) −31.0537 −0.154496
\(202\) 127.439 + 127.439i 0.630887 + 0.630887i
\(203\) 0 0
\(204\) 67.4981i 0.330873i
\(205\) −79.8107 + 18.1323i −0.389321 + 0.0884504i
\(206\) 10.6213 0.0515599
\(207\) −44.6728 44.6728i −0.215810 0.215810i
\(208\) −8.86183 + 8.86183i −0.0426050 + 0.0426050i
\(209\) 365.588i 1.74922i
\(210\) 0 0
\(211\) −116.585 −0.552533 −0.276267 0.961081i \(-0.589097\pi\)
−0.276267 + 0.961081i \(0.589097\pi\)
\(212\) −75.7204 75.7204i −0.357172 0.357172i
\(213\) −183.173 + 183.173i −0.859965 + 0.859965i
\(214\) 163.283i 0.763004i
\(215\) −16.0770 + 25.5296i −0.0747766 + 0.118742i
\(216\) 81.4155 0.376924
\(217\) 0 0
\(218\) −42.6209 + 42.6209i −0.195509 + 0.195509i
\(219\) 22.2841i 0.101754i
\(220\) −44.4113 195.479i −0.201869 0.888543i
\(221\) 38.7040 0.175131
\(222\) 103.685 + 103.685i 0.467051 + 0.467051i
\(223\) −93.2689 + 93.2689i −0.418246 + 0.418246i −0.884599 0.466353i \(-0.845568\pi\)
0.466353 + 0.884599i \(0.345568\pi\)
\(224\) 0 0
\(225\) 16.5924 + 34.6314i 0.0737438 + 0.153917i
\(226\) −27.1999 −0.120354
\(227\) 238.300 + 238.300i 1.04978 + 1.04978i 0.998694 + 0.0510852i \(0.0162680\pi\)
0.0510852 + 0.998694i \(0.483732\pi\)
\(228\) 70.4631 70.4631i 0.309049 0.309049i
\(229\) 381.893i 1.66765i −0.552026 0.833827i \(-0.686145\pi\)
0.552026 0.833827i \(-0.313855\pi\)
\(230\) −283.603 + 64.4323i −1.23306 + 0.280140i
\(231\) 0 0
\(232\) −38.0483 38.0483i −0.164001 0.164001i
\(233\) 236.020 236.020i 1.01296 1.01296i 0.0130448 0.999915i \(-0.495848\pi\)
0.999915 0.0130448i \(-0.00415242\pi\)
\(234\) 6.80607i 0.0290858i
\(235\) 52.2656 + 32.9136i 0.222407 + 0.140058i
\(236\) 190.265 0.806209
\(237\) 33.6943 + 33.6943i 0.142170 + 0.142170i
\(238\) 0 0
\(239\) 437.169i 1.82916i 0.404406 + 0.914579i \(0.367478\pi\)
−0.404406 + 0.914579i \(0.632522\pi\)
\(240\) 29.1167 46.2363i 0.121320 0.192651i
\(241\) −3.89241 −0.0161511 −0.00807554 0.999967i \(-0.502571\pi\)
−0.00807554 + 0.999967i \(0.502571\pi\)
\(242\) 280.845 + 280.845i 1.16052 + 1.16052i
\(243\) 57.9708 57.9708i 0.238563 0.238563i
\(244\) 16.9183i 0.0693375i
\(245\) 0 0
\(246\) 63.2440 0.257090
\(247\) 40.4041 + 40.4041i 0.163579 + 0.163579i
\(248\) −12.5631 + 12.5631i −0.0506576 + 0.0506576i
\(249\) 243.785i 0.979054i
\(250\) 175.605 + 20.3197i 0.702420 + 0.0812787i
\(251\) 368.235 1.46707 0.733535 0.679651i \(-0.237869\pi\)
0.733535 + 0.679651i \(0.237869\pi\)
\(252\) 0 0
\(253\) 583.001 583.001i 2.30435 2.30435i
\(254\) 49.5366i 0.195026i
\(255\) −164.552 + 37.3848i −0.645302 + 0.146607i
\(256\) 16.0000 0.0625000
\(257\) 187.252 + 187.252i 0.728605 + 0.728605i 0.970342 0.241736i \(-0.0777170\pi\)
−0.241736 + 0.970342i \(0.577717\pi\)
\(258\) 16.4850 16.4850i 0.0638955 0.0638955i
\(259\) 0 0
\(260\) 26.5123 + 16.6958i 0.101970 + 0.0642146i
\(261\) −29.2219 −0.111961
\(262\) 144.724 + 144.724i 0.552383 + 0.552383i
\(263\) −194.119 + 194.119i −0.738097 + 0.738097i −0.972209 0.234113i \(-0.924781\pi\)
0.234113 + 0.972209i \(0.424781\pi\)
\(264\) 154.903i 0.586753i
\(265\) −142.658 + 226.536i −0.538332 + 0.854851i
\(266\) 0 0
\(267\) −149.636 149.636i −0.560436 0.560436i
\(268\) −16.0748 + 16.0748i −0.0599804 + 0.0599804i
\(269\) 139.255i 0.517677i −0.965921 0.258839i \(-0.916660\pi\)
0.965921 0.258839i \(-0.0833398\pi\)
\(270\) −45.0932 198.481i −0.167012 0.735114i
\(271\) 62.0657 0.229025 0.114512 0.993422i \(-0.463469\pi\)
0.114512 + 0.993422i \(0.463469\pi\)
\(272\) −34.9399 34.9399i −0.128456 0.128456i
\(273\) 0 0
\(274\) 66.7450i 0.243595i
\(275\) −451.956 + 216.538i −1.64348 + 0.787412i
\(276\) 224.734 0.814255
\(277\) −294.136 294.136i −1.06186 1.06186i −0.997956 0.0639081i \(-0.979644\pi\)
−0.0639081 0.997956i \(-0.520356\pi\)
\(278\) −121.473 + 121.473i −0.436955 + 0.436955i
\(279\) 9.64871i 0.0345832i
\(280\) 0 0
\(281\) −370.599 −1.31886 −0.659428 0.751767i \(-0.729202\pi\)
−0.659428 + 0.751767i \(0.729202\pi\)
\(282\) −33.7490 33.7490i −0.119677 0.119677i
\(283\) 341.319 341.319i 1.20607 1.20607i 0.233784 0.972289i \(-0.424889\pi\)
0.972289 0.233784i \(-0.0751109\pi\)
\(284\) 189.636i 0.667733i
\(285\) −210.807 132.753i −0.739675 0.465801i
\(286\) −88.8225 −0.310568
\(287\) 0 0
\(288\) 6.14417 6.14417i 0.0213339 0.0213339i
\(289\) 136.400i 0.471973i
\(290\) −71.6835 + 113.831i −0.247184 + 0.392520i
\(291\) −406.201 −1.39588
\(292\) −11.5352 11.5352i −0.0395041 0.0395041i
\(293\) −203.433 + 203.433i −0.694312 + 0.694312i −0.963178 0.268866i \(-0.913351\pi\)
0.268866 + 0.963178i \(0.413351\pi\)
\(294\) 0 0
\(295\) −105.381 463.843i −0.357224 1.57235i
\(296\) 107.344 0.362649
\(297\) 408.015 + 408.015i 1.37379 + 1.37379i
\(298\) 135.757 135.757i 0.455560 0.455560i
\(299\) 128.865i 0.430985i
\(300\) −128.845 45.3743i −0.429484 0.151248i
\(301\) 0 0
\(302\) 82.7236 + 82.7236i 0.273919 + 0.273919i
