Defining parameters
Level: | \( N \) | \(=\) | \( 490 = 2 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 490.q (of order \(21\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 49 \) |
Character field: | \(\Q(\zeta_{21})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(490, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1056 | 240 | 816 |
Cusp forms | 960 | 240 | 720 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(490, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
490.2.q.a | $48$ | $3.913$ | None | \(4\) | \(8\) | \(4\) | \(0\) | ||
490.2.q.b | $60$ | $3.913$ | None | \(-5\) | \(-8\) | \(5\) | \(4\) | ||
490.2.q.c | $60$ | $3.913$ | None | \(-5\) | \(0\) | \(-5\) | \(1\) | ||
490.2.q.d | $72$ | $3.913$ | None | \(6\) | \(0\) | \(-6\) | \(3\) |
Decomposition of \(S_{2}^{\mathrm{old}}(490, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(490, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)