Properties

Label 490.2.i.a.459.1
Level $490$
Weight $2$
Character 490.459
Analytic conductor $3.913$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 490.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.91266969904\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 459.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 490.459
Dual form 490.2.i.a.79.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-1.86603 - 1.23205i) q^{5} +1.00000i q^{8} +(-1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-1.86603 - 1.23205i) q^{5} +1.00000i q^{8} +(-1.50000 - 2.59808i) q^{9} +(2.23205 + 0.133975i) q^{10} +(-1.50000 + 2.59808i) q^{11} +5.00000i q^{13} +(-0.500000 - 0.866025i) q^{16} +(1.73205 + 1.00000i) q^{17} +(2.59808 + 1.50000i) q^{18} +(2.50000 + 4.33013i) q^{19} +(-2.00000 + 1.00000i) q^{20} -3.00000i q^{22} +(-6.06218 + 3.50000i) q^{23} +(1.96410 + 4.59808i) q^{25} +(-2.50000 - 4.33013i) q^{26} +4.00000 q^{29} +(-1.00000 + 1.73205i) q^{31} +(0.866025 + 0.500000i) q^{32} -2.00000 q^{34} -3.00000 q^{36} +(-0.866025 + 0.500000i) q^{37} +(-4.33013 - 2.50000i) q^{38} +(1.23205 - 1.86603i) q^{40} -3.00000 q^{41} +2.00000i q^{43} +(1.50000 + 2.59808i) q^{44} +(-0.401924 + 6.69615i) q^{45} +(3.50000 - 6.06218i) q^{46} +(-6.06218 + 3.50000i) q^{47} +(-4.00000 - 3.00000i) q^{50} +(4.33013 + 2.50000i) q^{52} +(-7.79423 - 4.50000i) q^{53} +(6.00000 - 3.00000i) q^{55} +(-3.46410 + 2.00000i) q^{58} +(2.00000 - 3.46410i) q^{59} +(3.00000 + 5.19615i) q^{61} -2.00000i q^{62} -1.00000 q^{64} +(6.16025 - 9.33013i) q^{65} +(1.73205 + 1.00000i) q^{67} +(1.73205 - 1.00000i) q^{68} -6.00000 q^{71} +(2.59808 - 1.50000i) q^{72} +(-13.8564 - 8.00000i) q^{73} +(0.500000 - 0.866025i) q^{74} +5.00000 q^{76} +(7.00000 + 12.1244i) q^{79} +(-0.133975 + 2.23205i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(2.59808 - 1.50000i) q^{82} +6.00000i q^{83} +(-2.00000 - 4.00000i) q^{85} +(-1.00000 - 1.73205i) q^{86} +(-2.59808 - 1.50000i) q^{88} +(-1.00000 - 1.73205i) q^{89} +(-3.00000 - 6.00000i) q^{90} +7.00000i q^{92} +(3.50000 - 6.06218i) q^{94} +(0.669873 - 11.1603i) q^{95} -12.0000i q^{97} +9.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 4 q^{5} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 4 q^{5} - 6 q^{9} + 2 q^{10} - 6 q^{11} - 2 q^{16} + 10 q^{19} - 8 q^{20} - 6 q^{25} - 10 q^{26} + 16 q^{29} - 4 q^{31} - 8 q^{34} - 12 q^{36} - 2 q^{40} - 12 q^{41} + 6 q^{44} - 12 q^{45} + 14 q^{46} - 16 q^{50} + 24 q^{55} + 8 q^{59} + 12 q^{61} - 4 q^{64} - 10 q^{65} - 24 q^{71} + 2 q^{74} + 20 q^{76} + 28 q^{79} - 4 q^{80} - 18 q^{81} - 8 q^{85} - 4 q^{86} - 4 q^{89} - 12 q^{90} + 14 q^{94} + 20 q^{95} + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.86603 1.23205i −0.834512 0.550990i
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) 2.23205 + 0.133975i 0.705836 + 0.0423665i
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 0 0
\(13\) 5.00000i 1.38675i 0.720577 + 0.693375i \(0.243877\pi\)
−0.720577 + 0.693375i \(0.756123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.73205 + 1.00000i 0.420084 + 0.242536i 0.695113 0.718900i \(-0.255354\pi\)
−0.275029 + 0.961436i \(0.588688\pi\)
\(18\) 2.59808 + 1.50000i 0.612372 + 0.353553i
\(19\) 2.50000 + 4.33013i 0.573539 + 0.993399i 0.996199 + 0.0871106i \(0.0277634\pi\)
−0.422659 + 0.906289i \(0.638903\pi\)
\(20\) −2.00000 + 1.00000i −0.447214 + 0.223607i
\(21\) 0 0
\(22\) 3.00000i 0.639602i
\(23\) −6.06218 + 3.50000i −1.26405 + 0.729800i −0.973856 0.227167i \(-0.927054\pi\)
−0.290196 + 0.956967i \(0.593720\pi\)
\(24\) 0 0
\(25\) 1.96410 + 4.59808i 0.392820 + 0.919615i
\(26\) −2.50000 4.33013i −0.490290 0.849208i
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) −0.866025 + 0.500000i −0.142374 + 0.0821995i −0.569495 0.821995i \(-0.692861\pi\)
0.427121 + 0.904194i \(0.359528\pi\)
\(38\) −4.33013 2.50000i −0.702439 0.405554i
\(39\) 0 0
\(40\) 1.23205 1.86603i 0.194804 0.295045i
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 2.00000i 0.304997i 0.988304 + 0.152499i \(0.0487319\pi\)
−0.988304 + 0.152499i \(0.951268\pi\)
\(44\) 1.50000 + 2.59808i 0.226134 + 0.391675i
\(45\) −0.401924 + 6.69615i −0.0599153 + 0.998203i
\(46\) 3.50000 6.06218i 0.516047 0.893819i
\(47\) −6.06218 + 3.50000i −0.884260 + 0.510527i −0.872060 0.489398i \(-0.837217\pi\)
−0.0121990 + 0.999926i \(0.503883\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −4.00000 3.00000i −0.565685 0.424264i