\(303\) −246.191 + 246.191i −0.812513 + 0.812513i
\(304\) 72.9495i 0.239965i
\(305\) 41.2448 9.37047i 0.135229 0.0307228i
\(306\) −26.8346 −0.0876947
\(307\) 0.207402 + 0.207402i 0.000675578 + 0.000675578i 0.707444 0.706769i \(-0.249848\pi\)
−0.706769 + 0.707444i \(0.749848\pi\)
\(308\) 0 0
\(309\) 20.5187i 0.0664034i
\(310\) 37.5855 + 23.6690i 0.121243 + 0.0763516i
\(311\) 356.021 1.14476 0.572382 0.819987i \(-0.306020\pi\)
0.572382 + 0.819987i \(0.306020\pi\)
\(312\) −17.1196 17.1196i −0.0548705 0.0548705i
\(313\) −184.173 + 184.173i −0.588411 + 0.588411i −0.937201 0.348790i \(-0.886593\pi\)
0.348790 + 0.937201i \(0.386593\pi\)
\(314\) 55.4664i 0.176645i
\(315\) 0 0
\(316\) 34.8833 0.110390
\(317\) −54.6955 54.6955i −0.172541 0.172541i 0.615554 0.788095i \(-0.288932\pi\)
−0.788095 + 0.615554i \(0.788932\pi\)
\(318\) 146.279 146.279i 0.459997 0.459997i
\(319\) 381.360i 1.19549i
\(320\) −8.86183 39.0060i −0.0276932 0.121894i
\(321\) −315.435 −0.982664
\(322\) 0 0
\(323\) −159.303 + 159.303i −0.493198 + 0.493198i
\(324\) 129.632i 0.400100i
\(325\) 26.0180 73.8809i 0.0800554 0.227326i
\(326\) −174.777 −0.536126
\(327\) −82.3364 82.3364i −0.251793 0.251793i
\(328\) 32.7378 32.7378i 0.0998105 0.0998105i
\(329\) 0 0
\(330\) 377.634 85.7951i 1.14434 0.259985i
\(331\) 86.2829 0.260674 0.130337 0.991470i \(-0.458394\pi\)
0.130337 + 0.991470i \(0.458394\pi\)
\(332\) −126.193 126.193i −0.380101 0.380101i
\(333\) 41.2212 41.2212i 0.123788 0.123788i
\(334\) 346.679i 1.03796i
\(335\) 48.0915 + 30.2850i 0.143557 + 0.0904030i
\(336\) 0 0
\(337\) 92.8454 + 92.8454i 0.275506 + 0.275506i 0.831312 0.555806i \(-0.187590\pi\)
−0.555806 + 0.831312i \(0.687590\pi\)
\(338\) −159.183 + 159.183i −0.470957 + 0.470957i
\(339\) 52.5457i 0.155002i
\(340\) −65.8272 + 104.531i −0.193609 + 0.307444i
\(341\) −125.920 −0.369268
\(342\) −28.0134 28.0134i −0.0819104 0.0819104i
\(343\) 0 0
\(344\) 17.0667i 0.0496126i
\(345\) −124.472 547.874i −0.360789 1.58804i
\(346\) −342.544 −0.990012
\(347\) −283.244 283.244i −0.816264 0.816264i 0.169300 0.985565i \(-0.445849\pi\)
−0.985565 + 0.169300i \(0.945849\pi\)
\(348\) 73.5030 73.5030i 0.211216 0.211216i
\(349\) 202.323i 0.579723i −0.957069 0.289862i \(-0.906391\pi\)
0.957069 0.289862i \(-0.0936093\pi\)
\(350\) 0 0
\(351\) −90.1863 −0.256941
\(352\) 80.1843 + 80.1843i 0.227796 + 0.227796i
\(353\) −233.476 + 233.476i −0.661405 + 0.661405i −0.955711 0.294306i \(-0.904911\pi\)
0.294306 + 0.955711i \(0.404911\pi\)
\(354\) 367.561i 1.03831i
\(355\) 462.309 105.033i 1.30228 0.295867i
\(356\) −154.916 −0.435158
\(357\) 0 0
\(358\) −173.381 + 173.381i −0.484304 + 0.484304i
\(359\) 31.3178i 0.0872361i 0.999048 + 0.0436181i \(0.0138885\pi\)
−0.999048 + 0.0436181i \(0.986112\pi\)
\(360\) −18.3817 11.5757i −0.0510604 0.0321546i
\(361\) 28.3982 0.0786655
\(362\) 237.263 + 237.263i 0.655424 + 0.655424i
\(363\) −542.546 + 542.546i −1.49462 + 1.49462i
\(364\) 0 0
\(365\) −21.7324 + 34.5103i −0.0595409 + 0.0945488i
\(366\) −32.6834 −0.0892989
\(367\) 124.103 + 124.103i 0.338157 + 0.338157i 0.855673 0.517517i \(-0.173143\pi\)
−0.517517 + 0.855673i \(0.673143\pi\)
\(368\) 116.332 116.332i 0.316120 0.316120i
\(369\) 25.1433i 0.0681391i
\(370\) −59.4541 261.691i −0.160687 0.707274i
\(371\) 0 0
\(372\) −24.2698 24.2698i −0.0652414 0.0652414i
\(373\) 76.4288 76.4288i 0.204903 0.204903i −0.597194 0.802097i \(-0.703718\pi\)
0.802097 + 0.597194i \(0.203718\pi\)
\(374\) 350.204i 0.936375i
\(375\) −39.2542 + 339.240i −0.104678 + 0.904639i
\(376\) −34.9399 −0.0929253
\(377\) 42.1472 + 42.1472i 0.111796 + 0.111796i
\(378\) 0 0
\(379\) 370.389i 0.977279i −0.872486 0.488639i \(-0.837493\pi\)
0.872486 0.488639i \(-0.162507\pi\)
\(380\) −177.842 + 40.4041i −0.468005 + 0.106327i
\(381\) −95.6964 −0.251172
\(382\) 20.9842 + 20.9842i 0.0549324 + 0.0549324i
\(383\) 2.48825 2.48825i 0.00649673 0.00649673i −0.703851 0.710348i \(-0.748538\pi\)
0.710348 + 0.703851i \(0.248538\pi\)
\(384\) 30.9093i 0.0804930i
\(385\) 0 0
\(386\) −70.7834 −0.183377
\(387\) −6.55381 6.55381i −0.0169349 0.0169349i
\(388\) −210.267 + 210.267i −0.541925 + 0.541925i
\(389\) 725.344i 1.86464i 0.361637 + 0.932319i \(0.382218\pi\)
−0.361637 + 0.932319i \(0.617782\pi\)
\(390\) −32.2535 + 51.2173i −0.0827012 + 0.131326i
\(391\) −508.079 −1.29944
\(392\) 0 0
\(393\) −279.583 + 279.583i −0.711408 + 0.711408i
\(394\) 171.193i 0.434499i
\(395\) −19.3206 85.0410i −0.0489129 0.215294i
\(396\) 61.5832 0.155513
\(397\) −90.5936 90.5936i −0.228195 0.228195i 0.583743 0.811938i \(-0.301588\pi\)
−0.811938 + 0.583743i \(0.801588\pi\)
\(398\) 307.461 307.461i 0.772515 0.772515i
\(399\) 0 0
\(400\) −90.1835 + 43.2081i −0.225459 + 0.108020i
\(401\) −700.963 −1.74804 −0.874019 0.485892i \(-0.838495\pi\)
−0.874019 + 0.485892i \(0.838495\pi\)
