Properties

Label 490.2.q
Level $490$
Weight $2$
Character orbit 490.q
Rep. character $\chi_{490}(11,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $240$
Newform subspaces $4$
Sturm bound $168$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 490.q (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 4 \)
Sturm bound: \(168\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(490, [\chi])\).

Total New Old
Modular forms 1056 240 816
Cusp forms 960 240 720
Eisenstein series 96 0 96

Trace form

\( 240 q + 20 q^{4} - 2 q^{5} + 10 q^{6} + 8 q^{7} + 40 q^{9} - 2 q^{10} + 2 q^{11} - 2 q^{14} + 20 q^{16} - 4 q^{17} + 8 q^{18} - 6 q^{19} + 4 q^{20} + 18 q^{21} - 8 q^{22} + 96 q^{23} + 2 q^{24} + 20 q^{25}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(490, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
490.2.q.a 490.q 49.g $48$ $3.913$ None 490.2.q.a \(4\) \(8\) \(4\) \(0\) $\mathrm{SU}(2)[C_{21}]$
490.2.q.b 490.q 49.g $60$ $3.913$ None 490.2.q.b \(-5\) \(-8\) \(5\) \(4\) $\mathrm{SU}(2)[C_{21}]$
490.2.q.c 490.q 49.g $60$ $3.913$ None 490.2.q.c \(-5\) \(0\) \(-5\) \(1\) $\mathrm{SU}(2)[C_{21}]$
490.2.q.d 490.q 49.g $72$ $3.913$ None 490.2.q.d \(6\) \(0\) \(-6\) \(3\) $\mathrm{SU}(2)[C_{21}]$

Decomposition of \(S_{2}^{\mathrm{old}}(490, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(490, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)