\(51\) 0 0
\(52\) 4.33013 + 2.50000i 0.600481 + 0.346688i
\(53\) −7.79423 4.50000i −1.07062 0.618123i −0.142269 0.989828i \(-0.545440\pi\)
−0.928351 + 0.371706i \(0.878773\pi\)
\(54\) 0 0
\(55\) 6.00000 3.00000i 0.809040 0.404520i
\(56\) 0 0
\(57\) 0 0
\(58\) −3.46410 + 2.00000i −0.454859 + 0.262613i
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 0 0
\(61\) 3.00000 + 5.19615i 0.384111 + 0.665299i 0.991645 0.128994i \(-0.0411748\pi\)
−0.607535 + 0.794293i \(0.707841\pi\)
\(62\) 2.00000i 0.254000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 6.16025 9.33013i 0.764085 1.15726i
\(66\) 0 0
\(67\) 1.73205 + 1.00000i 0.211604 + 0.122169i 0.602056 0.798454i \(-0.294348\pi\)
−0.390453 + 0.920623i \(0.627682\pi\)
\(68\) 1.73205 1.00000i 0.210042 0.121268i
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 2.59808 1.50000i 0.306186 0.176777i
\(73\) −13.8564 8.00000i −1.62177 0.936329i −0.986447 0.164083i \(-0.947534\pi\)
−0.635323 0.772246i \(-0.719133\pi\)
\(74\) 0.500000 0.866025i 0.0581238 0.100673i
\(75\) 0 0
\(76\) 5.00000 0.573539
\(77\) 0 0
\(78\) 0 0
\(79\) 7.00000 + 12.1244i 0.787562 + 1.36410i 0.927457 + 0.373930i \(0.121990\pi\)
−0.139895 + 0.990166i \(0.544677\pi\)
\(80\) −0.133975 + 2.23205i −0.0149788 + 0.249551i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 2.59808 1.50000i 0.286910 0.165647i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) −2.00000 4.00000i −0.216930 0.433861i
\(86\) −1.00000 1.73205i −0.107833 0.186772i
\(87\) 0 0
\(88\) −2.59808 1.50000i −0.276956 0.159901i
\(89\) −1.00000 1.73205i −0.106000 0.183597i 0.808146 0.588982i \(-0.200471\pi\)
−0.914146 + 0.405385i \(0.867138\pi\)
\(90\) −3.00000 6.00000i −0.316228 0.632456i
\(91\) 0 0
\(92\) 7.00000i 0.729800i
\(93\) 0 0
\(94\) 3.50000 6.06218i 0.360997 0.625266i
\(95\) 0.669873 11.1603i 0.0687275 1.14502i
\(96\) 0 0
\(97\) 12.0000i 1.21842i −0.793011 0.609208i \(-0.791488\pi\)
0.793011 0.609208i \(-0.208512\pi\)
\(98\) 0 0
\(99\) 9.00000 0.904534
\(100\) 4.96410 + 0.598076i 0.496410 + 0.0598076i
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 6.92820 4.00000i 0.682656 0.394132i −0.118199 0.992990i \(-0.537712\pi\)
0.800855 + 0.598858i \(0.204379\pi\)
\(104\) −5.00000 −0.490290
\(105\) 0 0
\(106\) 9.00000 0.874157
\(107\) 13.8564 8.00000i 1.33955 0.773389i 0.352809 0.935695i \(-0.385227\pi\)
0.986740 + 0.162306i \(0.0518932\pi\)
\(108\) 0 0
\(109\) 1.00000 1.73205i 0.0957826 0.165900i −0.814152 0.580651i \(-0.802798\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) −3.69615 + 5.59808i −0.352414 + 0.533756i
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000i 1.31701i 0.752577 + 0.658505i \(0.228811\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 15.6244 + 0.937822i 1.45698 + 0.0874524i
\(116\) 2.00000 3.46410i 0.185695 0.321634i
\(117\) 12.9904 7.50000i 1.20096 0.693375i
\(118\) 4.00000i 0.368230i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) −5.19615 3.00000i −0.470438 0.271607i
\(123\) 0 0
\(124\) 1.00000 + 1.73205i 0.0898027 + 0.155543i
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 7.00000i 0.621150i −0.950549 0.310575i \(-0.899478\pi\)
0.950549 0.310575i \(-0.100522\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −0.669873 + 11.1603i −0.0587517 + 0.978819i
\(131\) −0.500000 0.866025i −0.0436852 0.0756650i 0.843356 0.537355i \(-0.180577\pi\)
−0.887041 + 0.461690i \(0.847243\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) −1.00000 + 1.73205i −0.0857493 + 0.148522i
\(137\) −6.92820 4.00000i −0.591916 0.341743i 0.173939 0.984757i \(-0.444351\pi\)
−0.765855 + 0.643013i \(0.777684\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.19615 3.00000i 0.436051 0.251754i
\(143\) −12.9904 7.50000i −1.08631 0.627182i
\(144\) −1.50000 + 2.59808i −0.125000 + 0.216506i
\(145\) −7.46410 4.92820i −0.619860 0.409265i
\(146\) 16.0000 1.32417
\(147\) 0 0
\(148\) 1.00000i 0.0821995i
\(149\) −9.00000 15.5885i −0.737309 1.27706i −0.953703 0.300750i \(-0.902763\pi\)
0.216394 0.976306i \(-0.430570\pi\)
\(150\) 0 0
\(151\) 3.00000 5.19615i 0.244137 0.422857i −0.717752 0.696299i \(-0.754829\pi\)
0.961888 + 0.273442i \(0.0881622\pi\)
\(152\) −4.33013 + 2.50000i −0.351220 + 0.202777i
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 4.00000 2.00000i 0.321288 0.160644i
\(156\) 0 0
\(157\) 7.79423 + 4.50000i 0.622047 + 0.359139i 0.777666 0.628678i \(-0.216404\pi\)