\(402\) −31.0537 31.0537i −0.0772481 0.0772481i
\(403\) 13.9165 13.9165i 0.0345322 0.0345322i
\(404\) 254.878i 0.630887i
\(405\) 316.028 71.7988i 0.780315 0.177281i
\(406\) 0 0
\(407\) 537.957 + 537.957i 1.32176 + 1.32176i
\(408\) 67.4981 67.4981i 0.165436 0.165436i
\(409\) 452.456i 1.10625i 0.833099 + 0.553124i \(0.186564\pi\)
−0.833099 + 0.553124i \(0.813436\pi\)
\(410\) −97.9431 61.6784i −0.238886 0.150435i
\(411\) −128.940 −0.313723
\(412\) 10.6213 + 10.6213i 0.0257799 + 0.0257799i
\(413\) 0 0
\(414\) 89.3455i 0.215810i
\(415\) −237.750 + 377.538i −0.572891 + 0.909729i
\(416\) −17.7237 −0.0426050
\(417\) −234.666 234.666i −0.562749 0.562749i
\(418\) 365.588 365.588i 0.874612 0.874612i
\(419\) 248.174i 0.592302i −0.955141 0.296151i \(-0.904297\pi\)
0.955141 0.296151i \(-0.0957031\pi\)
\(420\) 0 0
\(421\) −238.992 −0.567676 −0.283838 0.958872i \(-0.591608\pi\)
−0.283838 + 0.958872i \(0.591608\pi\)
\(422\) −116.585 116.585i −0.276267 0.276267i
\(423\) −13.4173 + 13.4173i −0.0317194 + 0.0317194i
\(424\) 151.441i 0.357172i
\(425\) 291.293 + 102.582i 0.685396 + 0.241370i
\(426\) −366.345 −0.859965
\(427\) 0 0
\(428\) −163.283 + 163.283i −0.381502 + 0.381502i
\(429\) 171.590i 0.399977i
\(430\) −41.6066 + 9.45266i −0.0967595 + 0.0219829i
\(431\) −130.746 −0.303355 −0.151677 0.988430i \(-0.548468\pi\)
−0.151677 + 0.988430i \(0.548468\pi\)
\(432\) 81.4155 + 81.4155i 0.188462 + 0.188462i
\(433\) 456.850 456.850i 1.05508 1.05508i 0.0566898 0.998392i \(-0.481945\pi\)
0.998392 0.0566898i \(-0.0180546\pi\)
\(434\) 0 0
\(435\) −219.902 138.480i −0.505522 0.318346i
\(436\) −85.2417 −0.195509
\(437\) −530.398 530.398i −1.21373 1.21373i
\(438\) 22.2841 22.2841i 0.0508769 0.0508769i
\(439\) 216.958i 0.494209i −0.968989 0.247105i \(-0.920521\pi\)
0.968989 0.247105i \(-0.0794792\pi\)
\(440\) 151.068 239.891i 0.343337 0.545206i
\(441\) 0 0
\(442\) 38.7040 + 38.7040i 0.0875655 + 0.0875655i
\(443\) −30.6228 + 30.6228i −0.0691258 + 0.0691258i −0.740824 0.671699i \(-0.765565\pi\)
0.671699 + 0.740824i \(0.265565\pi\)
\(444\) 207.371i 0.467051i
\(445\) 85.8027 + 377.667i 0.192815 + 0.848690i
\(446\) −186.538 −0.418246
\(447\) 262.259 + 262.259i 0.586710 + 0.586710i
\(448\) 0 0
\(449\) 48.2524i 0.107466i −0.998555 0.0537332i \(-0.982888\pi\)
0.998555 0.0537332i \(-0.0171120\pi\)
\(450\) −18.0390 + 51.2237i −0.0400868 + 0.113831i
\(451\) 328.133 0.727567
\(452\) −27.1999 27.1999i −0.0601768 0.0601768i
\(453\) −159.808 + 159.808i −0.352778 + 0.352778i
\(454\) 476.600i 1.04978i
\(455\) 0 0
\(456\) 140.926 0.309049
\(457\) −204.908 204.908i −0.448377 0.448377i 0.446438 0.894815i \(-0.352692\pi\)
−0.894815 + 0.446438i \(0.852692\pi\)
\(458\) 381.893 381.893i 0.833827 0.833827i
\(459\) 355.581i 0.774687i
\(460\) −348.036 219.171i −0.756599 0.476459i
\(461\) 348.242 0.755407 0.377703 0.925927i \(-0.376714\pi\)
0.377703 + 0.925927i \(0.376714\pi\)
\(462\) 0 0
\(463\) −268.097 + 268.097i −0.579044 + 0.579044i −0.934640 0.355596i \(-0.884278\pi\)
0.355596 + 0.934640i \(0.384278\pi\)
\(464\) 76.0967i 0.164001i
\(465\) −45.7245 + 72.6089i −0.0983323 + 0.156148i
\(466\) 472.039 1.01296
\(467\) 352.594 + 352.594i 0.755019 + 0.755019i 0.975411 0.220392i \(-0.0707338\pi\)
−0.220392 + 0.975411i \(0.570734\pi\)
\(468\) −6.80607 + 6.80607i −0.0145429 + 0.0145429i
\(469\) 0 0
\(470\) 19.3520 + 85.1791i 0.0411744 + 0.181232i
\(471\) 107.152 0.227499
\(472\) 190.265 + 190.265i 0.403104 + 0.403104i
\(473\) 85.5303 85.5303i 0.180825 0.180825i
\(474\) 67.3886i 0.142170i
\(475\) 197.000 + 411.177i 0.414738 + 0.865637i
\(476\) 0 0
\(477\) −58.1548 58.1548i −0.121918 0.121918i
\(478\) −437.169 + 437.169i −0.914579 + 0.914579i
\(479\) 374.806i 0.782475i −0.920290 0.391238i \(-0.872047\pi\)
0.920290 0.391238i \(-0.127953\pi\)
\(480\) 75.3531 17.1196i 0.156986 0.0356658i
\(481\) −118.908 −0.247210
\(482\) −3.89241 3.89241i −0.00807554 0.00807554i
\(483\) 0 0
\(484\) 561.691i 1.16052i
\(485\) 629.064 + 396.145i 1.29704 + 0.816795i
\(486\) 115.942 0.238563
\(487\) 277.508 + 277.508i 0.569832 + 0.569832i 0.932081 0.362249i \(-0.117991\pi\)
−0.362249 + 0.932081i \(0.617991\pi\)
\(488\) −16.9183 + 16.9183i −0.0346687 + 0.0346687i
\(489\) 337.640i 0.690470i
\(490\) 0 0
\(491\) 100.451 0.204585 0.102293 0.994754i \(-0.467382\pi\)
0.102293 + 0.994754i \(0.467382\pi\)
\(492\) 63.2440 + 63.2440i 0.128545 + 0.128545i
\(493\) −166.176 + 166.176i −0.337070 + 0.337070i
\(494\) 80.8083i 0.163579i
\(495\) −34.1088 150.132i −0.0689066 0.303297i
\(496\) −25.1262 −0.0506576
\(497\) 0 0
\(498\) 243.785 243.785i 0.489527 0.489527i
\(499\) 394.800i 0.791182i 0.918427 + 0.395591i \(0.129460\pi\)
−0.918427 + 0.395591i \(0.870540\pi\)
\(500\) 155.285 + 195.925i 0.310571 + 0.391849i
\(501\) 669.725 1.33678
\(502\) 368.235 + 368.235i 0.733535 + 0.733535i
