Properties

Label 490.2.i.f
Level $490$
Weight $2$
Character orbit 490.i
Analytic conductor $3.913$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,2,Mod(79,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 490.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.91266969904\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} - \beta_1) q^{2} + ( - \beta_{6} - \beta_{5}) q^{3} + ( - \beta_{2} + 1) q^{4} + ( - \beta_{7} + \beta_{4} + \cdots - \beta_1) q^{5}+ \cdots + 3 \beta_{2} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{4} - \beta_1) q^{2} + ( - \beta_{6} - \beta_{5}) q^{3} + ( - \beta_{2} + 1) q^{4} + ( - \beta_{7} + \beta_{4} + \cdots - \beta_1) q^{5}+ \cdots + ( - 6 \beta_{7} + 6 \beta_{5} - 6 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 4 q^{5} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{4} + 4 q^{5} + 12 q^{9} + 4 q^{10} + 24 q^{15} - 4 q^{16} - 16 q^{19} + 8 q^{20} - 8 q^{26} - 16 q^{29} - 12 q^{30} + 16 q^{31} - 16 q^{34} + 24 q^{36} - 24 q^{39} - 4 q^{40} + 48 q^{41} - 12 q^{45} - 8 q^{46} - 8 q^{50} + 48 q^{55} + 16 q^{59} + 12 q^{60} + 24 q^{61} - 8 q^{64} + 4 q^{65} - 48 q^{66} - 96 q^{69} - 48 q^{71} - 8 q^{74} - 32 q^{76} + 8 q^{79} + 4 q^{80} + 36 q^{81} - 16 q^{85} + 16 q^{86} + 40 q^{89} + 24 q^{90} + 16 q^{94} + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{4} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{24}^{5} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \zeta_{24}^{7} + \zeta_{24}^{3} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{24}^{5} + 2\zeta_{24} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{24}^{7} + 2\zeta_{24}^{3} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{6} + \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( \beta_{7} + \beta_{5} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( -\beta_{6} + 2\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( \beta_{4} \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( -\beta_{7} + 2\beta_{5} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(-\beta_{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
0.965926 0.258819i
−0.965926 + 0.258819i
−0.258819 0.965926i
0.258819 + 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
−0.258819 + 0.965926i
0.258819 0.965926i
−0.866025 0.500000i −2.12132 + 1.22474i 0.500000 + 0.866025i −2.03906 0.917738i 2.44949 0 1.00000i 1.50000 2.59808i 1.30701 + 1.81431i
79.2 −0.866025 0.500000i 2.12132 1.22474i 0.500000 + 0.866025i 1.30701 1.81431i −2.44949 0 1.00000i 1.50000 2.59808i −2.03906 + 0.917738i
79.3 0.866025 + 0.500000i −2.12132 + 1.22474i 0.500000 + 0.866025i 0.917738 2.03906i −2.44949 0 1.00000i 1.50000 2.59808i 1.81431 1.30701i
79.4 0.866025 + 0.500000i 2.12132 1.22474i 0.500000 + 0.866025i 1.81431 + 1.30701i 2.44949 0 1.00000i 1.50000 2.59808i 0.917738 + 2.03906i
459.1 −0.866025 + 0.500000i −2.12132 1.22474i 0.500000 0.866025i −2.03906 + 0.917738i 2.44949 0 1.00000i 1.50000 + 2.59808i 1.30701 1.81431i
459.2 −0.866025 + 0.500000i 2.12132 + 1.22474i 0.500000 0.866025i 1.30701 + 1.81431i −2.44949 0 1.00000i 1.50000 + 2.59808i −2.03906 0.917738i
459.3 0.866025 0.500000i −2.12132 1.22474i 0.500000 0.866025i 0.917738 + 2.03906i −2.44949 0 1.00000i 1.50000 + 2.59808i 1.81431 + 1.30701i
459.4 0.866025 0.500000i 2.12132 + 1.22474i 0.500000 0.866025i 1.81431 1.30701i 2.44949 0 1.00000i 1.50000 + 2.59808i 0.917738 2.03906i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 79.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.2.i.f 8
5.b even 2 1 inner 490.2.i.f 8