−0.155618 + 0.987817i \(0.549737\pi\)
\(158\) −12.1244 7.00000i −0.964562 0.556890i
\(159\) 0 0
\(160\) −1.00000 2.00000i −0.0790569 0.158114i
\(161\) 0 0
\(162\) 9.00000i 0.707107i
\(163\) −10.3923 + 6.00000i −0.813988 + 0.469956i −0.848339 0.529454i \(-0.822397\pi\)
0.0343508 + 0.999410i \(0.489064\pi\)
\(164\) −1.50000 + 2.59808i −0.117130 + 0.202876i
\(165\) 0 0
\(166\) −3.00000 5.19615i −0.232845 0.403300i
\(167\) 15.0000i 1.16073i 0.814355 + 0.580367i \(0.197091\pi\)
−0.814355 + 0.580367i \(0.802909\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 3.73205 + 2.46410i 0.286235 + 0.188988i
\(171\) 7.50000 12.9904i 0.573539 0.993399i
\(172\) 1.73205 + 1.00000i 0.132068 + 0.0762493i
\(173\) −7.79423 + 4.50000i −0.592584 + 0.342129i −0.766119 0.642699i \(-0.777815\pi\)
0.173534 + 0.984828i \(0.444481\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) 1.73205 + 1.00000i 0.129823 + 0.0749532i
\(179\) 6.50000 11.2583i 0.485833 0.841487i −0.514035 0.857769i \(-0.671850\pi\)
0.999867 + 0.0162823i \(0.00518305\pi\)
\(180\) 5.59808 + 3.69615i 0.417256 + 0.275495i
\(181\) −26.0000 −1.93256 −0.966282 0.257485i \(-0.917106\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.50000 6.06218i −0.258023 0.446910i
\(185\) 2.23205 + 0.133975i 0.164104 + 0.00985001i
\(186\) 0 0
\(187\) −5.19615 + 3.00000i −0.379980 + 0.219382i
\(188\) 7.00000i 0.510527i
\(189\) 0 0
\(190\) 5.00000 + 10.0000i 0.362738 + 0.725476i
\(191\) 10.0000 + 17.3205i 0.723575 + 1.25327i 0.959558 + 0.281511i \(0.0908356\pi\)
−0.235983 + 0.971757i \(0.575831\pi\)
\(192\) 0 0
\(193\) 8.66025 + 5.00000i 0.623379 + 0.359908i 0.778183 0.628037i \(-0.216141\pi\)
−0.154805 + 0.987945i \(0.549475\pi\)
\(194\) 6.00000 + 10.3923i 0.430775 + 0.746124i
\(195\) 0 0
\(196\) 0 0
\(197\) 5.00000i 0.356235i 0.984009 + 0.178118i \(0.0570008\pi\)
−0.984009 + 0.178118i \(0.942999\pi\)
\(198\) −7.79423 + 4.50000i −0.553912 + 0.319801i
\(199\) −9.00000 + 15.5885i −0.637993 + 1.10504i 0.347879 + 0.937539i \(0.386902\pi\)
−0.985873 + 0.167497i \(0.946431\pi\)
\(200\) −4.59808 + 1.96410i −0.325133 + 0.138883i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.59808 + 3.69615i 0.390987 + 0.258150i
\(206\) −4.00000 + 6.92820i −0.278693 + 0.482711i
\(207\) 18.1865 + 10.5000i 1.26405 + 0.729800i
\(208\) 4.33013 2.50000i 0.300240 0.173344i
\(209\) −15.0000 −1.03757
\(210\) 0 0
\(211\) −9.00000 −0.619586 −0.309793 0.950804i \(-0.600260\pi\)
−0.309793 + 0.950804i \(0.600260\pi\)
\(212\) −7.79423 + 4.50000i −0.535310 + 0.309061i
\(213\) 0 0
\(214\) −8.00000 + 13.8564i −0.546869 + 0.947204i
\(215\) 2.46410 3.73205i 0.168050 0.254524i
\(216\) 0 0
\(217\) 0 0
\(218\) 2.00000i 0.135457i
\(219\) 0 0
\(220\) 0.401924 6.69615i 0.0270977 0.451455i
\(221\) −5.00000 + 8.66025i −0.336336 + 0.582552i
\(222\) 0 0
\(223\) 8.00000i 0.535720i 0.963458 + 0.267860i \(0.0863164\pi\)
−0.963458 + 0.267860i \(0.913684\pi\)
\(224\) 0 0
\(225\) 9.00000 12.0000i 0.600000 0.800000i
\(226\) −7.00000 12.1244i −0.465633 0.806500i
\(227\) 5.19615 + 3.00000i 0.344881 + 0.199117i 0.662428 0.749125i \(-0.269526\pi\)
−0.317547 + 0.948242i \(0.602859\pi\)
\(228\) 0 0
\(229\) −8.00000 13.8564i −0.528655 0.915657i −0.999442 0.0334101i \(-0.989363\pi\)
0.470787 0.882247i \(-0.343970\pi\)
\(230\) −14.0000 + 7.00000i −0.923133 + 0.461566i
\(231\) 0 0
\(232\) 4.00000i 0.262613i
\(233\) −6.92820 + 4.00000i −0.453882 + 0.262049i −0.709468 0.704737i \(-0.751065\pi\)
0.255586 + 0.966786i \(0.417731\pi\)
\(234\) −7.50000 + 12.9904i −0.490290 + 0.849208i
\(235\) 15.6244 + 0.937822i 1.01922 + 0.0611768i
\(236\) −2.00000 3.46410i −0.130189 0.225494i
\(237\) 0 0
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) −4.50000 + 7.79423i −0.289870 + 0.502070i −0.973779 0.227498i \(-0.926946\pi\)
0.683908 + 0.729568i \(0.260279\pi\)
\(242\) −1.73205 1.00000i −0.111340 0.0642824i
\(243\) 0 0
\(244\) 6.00000 0.384111
\(245\) 0 0
\(246\) 0 0
\(247\) −21.6506 + 12.5000i −1.37760 + 0.795356i
\(248\) −1.73205 1.00000i −0.109985 0.0635001i
\(249\) 0 0
\(250\) 3.76795 + 10.5263i 0.238306 + 0.665740i
\(251\) −5.00000 −0.315597 −0.157799 0.987471i \(-0.550440\pi\)
−0.157799 + 0.987471i \(0.550440\pi\)
\(252\) 0 0
\(253\) 21.0000i 1.32026i
\(254\) 3.50000 + 6.06218i 0.219610 + 0.380375i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.19615 + 3.00000i −0.324127 + 0.187135i −0.653231 0.757159i \(-0.726587\pi\)