\(503\) −38.4894 + 38.4894i −0.0765197 + 0.0765197i −0.744331 0.667811i \(-0.767231\pi\)
0.667811 + 0.744331i \(0.267231\pi\)
\(504\) 0 0
\(505\) 621.362 141.168i 1.23042 0.279541i
\(506\) 1166.00 2.30435
\(507\) −307.516 307.516i −0.606540 0.606540i
\(508\) −49.5366 + 49.5366i −0.0975129 + 0.0975129i
\(509\) 510.759i 1.00346i −0.865025 0.501728i \(-0.832698\pi\)
0.865025 0.501728i \(-0.167302\pi\)
\(510\) −201.937 127.167i −0.395954 0.249347i
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 371.201 371.201i 0.723589 0.723589i
\(514\) 374.503i 0.728605i
\(515\) 20.0107 31.7763i 0.0388557 0.0617015i
\(516\) 32.9701 0.0638955
\(517\) −175.102 175.102i −0.338689 0.338689i
\(518\) 0 0
\(519\) 661.738i 1.27503i
\(520\) 9.81651 + 43.2081i 0.0188779 + 0.0830925i
\(521\) −785.097 −1.50690 −0.753452 0.657503i \(-0.771613\pi\)
−0.753452 + 0.657503i \(0.771613\pi\)
\(522\) −29.2219 29.2219i −0.0559807 0.0559807i
\(523\) −216.640 + 216.640i −0.414226 + 0.414226i −0.883208 0.468982i \(-0.844621\pi\)
0.468982 + 0.883208i \(0.344621\pi\)
\(524\) 289.449i 0.552383i
\(525\) 0 0
\(526\) −388.239 −0.738097
\(527\) 54.8691 + 54.8691i 0.104116 + 0.104116i
\(528\) −154.903 + 154.903i −0.293376 + 0.293376i
\(529\) 1162.65i 2.19782i
\(530\) −369.194 + 83.8777i −0.696592 + 0.158260i
\(531\) 146.128 0.275193
\(532\) 0 0
\(533\) −36.2647 + 36.2647i −0.0680387 + 0.0680387i
\(534\) 299.273i 0.560436i
\(535\) 488.500 + 307.627i 0.913084 + 0.575003i
\(536\) −32.1495 −0.0599804
\(537\) −334.943 334.943i −0.623730 0.623730i
\(538\) 139.255 139.255i 0.258839 0.258839i
\(539\) 0 0
\(540\) 153.388 243.574i 0.284051 0.451063i
\(541\) 529.610 0.978947 0.489474 0.872018i \(-0.337189\pi\)
0.489474 + 0.872018i \(0.337189\pi\)
\(542\) 62.0657 + 62.0657i 0.114512 + 0.114512i
\(543\) −458.353 + 458.353i −0.844113 + 0.844113i
\(544\) 69.8798i 0.128456i
\(545\) 47.2124 + 207.809i 0.0866282 + 0.381300i
\(546\) 0 0
\(547\) −343.777 343.777i −0.628477 0.628477i 0.319207 0.947685i \(-0.396583\pi\)
−0.947685 + 0.319207i \(0.896583\pi\)
\(548\) −66.7450 + 66.7450i −0.121797 + 0.121797i
\(549\) 12.9936i 0.0236678i
\(550\) −668.495 235.418i −1.21544 0.428033i
\(551\) −346.951 −0.629675
\(552\) 224.734 + 224.734i 0.407127 + 0.407127i
\(553\) 0 0
\(554\) 588.273i 1.06186i
\(555\) 505.544 114.855i 0.910890 0.206947i
\(556\) −242.947 −0.436955
\(557\) 263.079 + 263.079i 0.472315 + 0.472315i 0.902663 0.430348i \(-0.141609\pi\)
−0.430348 + 0.902663i \(0.641609\pi\)
\(558\) −9.64871 + 9.64871i −0.0172916 + 0.0172916i
\(559\) 18.9053i 0.0338199i
\(560\) 0 0
\(561\) 676.536 1.20595
\(562\) −370.599 370.599i −0.659428 0.659428i
\(563\) −678.813 + 678.813i −1.20571 + 1.20571i −0.233302 + 0.972404i \(0.574953\pi\)
−0.972404 + 0.233302i \(0.925047\pi\)
\(564\) 67.4981i 0.119677i
\(565\) −51.2449 + 81.3750i −0.0906989 + 0.144027i
\(566\) 682.637 1.20607
\(567\) 0 0
\(568\) −189.636 + 189.636i −0.333866 + 0.333866i
\(569\) 668.937i 1.17564i 0.808993 + 0.587818i \(0.200013\pi\)
−0.808993 + 0.587818i \(0.799987\pi\)
\(570\) −78.0540 343.561i −0.136937 0.602738i
\(571\) −272.787 −0.477735 −0.238868 0.971052i \(-0.576776\pi\)
−0.238868 + 0.971052i \(0.576776\pi\)
\(572\) −88.8225 88.8225i −0.155284 0.155284i
\(573\) −40.5379 + 40.5379i −0.0707468 + 0.0707468i
\(574\) 0 0
\(575\) −341.547 + 969.858i −0.593995 + 1.68671i
\(576\) 12.2883 0.0213339
\(577\) 153.009 + 153.009i 0.265180 + 0.265180i 0.827155 0.561974i \(-0.189958\pi\)
−0.561974 + 0.827155i \(0.689958\pi\)
\(578\) 136.400 136.400i 0.235987 0.235987i
\(579\) 136.742i 0.236169i
\(580\) −185.514 + 42.1472i −0.319852 + 0.0726677i
\(581\) 0 0
\(582\) −406.201 406.201i −0.697940 0.697940i
\(583\) 758.948 758.948i 1.30180 1.30180i
\(584\) 23.0704i 0.0395041i
\(585\) 20.3620 + 12.8227i 0.0348068 + 0.0219192i
\(586\) −406.867 −0.694312
\(587\) −193.451 193.451i −0.329559 0.329559i 0.522860 0.852419i \(-0.324865\pi\)
−0.852419 + 0.522860i \(0.824865\pi\)
\(588\) 0 0
\(589\) 114.559i 0.194497i
\(590\) 358.462 569.224i 0.607562 0.964786i
\(591\) 330.715 0.559586
\(592\) 107.344 + 107.344i 0.181324 + 0.181324i
\(593\) −102.991 + 102.991i −0.173679 + 0.173679i −0.788593 0.614915i \(-0.789190\pi\)
0.614915 + 0.788593i \(0.289190\pi\)
\(594\) 816.031i 1.37379i
\(595\) 0 0
\(596\) 271.514 0.455560
\(597\) 593.964 + 593.964i 0.994914 + 0.994914i
\(598\) −128.865 + 128.865i −0.215492 + 0.215492i
\(599\) 457.291i 0.763424i 0.924281 + 0.381712i \(0.124665\pi\)
−0.924281 + 0.381712i \(0.875335\pi\)
\(600\) −83.4708 174.219i −0.139118 0.290366i
\(601\) 369.587 0.614953 0.307477 0.951556i \(-0.400515\pi\)
0.307477 + 0.951556i \(0.400515\pi\)
\(602\) 0 0
\(603\) −12.3457 + 12.3457i −0.0204739 + 0.0204739i
\(604\) 165.447i 0.273919i
\(605\) 1369.33 311.101i 2.26336 0.514216i