7.b odd 2 1 490.2.i.c 8
7.c even 3 1 490.2.c.e 4
7.c even 3 1 inner 490.2.i.f 8
7.d odd 6 1 70.2.c.a 4
7.d odd 6 1 490.2.i.c 8
21.g even 6 1 630.2.g.g 4
28.f even 6 1 560.2.g.e 4
35.c odd 2 1 490.2.i.c 8
35.i odd 6 1 70.2.c.a 4
35.i odd 6 1 490.2.i.c 8
35.j even 6 1 490.2.c.e 4
35.j even 6 1 inner 490.2.i.f 8
35.k even 12 1 350.2.a.g 2
35.k even 12 1 350.2.a.h 2
35.l odd 12 1 2450.2.a.bl 2
35.l odd 12 1 2450.2.a.bq 2
56.j odd 6 1 2240.2.g.j 4
56.m even 6 1 2240.2.g.i 4
84.j odd 6 1 5040.2.t.t 4
105.p even 6 1 630.2.g.g 4
105.w odd 12 1 3150.2.a.bs 2
105.w odd 12 1 3150.2.a.bt 2
140.s even 6 1 560.2.g.e 4
140.x odd 12 1 2800.2.a.bl 2
140.x odd 12 1 2800.2.a.bm 2
280.ba even 6 1 2240.2.g.i 4
280.bk odd 6 1 2240.2.g.j 4
420.be odd 6 1 5040.2.t.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.c.a 4 7.d odd 6 1
70.2.c.a 4 35.i odd 6 1
350.2.a.g 2 35.k even 12 1
350.2.a.h 2 35.k even 12 1
490.2.c.e 4 7.c even 3 1
490.2.c.e 4 35.j even 6 1
490.2.i.c 8 7.b odd 2 1
490.2.i.c 8 7.d odd 6 1
490.2.i.c 8 35.c odd 2 1
490.2.i.c 8 35.i odd 6 1
490.2.i.f 8 1.a even 1 1 trivial
490.2.i.f 8 5.b even 2 1 inner
490.2.i.f 8 7.c even 3 1 inner
490.2.i.f 8 35.j even 6 1 inner
560.2.g.e 4 28.f even 6 1
560.2.g.e 4 140.s even 6 1
630.2.g.g 4 21.g even 6 1
630.2.g.g 4 105.p even 6 1
2240.2.g.i 4 56.m even 6 1
2240.2.g.i 4 280.ba even 6 1
2240.2.g.j 4 56.j odd 6 1
2240.2.g.j 4 280.bk odd 6 1
2450.2.a.bl 2 35.l odd 12 1
2450.2.a.bq 2 35.l odd 12 1
2800.2.a.bl 2 140.x odd 12 1
2800.2.a.bm 2 140.x odd 12 1
3150.2.a.bs 2 105.w odd 12 1
3150.2.a.bt 2 105.w odd 12 1
5040.2.t.t 4 84.j odd 6 1
5040.2.t.t 4 420.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(490, [\chi])\):

\( T_{3}^{4} - 6T_{3}^{2} + 36 \) Copy content Toggle raw display
\( T_{11}^{4} + 24T_{11}^{2} + 576 \) Copy content Toggle raw display
\( T_{19}^{4} + 8T_{19}^{3} + 54T_{19}^{2} + 80T_{19} + 100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{4} - 6 T^{2} + 36)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} - 4 T^{7} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{4} + 24 T^{2} + 576)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 20 T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 4 T^{2} + 16)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 8 T^{3} + \cdots + 100)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} - 56 T^{6} + \cdots + 160000 \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T - 20)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} - 8 T^{3} + 72 T^{2} + \cdots + 64)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 4 T^{2} + 16)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 12 T + 12)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 80 T^{2} + 64)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} - 80 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$53$ \( T^{8} - 120 T^{6} + \cdots + 20736 \) Copy content Toggle raw display
$59$ \( (T^{4} - 8 T^{3} + \cdots + 100)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 12 T^{3} + \cdots + 900)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 64 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 12 T + 12)^{4} \) Copy content Toggle raw display
$73$ \( T^{8} - 56 T^{6} + \cdots + 160000 \) Copy content Toggle raw display
$79$ \( (T^{4} - 4 T^{3} + \cdots + 400)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 6)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 10 T + 100)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 264 T^{2} + 3600)^{2} \) Copy content Toggle raw display
show more
show less