0.329104 + 0.944294i \(0.393253\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −5.00000 10.0000i −0.310087 0.620174i
\(261\) −6.00000 10.3923i −0.371391 0.643268i
\(262\) 0.866025 + 0.500000i 0.0535032 + 0.0308901i
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 9.00000 + 18.0000i 0.552866 + 1.10573i
\(266\) 0 0
\(267\) 0 0
\(268\) 1.73205 1.00000i 0.105802 0.0610847i
\(269\) 5.00000 8.66025i 0.304855 0.528025i −0.672374 0.740212i \(-0.734725\pi\)
0.977229 + 0.212187i \(0.0680585\pi\)
\(270\) 0 0
\(271\) 12.0000 + 20.7846i 0.728948 + 1.26258i 0.957328 + 0.289003i \(0.0933238\pi\)
−0.228380 + 0.973572i \(0.573343\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) 8.00000 0.483298
\(275\) −14.8923 1.79423i −0.898040 0.108196i
\(276\) 0 0
\(277\) −1.73205 1.00000i −0.104069 0.0600842i 0.447062 0.894503i \(-0.352470\pi\)
−0.551131 + 0.834419i \(0.685804\pi\)
\(278\) −13.8564 + 8.00000i −0.831052 + 0.479808i
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) 0 0
\(283\) 12.1244 + 7.00000i 0.720718 + 0.416107i 0.815017 0.579437i \(-0.196728\pi\)
−0.0942988 + 0.995544i \(0.530061\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 0 0
\(286\) 15.0000 0.886969
\(287\) 0 0
\(288\) 3.00000i 0.176777i
\(289\) −6.50000 11.2583i −0.382353 0.662255i
\(290\) 8.92820 + 0.535898i 0.524282 + 0.0314690i
\(291\) 0 0
\(292\) −13.8564 + 8.00000i −0.810885 + 0.468165i
\(293\) 9.00000i 0.525786i 0.964825 + 0.262893i \(0.0846766\pi\)
−0.964825 + 0.262893i \(0.915323\pi\)
\(294\) 0 0
\(295\) −8.00000 + 4.00000i −0.465778 + 0.232889i
\(296\) −0.500000 0.866025i −0.0290619 0.0503367i
\(297\) 0 0
\(298\) 15.5885 + 9.00000i 0.903015 + 0.521356i
\(299\) −17.5000 30.3109i −1.01205 1.75292i
\(300\) 0 0
\(301\) 0 0
\(302\) 6.00000i 0.345261i
\(303\) 0 0
\(304\) 2.50000 4.33013i 0.143385 0.248350i
\(305\) 0.803848 13.3923i 0.0460282 0.766841i
\(306\) 3.00000 + 5.19615i 0.171499 + 0.297044i
\(307\) 22.0000i 1.25561i −0.778372 0.627803i \(-0.783954\pi\)
0.778372 0.627803i \(-0.216046\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.46410 + 3.73205i −0.139952 + 0.211966i
\(311\) 3.00000 5.19615i 0.170114 0.294647i −0.768345 0.640036i \(-0.778920\pi\)
0.938460 + 0.345389i \(0.112253\pi\)
\(312\) 0 0
\(313\) 19.0526 11.0000i 1.07691 0.621757i 0.146852 0.989158i \(-0.453086\pi\)
0.930062 + 0.367402i \(0.119753\pi\)
\(314\) −9.00000 −0.507899
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) 1.73205 1.00000i 0.0972817 0.0561656i −0.450570 0.892741i \(-0.648779\pi\)
0.547852 + 0.836576i \(0.315446\pi\)
\(318\) 0 0
\(319\) −6.00000 + 10.3923i −0.335936 + 0.581857i
\(320\) 1.86603 + 1.23205i 0.104314 + 0.0688737i
\(321\) 0 0
\(322\) 0 0
\(323\) 10.0000i 0.556415i
\(324\) 4.50000 + 7.79423i 0.250000 + 0.433013i
\(325\) −22.9904 + 9.82051i −1.27528 + 0.544744i
\(326\) 6.00000 10.3923i 0.332309 0.575577i
\(327\) 0 0
\(328\) 3.00000i 0.165647i
\(329\) 0 0
\(330\) 0 0
\(331\) −2.50000 4.33013i −0.137412 0.238005i 0.789104 0.614260i \(-0.210545\pi\)
−0.926516 + 0.376254i \(0.877212\pi\)
\(332\) 5.19615 + 3.00000i 0.285176 + 0.164646i
\(333\) 2.59808 + 1.50000i 0.142374 + 0.0821995i
\(334\) −7.50000 12.9904i −0.410382 0.710802i
\(335\) −2.00000 4.00000i −0.109272 0.218543i
\(336\) 0 0
\(337\) 10.0000i 0.544735i −0.962193 0.272367i \(-0.912193\pi\)
0.962193 0.272367i \(-0.0878066\pi\)
\(338\) 10.3923 6.00000i 0.565267 0.326357i
\(339\) 0 0
\(340\) −4.46410 0.267949i −0.242100 0.0145316i
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) 15.0000i 0.811107i
\(343\) 0 0
\(344\) −2.00000 −0.107833
\(345\) 0 0
\(346\) 4.50000 7.79423i 0.241921 0.419020i
\(347\) −10.3923 6.00000i −0.557888 0.322097i 0.194409 0.980921i \(-0.437721\pi\)
−0.752297 + 0.658824i \(0.771054\pi\)
\(348\) 0 0
\(349\) −12.0000 −0.642345 −0.321173 0.947021i \(-0.604077\pi\)
−0.321173 + 0.947021i \(0.604077\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.59808 + 1.50000i −0.138478 + 0.0799503i
\(353\) 20.7846 + 12.0000i 1.10625 + 0.638696i 0.937856 0.347024i \(-0.112808\pi\)
0.168397 + 0.985719i \(0.446141\pi\)
\(354\) 0 0
\(355\) 11.1962 + 7.39230i 0.594230 + 0.392343i
\(356\) −2.00000 −0.106000
\(357\) 0 0
\(358\) 13.0000i 0.687071i
\(359\) 8.00000 + 13.8564i 0.422224 + 0.731313i 0.996157 0.0875892i \(-0.0279163\pi\)
−0.573933 + 0.818902i \(0.694583\pi\)
\(360\) −6.69615 0.401924i −0.352918 0.0211832i
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) 22.5167 13.0000i 1.18345 0.683265i