\(606\) −492.383 −0.812513
\(607\) −165.381 165.381i −0.272456 0.272456i 0.557632 0.830088i \(-0.311710\pi\)
−0.830088 + 0.557632i \(0.811710\pi\)
\(608\) 72.9495 72.9495i 0.119983 0.119983i
\(609\) 0 0
\(610\) 50.6153 + 31.8743i 0.0829758 + 0.0522530i
\(611\) 38.7040 0.0633453
\(612\) −26.8346 26.8346i −0.0438474 0.0438474i
\(613\) 678.753 678.753i 1.10726 1.10726i 0.113756 0.993509i \(-0.463712\pi\)
0.993509 0.113756i \(-0.0362882\pi\)
\(614\) 0.414805i 0.000675578i
\(615\) 119.152 189.210i 0.193744 0.307658i
\(616\) 0 0
\(617\) 22.6455 + 22.6455i 0.0367026 + 0.0367026i 0.725220 0.688517i \(-0.241738\pi\)
−0.688517 + 0.725220i \(0.741738\pi\)
\(618\) −20.5187 + 20.5187i −0.0332017 + 0.0332017i
\(619\) 497.226i 0.803274i −0.915799 0.401637i \(-0.868441\pi\)
0.915799 0.401637i \(-0.131559\pi\)
\(620\) 13.9165 + 61.2545i 0.0224460 + 0.0987975i
\(621\) 1183.91 1.90645
\(622\) 356.021 + 356.021i 0.572382 + 0.572382i
\(623\) 0 0
\(624\) 34.2392i 0.0548705i
\(625\) 391.633 487.082i 0.626612 0.779331i
\(626\) −368.345 −0.588411
\(627\) 706.255 + 706.255i 1.12640 + 1.12640i
\(628\) 55.4664 55.4664i 0.0883224 0.0883224i
\(629\) 468.824i 0.745348i
\(630\) 0 0
\(631\) 965.780 1.53056 0.765278 0.643700i \(-0.222602\pi\)
0.765278 + 0.643700i \(0.222602\pi\)
\(632\) 34.8833 + 34.8833i 0.0551950 + 0.0551950i
\(633\) 225.222 225.222i 0.355801 0.355801i
\(634\) 109.391i 0.172541i
\(635\) 148.201 + 93.3274i 0.233387 + 0.146972i
\(636\) 292.558 0.459997
\(637\) 0 0
\(638\) 381.360 381.360i 0.597743 0.597743i
\(639\) 145.644i 0.227926i
\(640\) 30.1442 47.8678i 0.0471003 0.0747935i
\(641\) 1199.96 1.87202 0.936008 0.351978i \(-0.114491\pi\)
0.936008 + 0.351978i \(0.114491\pi\)
\(642\) −315.435 315.435i −0.491332 0.491332i
\(643\) 405.030 405.030i 0.629906 0.629906i −0.318138 0.948044i \(-0.603058\pi\)
0.948044 + 0.318138i \(0.103058\pi\)
\(644\) 0 0
\(645\) −18.2610 80.3770i −0.0283116 0.124615i
\(646\) −318.606 −0.493198
\(647\) −59.6805 59.6805i −0.0922418 0.0922418i 0.659480 0.751722i \(-0.270776\pi\)
−0.751722 + 0.659480i \(0.770776\pi\)
\(648\) −129.632 + 129.632i −0.200050 + 0.200050i
\(649\) 1907.04i 2.93842i
\(650\) 99.8989 47.8628i 0.153691 0.0736351i
\(651\) 0 0
\(652\) −174.777 174.777i −0.268063 0.268063i
\(653\) −339.289 + 339.289i −0.519586 + 0.519586i −0.917446 0.397860i \(-0.869753\pi\)
0.397860 + 0.917446i \(0.369753\pi\)
\(654\) 164.673i 0.251793i
\(655\) 705.640 160.315i 1.07731 0.244756i
\(656\) 65.4757 0.0998105
\(657\) −8.85928 8.85928i −0.0134844 0.0134844i
\(658\) 0 0
\(659\) 168.872i 0.256255i −0.991758 0.128127i \(-0.959103\pi\)
0.991758 0.128127i \(-0.0408966\pi\)
\(660\) 463.429 + 291.838i 0.702165 + 0.442179i
\(661\) −503.549 −0.761799 −0.380900 0.924616i \(-0.624386\pi\)
−0.380900 + 0.924616i \(0.624386\pi\)
\(662\) 86.2829 + 86.2829i 0.130337 + 0.130337i
\(663\) −74.7696 + 74.7696i −0.112775 + 0.112775i
\(664\) 252.387i 0.380101i
\(665\) 0 0
\(666\) 82.4425 0.123788
\(667\) −553.281 553.281i −0.829506 0.829506i
\(668\) 346.679 346.679i 0.518980 0.518980i
\(669\) 360.360i 0.538655i
\(670\) 17.8065 + 78.3765i 0.0265768 + 0.116980i
\(671\) −169.573 −0.252717
\(672\) 0 0
\(673\) 143.862 143.862i 0.213763 0.213763i −0.592101 0.805864i \(-0.701701\pi\)
0.805864 + 0.592101i \(0.201701\pi\)
\(674\) 185.691i 0.275506i
\(675\) −678.759 239.033i −1.00557 0.354123i
\(676\) −318.367 −0.470957
\(677\) 85.9199 + 85.9199i 0.126913 + 0.126913i 0.767710 0.640797i \(-0.221396\pi\)
−0.640797 + 0.767710i \(0.721396\pi\)
\(678\) 52.5457 52.5457i 0.0775010 0.0775010i
\(679\) 0 0
\(680\) −170.358 + 38.7040i −0.250527 + 0.0569176i
\(681\) −920.711 −1.35200
\(682\) −125.920 125.920i −0.184634 0.184634i
\(683\) −573.593 + 573.593i −0.839814 + 0.839814i −0.988834 0.149020i \(-0.952388\pi\)
0.149020 + 0.988834i \(0.452388\pi\)
\(684\) 56.0267i 0.0819104i
\(685\) 199.684 + 125.748i 0.291509 + 0.183574i
\(686\) 0 0
\(687\) 737.753 + 737.753i 1.07388 + 1.07388i
\(688\) 17.0667 17.0667i 0.0248063 0.0248063i
\(689\) 167.755i 0.243476i
\(690\) 423.402 672.347i 0.613626 0.974415i
\(691\) −32.6336 −0.0472266 −0.0236133 0.999721i \(-0.507517\pi\)
−0.0236133 + 0.999721i \(0.507517\pi\)
\(692\) −342.544 342.544i −0.495006 0.495006i
\(693\) 0 0
\(694\) 566.487i 0.816264i
\(695\) 134.560 + 592.274i 0.193611 + 0.852193i
\(696\) 147.006 0.211216
\(697\) −142.982 142.982i −0.205139 0.205139i
\(698\) 202.323 202.323i 0.289862 0.289862i
\(699\) 911.901i 1.30458i
\(700\) 0 0
\(701\) −311.596 −0.444503 −0.222251 0.974989i \(-0.571341\pi\)
−0.222251 + 0.974989i \(0.571341\pi\)
\(702\) −90.1863 90.1863i −0.128471 0.128471i
\(703\) 489.418 489.418i 0.696186 0.696186i
\(704\) 160.369i 0.227796i
\(705\) −164.552 + 37.3848i −0.233407 + 0.0530281i
\(706\) −466.952 −0.661405
\(707\) 0 0
\(708\) −367.561 + 367.561i −0.519154 + 0.519154i