\(363\) 0 0
\(364\) 0 0
\(365\) 16.0000 + 32.0000i 0.837478 + 1.67496i
\(366\) 0 0
\(367\) −11.2583 6.50000i −0.587680 0.339297i 0.176500 0.984301i \(-0.443523\pi\)
−0.764180 + 0.645003i \(0.776856\pi\)
\(368\) 6.06218 + 3.50000i 0.316013 + 0.182450i
\(369\) 4.50000 + 7.79423i 0.234261 + 0.405751i
\(370\) −2.00000 + 1.00000i −0.103975 + 0.0519875i
\(371\) 0 0
\(372\) 0 0
\(373\) 22.5167 13.0000i 1.16587 0.673114i 0.213165 0.977016i \(-0.431623\pi\)
0.952703 + 0.303902i \(0.0982894\pi\)
\(374\) 3.00000 5.19615i 0.155126 0.268687i
\(375\) 0 0
\(376\) −3.50000 6.06218i −0.180499 0.312633i
\(377\) 20.0000i 1.03005i
\(378\) 0 0
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) −9.33013 6.16025i −0.478625 0.316014i
\(381\) 0 0
\(382\) −17.3205 10.0000i −0.886194 0.511645i
\(383\) −18.1865 + 10.5000i −0.929288 + 0.536525i −0.886586 0.462563i \(-0.846930\pi\)
−0.0427020 + 0.999088i \(0.513597\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10.0000 −0.508987
\(387\) 5.19615 3.00000i 0.264135 0.152499i
\(388\) −10.3923 6.00000i −0.527589 0.304604i
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) 0 0
\(391\) −14.0000 −0.708010
\(392\) 0 0
\(393\) 0 0
\(394\) −2.50000 4.33013i −0.125948 0.218149i
\(395\) 1.87564 31.2487i 0.0943739 1.57229i
\(396\) 4.50000 7.79423i 0.226134 0.391675i
\(397\) −12.1244 + 7.00000i −0.608504 + 0.351320i −0.772380 0.635161i \(-0.780934\pi\)
0.163876 + 0.986481i \(0.447600\pi\)
\(398\) 18.0000i 0.902258i
\(399\) 0 0
\(400\) 3.00000 4.00000i 0.150000 0.200000i
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 0 0
\(403\) −8.66025 5.00000i −0.431398 0.249068i
\(404\) 0 0
\(405\) 18.0000 9.00000i 0.894427 0.447214i
\(406\) 0 0
\(407\) 3.00000i 0.148704i
\(408\) 0 0
\(409\) 7.00000 12.1244i 0.346128 0.599511i −0.639430 0.768849i \(-0.720830\pi\)
0.985558 + 0.169338i \(0.0541630\pi\)
\(410\) −6.69615 0.401924i −0.330699 0.0198496i
\(411\) 0 0
\(412\) 8.00000i 0.394132i
\(413\) 0 0
\(414\) −21.0000 −1.03209
\(415\) 7.39230 11.1962i 0.362874 0.549598i
\(416\) −2.50000 + 4.33013i −0.122573 + 0.212302i
\(417\) 0 0
\(418\) 12.9904 7.50000i 0.635380 0.366837i
\(419\) 35.0000 1.70986 0.854931 0.518742i \(-0.173599\pi\)
0.854931 + 0.518742i \(0.173599\pi\)
\(420\) 0 0
\(421\) −20.0000 −0.974740 −0.487370 0.873195i \(-0.662044\pi\)
−0.487370 + 0.873195i \(0.662044\pi\)
\(422\) 7.79423 4.50000i 0.379417 0.219057i
\(423\) 18.1865 + 10.5000i 0.884260 + 0.510527i
\(424\) 4.50000 7.79423i 0.218539 0.378521i
\(425\) −1.19615 + 9.92820i −0.0580219 + 0.481589i
\(426\) 0 0
\(427\) 0 0
\(428\) 16.0000i 0.773389i
\(429\) 0 0
\(430\) −0.267949 + 4.46410i −0.0129217 + 0.215278i
\(431\) −1.00000 + 1.73205i −0.0481683 + 0.0834300i −0.889104 0.457705i \(-0.848672\pi\)
0.840936 + 0.541135i \(0.182005\pi\)
\(432\) 0 0
\(433\) 28.0000i 1.34559i −0.739827 0.672797i \(-0.765093\pi\)
0.739827 0.672797i \(-0.234907\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) −30.3109 17.5000i −1.44997 0.837139i
\(438\) 0 0
\(439\) 14.0000 + 24.2487i 0.668184 + 1.15733i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 3.00000 + 6.00000i 0.143019 + 0.286039i
\(441\) 0 0
\(442\) 10.0000i 0.475651i
\(443\) 25.9808 15.0000i 1.23438 0.712672i 0.266443 0.963851i \(-0.414152\pi\)
0.967941 + 0.251179i \(0.0808184\pi\)
\(444\) 0 0
\(445\) −0.267949 + 4.46410i −0.0127020 + 0.211619i
\(446\) −4.00000 6.92820i −0.189405 0.328060i
\(447\) 0 0
\(448\) 0 0
\(449\) −5.00000 −0.235965 −0.117982 0.993016i \(-0.537643\pi\)
−0.117982 + 0.993016i \(0.537643\pi\)
\(450\) −1.79423 + 14.8923i −0.0845807 + 0.702030i
\(451\) 4.50000 7.79423i 0.211897 0.367016i
\(452\) 12.1244 + 7.00000i 0.570282 + 0.329252i
\(453\) 0 0
\(454\) −6.00000 −0.281594
\(455\) 0 0
\(456\) 0 0
\(457\) 8.66025 5.00000i 0.405110 0.233890i −0.283577 0.958950i \(-0.591521\pi\)
0.688686 + 0.725059i \(0.258188\pi\)
\(458\) 13.8564 + 8.00000i 0.647467 + 0.373815i
\(459\) 0 0
\(460\) 8.62436 13.0622i 0.402113 0.609027i
\(461\) 32.0000 1.49039 0.745194 0.666847i \(-0.232357\pi\)
0.745194 + 0.666847i \(0.232357\pi\)
\(462\) 0 0
\(463\) 17.0000i 0.790057i −0.918669 0.395029i \(-0.870735\pi\)
0.918669 0.395029i \(-0.129265\pi\)
\(464\) −2.00000 3.46410i −0.0928477 0.160817i
\(465\) 0 0
\(466\) 4.00000 6.92820i 0.185296 0.320943i
\(467\) 29.4449 17.0000i 1.36255 0.786666i 0.372584 0.927999i \(-0.378472\pi\)
0.989962 + 0.141332i \(0.0451386\pi\)
\(468\) 15.0000i 0.693375i