\(709\) 719.127i 1.01428i −0.861863 0.507142i \(-0.830702\pi\)
0.861863 0.507142i \(-0.169298\pi\)
\(710\) 567.342 + 357.276i 0.799073 + 0.503206i
\(711\) 26.7911 0.0376808
\(712\) −154.916 154.916i −0.217579 0.217579i
\(713\) −182.686 + 182.686i −0.256222 + 0.256222i
\(714\) 0 0
\(715\) −167.343 + 265.734i −0.234045 + 0.371656i
\(716\) −346.762 −0.484304
\(717\) −844.538 844.538i −1.17788 1.17788i
\(718\) −31.3178 + 31.3178i −0.0436181 + 0.0436181i
\(719\) 321.939i 0.447760i 0.974617 + 0.223880i \(0.0718724\pi\)
−0.974617 + 0.223880i \(0.928128\pi\)
\(720\) −6.80607 29.9574i −0.00945288 0.0416075i
\(721\) 0 0
\(722\) 28.3982 + 28.3982i 0.0393327 + 0.0393327i
\(723\) 7.51949 7.51949i 0.0104004 0.0104004i
\(724\) 474.527i 0.655424i
\(725\) 205.499 + 428.916i 0.283447 + 0.591609i
\(726\) −1085.09 −1.49462
\(727\) −905.157 905.157i −1.24506 1.24506i −0.957876 0.287182i \(-0.907282\pi\)
−0.287182 0.957876i \(-0.592718\pi\)
\(728\) 0 0
\(729\) 807.326i 1.10744i
\(730\) −56.2428 + 12.7779i −0.0770449 + 0.0175039i
\(731\) −74.5388 −0.101968
\(732\) −32.6834 32.6834i −0.0446495 0.0446495i
\(733\) 652.173 652.173i 0.889731 0.889731i −0.104766 0.994497i \(-0.533409\pi\)
0.994497 + 0.104766i \(0.0334095\pi\)
\(734\) 248.207i 0.338157i
\(735\) 0 0
\(736\) 232.664 0.316120
\(737\) −161.118 161.118i −0.218613 0.218613i
\(738\) 25.1433 25.1433i 0.0340696 0.0340696i
\(739\) 452.333i 0.612088i 0.952017 + 0.306044i \(0.0990055\pi\)
−0.952017 + 0.306044i \(0.900995\pi\)
\(740\) 202.237 321.145i 0.273294 0.433980i
\(741\) −156.108 −0.210672
\(742\) 0 0
\(743\) 664.894 664.894i 0.894877 0.894877i −0.100100 0.994977i \(-0.531916\pi\)
0.994977 + 0.100100i \(0.0319164\pi\)
\(744\) 48.5396i 0.0652414i
\(745\) −150.382 661.916i −0.201855 0.888478i
\(746\) 152.858 0.204903
\(747\) −96.9191 96.9191i −0.129744 0.129744i
\(748\) 350.204 350.204i 0.468187 0.468187i
\(749\) 0 0
\(750\) −378.494 + 299.985i −0.504658 + 0.399980i
\(751\) −225.769 −0.300625 −0.150312 0.988639i \(-0.548028\pi\)
−0.150312 + 0.988639i \(0.548028\pi\)
\(752\) −34.9399 34.9399i −0.0464627 0.0464627i
\(753\) −711.368 + 711.368i −0.944712 + 0.944712i
\(754\) 84.2945i 0.111796i
\(755\) 403.340 91.6354i 0.534225 0.121371i
\(756\) 0 0
\(757\) −445.497 445.497i −0.588503 0.588503i 0.348723 0.937226i \(-0.386615\pi\)
−0.937226 + 0.348723i \(0.886615\pi\)
\(758\) 370.389 370.389i 0.488639 0.488639i
\(759\) 2252.52i 2.96775i
\(760\) −218.246 137.438i −0.287166 0.180839i
\(761\) −359.782 −0.472775 −0.236388 0.971659i \(-0.575964\pi\)
−0.236388 + 0.971659i \(0.575964\pi\)
\(762\) −95.6964 95.6964i −0.125586 0.125586i
\(763\) 0 0
\(764\) 41.9683i 0.0549324i
\(765\) −50.5566 + 80.2821i −0.0660871 + 0.104944i
\(766\) 4.97649 0.00649673
\(767\) −210.762 210.762i −0.274788 0.274788i
\(768\) −30.9093 + 30.9093i −0.0402465 + 0.0402465i
\(769\) 1100.57i 1.43117i 0.698527 + 0.715584i \(0.253839\pi\)
−0.698527 + 0.715584i \(0.746161\pi\)
\(770\) 0 0
\(771\) −723.478 −0.938363
\(772\) −70.7834 70.7834i −0.0916884 0.0916884i
\(773\) −9.13968 + 9.13968i −0.0118236 + 0.0118236i −0.712994 0.701170i \(-0.752661\pi\)
0.701170 + 0.712994i \(0.252661\pi\)
\(774\) 13.1076i 0.0169349i
\(775\) 141.623 67.8533i 0.182739 0.0875527i
\(776\) −420.534 −0.541925
\(777\) 0 0
\(778\) −725.344 + 725.344i −0.932319 + 0.932319i
\(779\) 298.526i 0.383217i
\(780\) −83.4708 + 18.9639i −0.107014 + 0.0243126i
\(781\) −1900.73 −2.43371
\(782\) −508.079 508.079i −0.649718 0.649718i
\(783\) 387.216 387.216i 0.494528 0.494528i
\(784\) 0 0
\(785\) −165.941 104.499i −0.211390 0.133120i
\(786\) −559.167 −0.711408
\(787\) −878.847 878.847i −1.11671 1.11671i −0.992222 0.124484i \(-0.960273\pi\)
−0.124484 0.992222i \(-0.539727\pi\)
\(788\) 171.193 171.193i 0.217249 0.217249i
\(789\) 750.013i 0.950586i
\(790\) 65.7204 104.362i 0.0831904 0.132103i
\(791\) 0 0
\(792\) 61.5832 + 61.5832i 0.0777566 + 0.0777566i
\(793\) 18.7409 18.7409i 0.0236330 0.0236330i
\(794\) 181.187i 0.228195i
\(795\) −162.038 713.220i −0.203821 0.897133i
\(796\) 614.922 0.772515
\(797\) −658.639 658.639i −0.826398 0.826398i 0.160618 0.987017i \(-0.448651\pi\)
−0.987017 + 0.160618i \(0.948651\pi\)
\(798\) 0 0
\(799\) 152.600i 0.190988i
\(800\) −133.392 46.9754i −0.166739 0.0587193i
\(801\) −118.979 −0.148538
\(802\) −700.963 700.963i −0.874019 0.874019i
\(803\) 115.618 115.618i 0.143982 0.143982i
\(804\) 62.1075i 0.0772481i
\(805\) 0 0
\(806\) 27.8330 0.0345322
\(807\) 269.018 + 269.018i 0.333355 + 0.333355i
\(808\) −254.878 + 254.878i −0.315444 + 0.315444i
\(809\) 823.241i 1.01760i 0.860884 + 0.508802i \(0.169911\pi\)
−0.860884 + 0.508802i \(0.830089\pi\)
\(810\) 387.826 + 244.229i 0.478798 + 0.301517i
\(811\) −1415.46 −1.74533 −0.872666 0.488318i \(-0.837610\pi\)
−0.872666 + 0.488318i \(0.837610\pi\)