\(469\) 0 0
\(470\) −14.0000 + 7.00000i −0.645772 + 0.322886i
\(471\) 0 0
\(472\) 3.46410 + 2.00000i 0.159448 + 0.0920575i
\(473\) −5.19615 3.00000i −0.238919 0.137940i
\(474\) 0 0
\(475\) −15.0000 + 20.0000i −0.688247 + 0.917663i
\(476\) 0 0
\(477\) 27.0000i 1.23625i
\(478\) 17.3205 10.0000i 0.792222 0.457389i
\(479\) −18.0000 + 31.1769i −0.822441 + 1.42451i 0.0814184 + 0.996680i \(0.474055\pi\)
−0.903859 + 0.427830i \(0.859278\pi\)
\(480\) 0 0
\(481\) −2.50000 4.33013i −0.113990 0.197437i
\(482\) 9.00000i 0.409939i
\(483\) 0 0
\(484\) 2.00000 0.0909091
\(485\) −14.7846 + 22.3923i −0.671335 + 1.01678i
\(486\) 0 0
\(487\) −27.7128 16.0000i −1.25579 0.725029i −0.283535 0.958962i \(-0.591507\pi\)
−0.972253 + 0.233933i \(0.924840\pi\)
\(488\) −5.19615 + 3.00000i −0.235219 + 0.135804i
\(489\) 0 0
\(490\) 0 0
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) 6.92820 + 4.00000i 0.312031 + 0.180151i
\(494\) 12.5000 21.6506i 0.562402 0.974108i
\(495\) −16.7942 11.0885i −0.754844 0.498389i
\(496\) 2.00000 0.0898027
\(497\) 0 0
\(498\) 0 0
\(499\) 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i \(-0.138129\pi\)
−0.817781 + 0.575529i \(0.804796\pi\)
\(500\) −8.52628 7.23205i −0.381307 0.323427i
\(501\) 0 0
\(502\) 4.33013 2.50000i 0.193263 0.111580i
\(503\) 40.0000i 1.78351i −0.452517 0.891756i \(-0.649474\pi\)
0.452517 0.891756i \(-0.350526\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 10.5000 + 18.1865i 0.466782 + 0.808490i
\(507\) 0 0
\(508\) −6.06218 3.50000i −0.268966 0.155287i
\(509\) 17.0000 + 29.4449i 0.753512 + 1.30512i 0.946111 + 0.323843i \(0.104975\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 3.00000 5.19615i 0.132324 0.229192i
\(515\) −17.8564 1.07180i −0.786847 0.0472290i
\(516\) 0 0
\(517\) 21.0000i 0.923579i
\(518\) 0 0
\(519\) 0 0
\(520\) 9.33013 + 6.16025i 0.409153 + 0.270145i
\(521\) −13.5000 + 23.3827i −0.591446 + 1.02441i 0.402592 + 0.915379i \(0.368109\pi\)
−0.994038 + 0.109035i \(0.965224\pi\)
\(522\) 10.3923 + 6.00000i 0.454859 + 0.262613i
\(523\) −13.8564 + 8.00000i −0.605898 + 0.349816i −0.771358 0.636401i \(-0.780422\pi\)
0.165460 + 0.986216i \(0.447089\pi\)
\(524\) −1.00000 −0.0436852
\(525\) 0 0
\(526\) 0 0
\(527\) −3.46410 + 2.00000i −0.150899 + 0.0871214i
\(528\) 0 0
\(529\) 13.0000 22.5167i 0.565217 0.978985i
\(530\) −16.7942 11.0885i −0.729495 0.481652i
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 15.0000i 0.649722i
\(534\) 0 0
\(535\) −35.7128 2.14359i −1.54400 0.0926756i
\(536\) −1.00000 + 1.73205i −0.0431934 + 0.0748132i
\(537\) 0 0
\(538\) 10.0000i 0.431131i
\(539\) 0 0
\(540\) 0 0
\(541\) 8.00000 + 13.8564i 0.343947 + 0.595733i 0.985162 0.171628i \(-0.0549027\pi\)
−0.641215 + 0.767361i \(0.721569\pi\)
\(542\) −20.7846 12.0000i −0.892775 0.515444i
\(543\) 0 0
\(544\) 1.00000 + 1.73205i 0.0428746 + 0.0742611i
\(545\) −4.00000 + 2.00000i −0.171341 + 0.0856706i
\(546\) 0 0
\(547\) 26.0000i 1.11168i 0.831289 + 0.555840i \(0.187603\pi\)
−0.831289 + 0.555840i \(0.812397\pi\)
\(548\) −6.92820 + 4.00000i −0.295958 + 0.170872i
\(549\) 9.00000 15.5885i 0.384111 0.665299i
\(550\) 13.7942 5.89230i 0.588188 0.251249i
\(551\) 10.0000 + 17.3205i 0.426014 + 0.737878i
\(552\) 0 0
\(553\) 0 0
\(554\) 2.00000 0.0849719
\(555\) 0 0
\(556\) 8.00000 13.8564i 0.339276 0.587643i
\(557\) 19.9186 + 11.5000i 0.843978 + 0.487271i 0.858614 0.512622i \(-0.171326\pi\)
−0.0146368 + 0.999893i \(0.504659\pi\)
\(558\) −5.19615 + 3.00000i −0.219971 + 0.127000i
\(559\) −10.0000 −0.422955
\(560\) 0 0
\(561\) 0 0
\(562\) −7.79423 + 4.50000i −0.328780 + 0.189821i
\(563\) 1.73205 + 1.00000i 0.0729972 + 0.0421450i 0.536054 0.844183i \(-0.319914\pi\)
−0.463057 + 0.886328i \(0.653248\pi\)
\(564\) 0 0
\(565\) 17.2487 26.1244i 0.725659 1.09906i
\(566\) −14.0000 −0.588464
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) −7.50000 12.9904i −0.314416 0.544585i 0.664897 0.746935i \(-0.268475\pi\)
−0.979313 + 0.202350i \(0.935142\pi\)
\(570\) 0 0
\(571\) −16.0000 + 27.7128i −0.669579 + 1.15975i 0.308443 + 0.951243i \(0.400192\pi\)
−0.978022 + 0.208502i \(0.933141\pi\)
\(572\) −12.9904 + 7.50000i −0.543155 + 0.313591i
\(573\) 0 0
\(574\) 0 0
\(575\) −28.0000 21.0000i −1.16768 0.875761i
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) 3.46410 + 2.00000i 0.144212 + 0.0832611i 0.570370 0.821388i \(-0.306800\pi\)
−0.426158 + 0.904649i \(0.640133\pi\)
\(578\) 11.2583 + 6.50000i 0.468285 + 0.270364i
\(579\) 0 0
\(580\) −8.00000 + 4.00000i −0.332182 + 0.166091i
\(581\) 0 0
\(582\) 0 0
\(583\) 23.3827 13.5000i 0.968412 0.559113i
\(584\) 8.00000 13.8564i 0.331042 0.573382i
\(585\) −33.4808 2.00962i −1.38426 0.0830875i
\(586\) −4.50000 7.79423i −0.185893 0.321977i
\(587\) 34.0000i 1.40333i 0.712507 + 0.701665i \(0.247560\pi\)
−0.712507 + 0.701665i \(0.752440\pi\)
\(588\) 0 0
\(589\) −10.0000 −0.412043
\(590\) 4.92820 7.46410i 0.202891 0.307292i
\(591\) 0 0
\(592\) 0.866025 + 0.500000i 0.0355934 + 0.0205499i
\(593\) 5.19615 3.00000i 0.213380 0.123195i −0.389501 0.921026i \(-0.627353\pi\)
0.602881 + 0.797831i \(0.294019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) 0 0
\(598\) 30.3109 + 17.5000i 1.23950 + 0.715628i
\(599\) −6.00000 + 10.3923i −0.245153 + 0.424618i −0.962175 0.272433i \(-0.912172\pi\)
0.717021 + 0.697051i \(0.245505\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) 6.00000i 0.244339i
\(604\) −3.00000 5.19615i −0.122068 0.211428i
\(605\) 0.267949 4.46410i 0.0108937 0.181492i
\(606\) 0 0
\(607\) −11.2583 + 6.50000i −0.456962 + 0.263827i −0.710766 0.703429i \(-0.751651\pi\)
0.253804 + 0.967256i \(0.418318\pi\)
\(608\) 5.00000i 0.202777i
\(609\) 0 0
\(610\) 6.00000 + 12.0000i 0.242933 + 0.485866i
\(611\) −17.5000 30.3109i −0.707974 1.22625i
\(612\) −5.19615 3.00000i −0.210042 0.121268i
\(613\) 12.9904 + 7.50000i 0.524677 + 0.302922i 0.738846 0.673874i \(-0.235371\pi\)
−0.214169 + 0.976797i \(0.568704\pi\)
\(614\) 11.0000 + 19.0526i 0.443924 + 0.768899i
\(615\) 0 0
\(616\) 0 0
\(617\) 14.0000i 0.563619i −0.959470 0.281809i \(-0.909065\pi\)
0.959470 0.281809i \(-0.0909346\pi\)
\(618\) 0 0
\(619\) −9.50000 + 16.4545i −0.381837 + 0.661361i −0.991325 0.131434i \(-0.958042\pi\)
0.609488 + 0.792796i \(0.291375\pi\)
\(620\) 0.267949 4.46410i 0.0107611 0.179283i
\(621\) 0 0
\(622\) 6.00000i 0.240578i
\(623\) 0 0
\(624\) 0 0
\(625\) −17.2846 + 18.0622i −0.691384 + 0.722487i
\(626\) −11.0000 + 19.0526i −0.439648 + 0.761493i
\(627\) 0 0
\(628\) 7.79423 4.50000i 0.311024 0.179570i
\(629\) −2.00000 −0.0797452
\(630\) 0 0
\(631\) −18.0000 −0.716569 −0.358284 0.933613i \(-0.616638\pi\)
−0.358284 + 0.933613i \(0.616638\pi\)
\(632\) −12.1244 + 7.00000i −0.482281 + 0.278445i
\(633\) 0 0
\(634\) −1.00000 + 1.73205i −0.0397151 + 0.0687885i
\(635\) −8.62436 + 13.0622i −0.342247 + 0.518357i
\(636\) 0 0
\(637\) 0 0
\(638\) 12.0000i 0.475085i
\(639\) 9.00000 + 15.5885i 0.356034 + 0.616670i
\(640\) −2.23205 0.133975i −0.0882296 0.00529581i
\(641\) 2.50000 4.33013i 0.0987441 0.171030i −0.812421 0.583071i \(-0.801851\pi\)
0.911165 + 0.412042i \(0.135184\pi\)
\(642\) 0 0
\(643\) 14.0000i 0.552106i 0.961142 + 0.276053i \(0.0890266\pi\)
−0.961142 + 0.276053i \(0.910973\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −5.00000 8.66025i −0.196722 0.340733i
\(647\) 23.3827 + 13.5000i 0.919268 + 0.530740i 0.883402 0.468617i \(-0.155247\pi\)
0.0358667 + 0.999357i \(0.488581\pi\)
\(648\) −7.79423 4.50000i −0.306186 0.176777i
\(649\) 6.00000 + 10.3923i 0.235521 + 0.407934i
\(650\) 15.0000 20.0000i 0.588348 0.784465i
\(651\) 0 0
\(652\) 12.0000i 0.469956i
\(653\) 2.59808 1.50000i 0.101671 0.0586995i −0.448303 0.893882i \(-0.647971\pi\)
0.549973 + 0.835182i \(0.314638\pi\)
\(654\) 0 0
\(655\) −0.133975 + 2.23205i −0.00523482 + 0.0872134i
\(656\) 1.50000 + 2.59808i 0.0585652 + 0.101438i
\(657\) 48.0000i 1.87266i
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 8.00000 13.8564i 0.311164 0.538952i −0.667451 0.744654i \(-0.732615\pi\)
0.978615 + 0.205702i \(0.0659478\pi\)
\(662\) 4.33013 + 2.50000i 0.168295 + 0.0971653i
\(663\) 0 0
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) −3.00000 −0.116248
\(667\) −24.2487 + 14.0000i −0.938914 + 0.542082i
\(668\) 12.9904 + 7.50000i 0.502613 + 0.290184i
\(669\) 0 0
\(670\) 3.73205 + 2.46410i 0.144182 + 0.0951966i
\(671\) −18.0000 −0.694882
\(672\) 0 0
\(673\) 32.0000i 1.23351i 0.787155 + 0.616755i \(0.211553\pi\)
−0.787155 + 0.616755i \(0.788447\pi\)
\(674\) 5.00000 + 8.66025i 0.192593 + 0.333581i
\(675\) 0 0
\(676\) −6.00000 + 10.3923i −0.230769 + 0.399704i
\(677\) −14.7224 + 8.50000i −0.565829 + 0.326682i −0.755482 0.655170i \(-0.772597\pi\)
0.189653 + 0.981851i \(0.439264\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 4.00000 2.00000i 0.153393 0.0766965i
\(681\) 0 0
\(682\) 5.19615 + 3.00000i 0.198971 + 0.114876i
\(683\) 38.1051 + 22.0000i 1.45805 + 0.841807i 0.998916 0.0465592i \(-0.0148256\pi\)