\(812\) 0 0
\(813\) −119.901 + 119.901i −0.147479 + 0.147479i
\(814\) 1075.91i 1.32176i
\(815\) −329.282 + 522.887i −0.404026 + 0.641579i
\(816\) 134.996 0.165436
\(817\) −77.8131 77.8131i −0.0952425 0.0952425i
\(818\) −452.456 + 452.456i −0.553124 + 0.553124i
\(819\) 0 0
\(820\) −36.2647 159.621i −0.0442252 0.194660i
\(821\) 57.6843 0.0702610 0.0351305 0.999383i \(-0.488815\pi\)
0.0351305 + 0.999383i \(0.488815\pi\)
\(822\) −128.940 128.940i −0.156861 0.156861i
\(823\) 273.359 273.359i 0.332150 0.332150i −0.521252 0.853403i \(-0.674535\pi\)
0.853403 + 0.521252i \(0.174535\pi\)
\(824\) 21.2427i 0.0257799i
\(825\) 454.789 1291.42i 0.551259 1.56536i
\(826\) 0 0
\(827\) 84.0099 + 84.0099i 0.101584 + 0.101584i 0.756072 0.654488i \(-0.227116\pi\)
−0.654488 + 0.756072i \(0.727116\pi\)
\(828\) 89.3455 89.3455i 0.107905 0.107905i
\(829\) 1016.80i 1.22654i 0.789875 + 0.613268i \(0.210146\pi\)
−0.789875 + 0.613268i \(0.789854\pi\)
\(830\) −615.287 + 139.788i −0.741310 + 0.168419i
\(831\) 1136.44 1.36756
\(832\) −17.7237 17.7237i −0.0213025 0.0213025i
\(833\) 0 0
\(834\) 469.333i 0.562749i
\(835\) −1037.17 653.146i −1.24212 0.782211i
\(836\) 731.176 0.874612
\(837\) −127.854 127.854i −0.152752 0.152752i
\(838\) 248.174 248.174i 0.296151 0.296151i
\(839\) 538.853i 0.642256i 0.947036 + 0.321128i \(0.104062\pi\)
−0.947036 + 0.321128i \(0.895938\pi\)
\(840\) 0 0
\(841\) 479.081 0.569656
\(842\) −238.992 238.992i −0.283838 0.283838i
\(843\) 715.935 715.935i 0.849271 0.849271i
\(844\) 233.169i 0.276267i
\(845\) 176.332 + 776.139i 0.208677 + 0.918508i
\(846\) −26.8346 −0.0317194
\(847\) 0 0
\(848\) 151.441 151.441i 0.178586 0.178586i
\(849\) 1318.74i 1.55329i
\(850\) 188.711 + 393.875i 0.222013 + 0.463383i
\(851\) 1560.95 1.83425
\(852\) −366.345 366.345i −0.429983 0.429983i
\(853\) −1067.08 + 1067.08i −1.25098 + 1.25098i −0.295694 + 0.955283i \(0.595551\pi\)
−0.955283 + 0.295694i \(0.904449\pi\)
\(854\) 0 0
\(855\) −136.586 + 31.0312i −0.159750 + 0.0362938i
\(856\) −326.566 −0.381502
\(857\) 717.100 + 717.100i 0.836756 + 0.836756i 0.988431 0.151674i \(-0.0484665\pi\)
−0.151674 + 0.988431i \(0.548466\pi\)
\(858\) 171.590 171.590i 0.199989 0.199989i
\(859\) 227.147i 0.264432i 0.991221 + 0.132216i \(0.0422092\pi\)
−0.991221 + 0.132216i \(0.957791\pi\)
\(860\) −51.0592 32.1539i −0.0593712 0.0373883i
\(861\) 0 0
\(862\) −130.746 130.746i −0.151677 0.151677i
\(863\) −344.431 + 344.431i −0.399109 + 0.399109i −0.877919 0.478810i \(-0.841068\pi\)
0.478810 + 0.877919i \(0.341068\pi\)
\(864\) 162.831i 0.188462i
\(865\) −645.357 + 1024.80i −0.746077 + 1.18474i
\(866\) 913.701 1.05508
\(867\) 263.503 + 263.503i 0.303925 + 0.303925i
\(868\) 0 0
\(869\) 349.636i 0.402343i
\(870\) −81.4214 358.382i −0.0935879 0.411934i
\(871\) 35.6129 0.0408874
\(872\) −85.2417 85.2417i −0.0977543 0.0977543i
\(873\) −161.489 + 161.489i −0.184982 + 0.184982i
\(874\) 1060.80i 1.21373i
\(875\) 0 0
\(876\) 44.5682 0.0508769
\(877\) −100.877 100.877i −0.115025 0.115025i 0.647251 0.762277i \(-0.275918\pi\)
−0.762277 + 0.647251i \(0.775918\pi\)
\(878\) 216.958 216.958i 0.247105 0.247105i
\(879\) 785.998i 0.894196i
\(880\) 390.959 88.8225i 0.444271 0.100935i
\(881\) 21.6989 0.0246299 0.0123149 0.999924i \(-0.496080\pi\)
0.0123149 + 0.999924i \(0.496080\pi\)
\(882\) 0 0
\(883\) −100.328 + 100.328i −0.113622 + 0.113622i −0.761632 0.648010i \(-0.775602\pi\)
0.648010 + 0.761632i \(0.275602\pi\)
\(884\) 77.4079i 0.0875655i
\(885\) 1099.65 + 692.488i 1.24254 + 0.782473i
\(886\) −61.2455 −0.0691258
\(887\) −344.638 344.638i −0.388543 0.388543i 0.485625 0.874167i \(-0.338592\pi\)
−0.874167 + 0.485625i \(0.838592\pi\)
\(888\) −207.371 + 207.371i −0.233526 + 0.233526i
\(889\) 0 0
\(890\) −291.864 + 463.470i −0.327937 + 0.520752i
\(891\) −1299.31 −1.45826
\(892\) −186.538 186.538i −0.209123 0.209123i
\(893\) −159.303 + 159.303i −0.178391 + 0.178391i
\(894\) 524.519i 0.586710i
\(895\) 192.059 + 845.362i 0.214591 + 0.944539i
\(896\) 0 0
\(897\) −248.945 248.945i −0.277530 0.277530i
\(898\) 48.2524 48.2524i 0.0537332 0.0537332i
\(899\) 119.501i 0.132927i
\(900\) −69.2628 + 33.1847i −0.0769587 + 0.0368719i
\(901\) −661.416 −0.734091
\(902\) 328.133 + 328.133i 0.363783 + 0.363783i
\(903\) 0 0
\(904\) 54.3998i 0.0601768i
\(905\) 1156.84 262.823i 1.27827 0.290413i
\(906\) −319.616 −0.352778
\(907\) 6.57168 + 6.57168i 0.00724552 + 0.00724552i 0.710720 0.703475i \(-0.248369\pi\)
−0.703475 + 0.710720i \(0.748369\pi\)
\(908\) −476.600 + 476.600i −0.524890 + 0.524890i
\(909\) 195.752i 0.215349i
\(910\) 0 0
\(911\) −1071.38 −1.17605 −0.588027 0.808841i \(-0.700095\pi\)
−0.588027 + 0.808841i \(0.700095\pi\)
\(912\) 140.926 + 140.926i 0.154524 + 0.154524i
\(913\) 1264.84 1264.84i 1.38537 1.38537i
\(914\) 409.817i 0.448377i