0.459136 + 0.888366i \(0.348159\pi\)
\(684\) −7.50000 12.9904i −0.286770 0.496700i
\(685\) 8.00000 + 16.0000i 0.305664 + 0.611329i
\(686\) 0 0
\(687\) 0 0
\(688\) 1.73205 1.00000i 0.0660338 0.0381246i
\(689\) 22.5000 38.9711i 0.857182 1.48468i
\(690\) 0 0
\(691\) −22.0000 38.1051i −0.836919 1.44959i −0.892458 0.451130i \(-0.851021\pi\)
0.0555386 0.998457i \(-0.482312\pi\)
\(692\) 9.00000i 0.342129i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −29.8564 19.7128i −1.13252 0.747750i
\(696\) 0 0
\(697\) −5.19615 3.00000i −0.196818 0.113633i
\(698\) 10.3923 6.00000i 0.393355 0.227103i
\(699\) 0 0
\(700\) 0 0
\(701\) 26.0000 0.982006 0.491003 0.871158i \(-0.336630\pi\)
0.491003 + 0.871158i \(0.336630\pi\)
\(702\) 0 0
\(703\) −4.33013 2.50000i −0.163314 0.0942893i
\(704\) 1.50000 2.59808i 0.0565334 0.0979187i
\(705\) 0 0
\(706\) −24.0000 −0.903252
\(707\) 0 0
\(708\) 0 0
\(709\) 6.00000 + 10.3923i 0.225335 + 0.390291i 0.956420 0.291995i \(-0.0943191\pi\)
−0.731085 + 0.682286i \(0.760986\pi\)
\(710\) −13.3923 0.803848i −0.502604 0.0301679i
\(711\) 21.0000 36.3731i 0.787562 1.36410i
\(712\) 1.73205 1.00000i 0.0649113 0.0374766i
\(713\) 14.0000i 0.524304i
\(714\) 0 0
\(715\) 15.0000 + 30.0000i 0.560968 + 1.12194i
\(716\) −6.50000 11.2583i −0.242916 0.420744i
\(717\) 0 0
\(718\) −13.8564 8.00000i −0.517116 0.298557i
\(719\) −13.0000 22.5167i −0.484818 0.839730i 0.515030 0.857172i \(-0.327781\pi\)
−0.999848 + 0.0174426i \(0.994448\pi\)
\(720\) 6.00000 3.00000i 0.223607 0.111803i
\(721\) 0 0
\(722\) 6.00000i 0.223297i
\(723\) 0 0
\(724\) −13.0000 + 22.5167i −0.483141 + 0.836825i
\(725\) 7.85641 + 18.3923i 0.291780 + 0.683073i
\(726\) 0 0
\(727\) 29.0000i 1.07555i −0.843088 0.537775i \(-0.819265\pi\)
0.843088 0.537775i \(-0.180735\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) −29.8564 19.7128i −1.10504 0.729604i
\(731\) −2.00000 + 3.46410i −0.0739727 + 0.128124i
\(732\) 0 0
\(733\) −35.5070 + 20.5000i −1.31148 + 0.757185i −0.982342 0.187096i \(-0.940092\pi\)
−0.329141 + 0.944281i \(0.606759\pi\)
\(734\) 13.0000 0.479839
\(735\) 0 0
\(736\) −7.00000 −0.258023
\(737\) −5.19615 + 3.00000i −0.191403 + 0.110506i
\(738\) −7.79423 4.50000i −0.286910 0.165647i
\(739\) −14.5000 + 25.1147i −0.533391 + 0.923861i 0.465848 + 0.884865i \(0.345749\pi\)
−0.999239 + 0.0389959i \(0.987584\pi\)
\(740\) 1.23205 1.86603i 0.0452911 0.0685965i
\(741\) 0 0
\(742\) 0 0
\(743\) 21.0000i 0.770415i −0.922830 0.385208i \(-0.874130\pi\)
0.922830 0.385208i \(-0.125870\pi\)
\(744\) 0 0
\(745\) −2.41154 + 40.1769i −0.0883521 + 1.47197i
\(746\) −13.0000 + 22.5167i −0.475964 + 0.824394i
\(747\) 15.5885 9.00000i 0.570352 0.329293i
\(748\) 6.00000i 0.219382i
\(749\) 0 0
\(750\) 0 0
\(751\) −14.0000 24.2487i −0.510867 0.884848i −0.999921 0.0125942i \(-0.995991\pi\)
0.489053 0.872254i \(-0.337342\pi\)
\(752\) 6.06218 + 3.50000i 0.221065 + 0.127632i
\(753\) 0 0
\(754\) −10.0000 17.3205i −0.364179 0.630776i
\(755\) −12.0000 + 6.00000i −0.436725 + 0.218362i
\(756\) 0 0
\(757\) 42.0000i 1.52652i −0.646094 0.763258i \(-0.723599\pi\)
0.646094 0.763258i \(-0.276401\pi\)
\(758\) −25.1147 + 14.5000i −0.912208 + 0.526664i
\(759\) 0 0
\(760\) 11.1603 + 0.669873i 0.404825 + 0.0242988i
\(761\) 0.500000 + 0.866025i 0.0181250 + 0.0313934i 0.874946 0.484221i \(-0.160897\pi\)
−0.856821 + 0.515615i \(0.827564\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 20.0000 0.723575
\(765\) −7.39230 + 11.1962i −0.267269 + 0.404798i
\(766\) 10.5000 18.1865i 0.379380 0.657106i
\(767\) 17.3205 + 10.0000i 0.625407 + 0.361079i
\(768\) 0 0
\(769\) −29.0000 −1.04577 −0.522883 0.852404i \(-0.675144\pi\)
−0.522883 + 0.852404i \(0.675144\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.66025 5.00000i 0.311689 0.179954i
\(773\) 38.9711 + 22.5000i 1.40169 + 0.809269i 0.994567 0.104102i \(-0.0331970\pi\)
0.407128 + 0.913371i \(0.366530\pi\)
\(774\) −3.00000 + 5.19615i −0.107833 + 0.186772i
\(775\) −9.92820 1.19615i −0.356632 0.0429671i
\(776\) 12.0000 0.430775
\(777\) 0 0
\(778\) 6.00000i 0.215110i
\(779\) −7.50000 12.9904i −0.268715 0.465429i
\(780\) 0 0
\(781\) 9.00000 15.5885i 0.322045 0.557799i
\(782\) 12.1244 7.00000i 0.433566 0.250319i
\(783\) 0 0
\(784\) 0 0
\(785\) −9.00000 18.0000i −0.321224 0.642448i
\(786\) 0 0
\(787\) −15.5885 9.00000i −0.555668 0.320815i 0.195737 0.980656i \(-0.437290\pi\)
−0.751405 + 0.659841i \(0.770624\pi\)