\(915\) −61.5759 + 97.7802i −0.0672960 + 0.106864i
\(916\) 763.785 0.833827
\(917\) 0 0
\(918\) 355.581 355.581i 0.387343 0.387343i
\(919\) 1369.97i 1.49071i 0.666666 + 0.745357i \(0.267721\pi\)
−0.666666 + 0.745357i \(0.732279\pi\)
\(920\) −128.865 567.207i −0.140070 0.616529i
\(921\) −0.801333 −0.000870069
\(922\) 348.242 + 348.242i 0.377703 + 0.377703i
\(923\) 210.065 210.065i 0.227590 0.227590i
\(924\) 0 0
\(925\) −894.925 315.158i −0.967486 0.340712i
\(926\) −536.194 −0.579044
\(927\) 8.15741 + 8.15741i 0.00879979 + 0.00879979i
\(928\) 76.0967 76.0967i 0.0820007 0.0820007i
\(929\) 944.660i 1.01686i −0.861104 0.508429i \(-0.830227\pi\)
0.861104 0.508429i \(-0.169773\pi\)
\(930\) −118.333 + 26.8843i −0.127240 + 0.0289079i
\(931\) 0 0
\(932\) 472.039 + 472.039i 0.506480 + 0.506480i
\(933\) −687.774 + 687.774i −0.737164 + 0.737164i
\(934\) 705.188i 0.755019i
\(935\) −1047.72 659.788i −1.12056 0.705656i
\(936\) −13.6121 −0.0145429
\(937\) 649.423 + 649.423i 0.693087 + 0.693087i 0.962910 0.269823i \(-0.0869651\pi\)
−0.269823 + 0.962910i \(0.586965\pi\)
\(938\) 0 0
\(939\) 711.582i 0.757808i
\(940\) −65.8272 + 104.531i −0.0700289 + 0.111203i
\(941\) −36.1795 −0.0384479 −0.0192240 0.999815i \(-0.506120\pi\)
−0.0192240 + 0.999815i \(0.506120\pi\)
\(942\) 107.152 + 107.152i 0.113749 + 0.113749i
\(943\) 476.058 476.058i 0.504833 0.504833i
\(944\) 380.530i 0.403104i
\(945\) 0 0
\(946\) 171.061 0.180825
\(947\) −1069.11 1069.11i −1.12895 1.12895i −0.990349 0.138599i \(-0.955740\pi\)
−0.138599 0.990349i \(-0.544260\pi\)
\(948\) −67.3886 + 67.3886i −0.0710850 + 0.0710850i
\(949\) 25.5558i 0.0269291i
\(950\) −214.177 + 608.178i −0.225450 + 0.640187i
\(951\) 211.325 0.222214
\(952\) 0 0
\(953\) −152.501 + 152.501i −0.160022 + 0.160022i −0.782576 0.622555i \(-0.786095\pi\)
0.622555 + 0.782576i \(0.286095\pi\)
\(954\) 116.310i 0.121918i
\(955\) 102.314 23.2448i 0.107135 0.0243401i
\(956\) −874.338 −0.914579
\(957\) 736.724 + 736.724i 0.769826 + 0.769826i
\(958\) 374.806 374.806i 0.391238 0.391238i
\(959\) 0 0
\(960\) 92.4727 + 58.2335i 0.0963257 + 0.0606599i
\(961\) −921.542 −0.958941
\(962\) −118.908 118.908i −0.123605 0.123605i
\(963\) −125.405 + 125.405i −0.130223 + 0.130223i
\(964\) 7.78482i 0.00807554i
\(965\) −133.357 + 211.766i −0.138194 + 0.219446i
\(966\) 0 0
\(967\) 440.127 + 440.127i 0.455147 + 0.455147i 0.897059 0.441911i \(-0.145699\pi\)
−0.441911 + 0.897059i \(0.645699\pi\)
\(968\) −561.691 + 561.691i −0.580259 + 0.580259i
\(969\) 615.494i 0.635185i
\(970\) 232.919 + 1025.21i 0.240123 + 1.05692i
\(971\) 620.316 0.638843 0.319421 0.947613i \(-0.396511\pi\)
0.319421 + 0.947613i \(0.396511\pi\)
\(972\) 115.942 + 115.942i 0.119281 + 0.119281i
\(973\) 0 0
\(974\) 555.017i 0.569832i
\(975\) 92.4630 + 192.988i 0.0948339 + 0.197936i
\(976\) −33.8367 −0.0346687
\(977\) 75.5113 + 75.5113i 0.0772890 + 0.0772890i 0.744694 0.667406i \(-0.232595\pi\)
−0.667406 + 0.744694i \(0.732595\pi\)
\(978\) 337.640 337.640i 0.345235 0.345235i
\(979\) 1552.73i 1.58604i
\(980\) 0 0
\(981\) −65.4674 −0.0667354
\(982\) 100.451 + 100.451i 0.102293 + 0.102293i
\(983\) −34.3933 + 34.3933i −0.0349881 + 0.0349881i −0.724384 0.689396i \(-0.757876\pi\)
0.689396 + 0.724384i \(0.257876\pi\)
\(984\) 126.488i 0.128545i
\(985\) −512.164 322.529i −0.519963 0.327440i
\(986\) −332.351 −0.337070
\(987\) 0 0
\(988\) −80.8083 + 80.8083i −0.0817897 + 0.0817897i
\(989\) 248.176i 0.250937i
\(990\) 116.023 184.241i 0.117195 0.186102i
\(991\) 726.700 0.733300 0.366650 0.930359i \(-0.380505\pi\)
0.366650 + 0.930359i \(0.380505\pi\)
\(992\) −25.1262 25.1262i −0.0253288 0.0253288i
\(993\) −166.684 + 166.684i −0.167859 + 0.167859i
\(994\) 0 0
\(995\) −340.584 1499.10i −0.342295 1.50664i
\(996\) 487.569 0.489527
\(997\) 964.210 + 964.210i 0.967112 + 0.967112i 0.999476 0.0323644i \(-0.0103037\pi\)
−0.0323644 + 0.999476i \(0.510304\pi\)
\(998\) −394.800 + 394.800i −0.395591 + 0.395591i
\(999\) 1092.43i 1.09353i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.3.f.o.197.2 8
5.3 odd 4 inner 490.3.f.o.393.2 8
7.2 even 3 70.3.l.c.67.2 yes 16
7.4 even 3 70.3.l.c.37.3 yes 16
7.6 odd 2 490.3.f.p.197.3 8
35.2 odd 12 350.3.p.e.193.2 16
35.4 even 6 350.3.p.e.107.2 16
35.9 even 6 350.3.p.e.207.3 16
35.13 even 4 490.3.f.p.393.3 8
35.18 odd 12 70.3.l.c.23.2 16
35.23 odd 12 70.3.l.c.53.3 yes 16
35.32 odd 12 350.3.p.e.93.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.c.23.2 16 35.18 odd 12
70.3.l.c.37.3 yes 16 7.4 even 3
70.3.l.c.53.3 yes 16 35.23 odd 12
70.3.l.c.67.2 yes 16 7.2 even 3
350.3.p.e.93.3 16 35.32 odd 12
350.3.p.e.107.2 16 35.4 even 6
350.3.p.e.193.2 16 35.2 odd 12
350.3.p.e.207.3 16 35.9 even 6
490.3.f.o.197.2 8 1.1 even 1 trivial
490.3.f.o.393.2 8 5.3 odd 4 inner
490.3.f.p.197.3 8 7.6 odd 2
490.3.f.p.393.3 8 35.13 even 4