Properties

Label 490.2.e.d.361.1
Level $490$
Weight $2$
Character 490.361
Analytic conductor $3.913$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 490.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.91266969904\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 490.361
Dual form 490.2.e.d.471.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} +1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} +1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(0.500000 - 0.866025i) q^{10} +(-2.00000 + 3.46410i) q^{11} -6.00000 q^{13} +(-0.500000 - 0.866025i) q^{16} +(-1.00000 + 1.73205i) q^{17} +(1.50000 - 2.59808i) q^{18} -1.00000 q^{20} +4.00000 q^{22} +(-0.500000 + 0.866025i) q^{25} +(3.00000 + 5.19615i) q^{26} +6.00000 q^{29} +(-4.00000 + 6.92820i) q^{31} +(-0.500000 + 0.866025i) q^{32} +2.00000 q^{34} -3.00000 q^{36} +(5.00000 + 8.66025i) q^{37} +(0.500000 + 0.866025i) q^{40} +2.00000 q^{41} +4.00000 q^{43} +(-2.00000 - 3.46410i) q^{44} +(-1.50000 + 2.59808i) q^{45} +(-4.00000 - 6.92820i) q^{47} +1.00000 q^{50} +(3.00000 - 5.19615i) q^{52} +(1.00000 - 1.73205i) q^{53} -4.00000 q^{55} +(-3.00000 - 5.19615i) q^{58} +(4.00000 - 6.92820i) q^{59} +(7.00000 + 12.1244i) q^{61} +8.00000 q^{62} +1.00000 q^{64} +(-3.00000 - 5.19615i) q^{65} +(6.00000 - 10.3923i) q^{67} +(-1.00000 - 1.73205i) q^{68} -16.0000 q^{71} +(1.50000 + 2.59808i) q^{72} +(-1.00000 + 1.73205i) q^{73} +(5.00000 - 8.66025i) q^{74} +(4.00000 + 6.92820i) q^{79} +(0.500000 - 0.866025i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(-1.00000 - 1.73205i) q^{82} +8.00000 q^{83} -2.00000 q^{85} +(-2.00000 - 3.46410i) q^{86} +(-2.00000 + 3.46410i) q^{88} +(-5.00000 - 8.66025i) q^{89} +3.00000 q^{90} +(-4.00000 + 6.92820i) q^{94} +2.00000 q^{97} -12.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{4} + q^{5} + 2q^{8} + 3q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{4} + q^{5} + 2q^{8} + 3q^{9} + q^{10} - 4q^{11} - 12q^{13} - q^{16} - 2q^{17} + 3q^{18} - 2q^{20} + 8q^{22} - q^{25} + 6q^{26} + 12q^{29} - 8q^{31} - q^{32} + 4q^{34} - 6q^{36} + 10q^{37} + q^{40} + 4q^{41} + 8q^{43} - 4q^{44} - 3q^{45} - 8q^{47} + 2q^{50} + 6q^{52} + 2q^{53} - 8q^{55} - 6q^{58} + 8q^{59} + 14q^{61} + 16q^{62} + 2q^{64} - 6q^{65} + 12q^{67} - 2q^{68} - 32q^{71} + 3q^{72} - 2q^{73} + 10q^{74} + 8q^{79} + q^{80} - 9q^{81} - 2q^{82} + 16q^{83} - 4q^{85} - 4q^{86} - 4q^{88} - 10q^{89} + 6q^{90} - 8q^{94} + 4q^{97} - 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) −2.00000 + 3.46410i −0.603023 + 1.04447i 0.389338 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123371i \(0.960630\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.00000 + 1.73205i −0.242536 + 0.420084i −0.961436 0.275029i \(-0.911312\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) 1.50000 2.59808i 0.353553 0.612372i
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 3.00000 + 5.19615i 0.588348 + 1.01905i
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.718421 + 1.24434i 0.243204 + 0.969975i \(0.421802\pi\)
−0.961625 + 0.274367i \(0.911532\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) 5.00000 + 8.66025i 0.821995 + 1.42374i 0.904194 + 0.427121i \(0.140472\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.500000 + 0.866025i 0.0790569 + 0.136931i
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −2.00000 3.46410i −0.301511 0.522233i
\(45\) −1.50000 + 2.59808i −0.223607 + 0.387298i
\(46\) 0 0
\(47\) −4.00000 6.92820i −0.583460 1.01058i −0.995066 0.0992202i \(-0.968365\pi\)
0.411606 0.911362i \(-0.364968\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 3.00000 5.19615i 0.416025 0.720577i
\(53\) 1.00000 1.73205i 0.137361 0.237915i −0.789136 0.614218i \(-0.789471\pi\)
0.926497 + 0.376303i \(0.122805\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) −3.00000 5.19615i −0.393919 0.682288i
\(59\) 4.00000 6.92820i 0.520756 0.901975i −0.478953 0.877841i \(-0.658984\pi\)
0.999709 0.0241347i \(-0.00768307\pi\)
\(60\) 0 0
\(61\) 7.00000 + 12.1244i 0.896258 + 1.55236i 0.832240 + 0.554416i \(0.187058\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.00000 5.19615i −0.372104 0.644503i
\(66\) 0 0
\(67\) 6.00000 10.3923i 0.733017 1.26962i −0.222571 0.974916i \(-0.571445\pi\)
0.955588 0.294706i \(-0.0952216\pi\)
\(68\) −1.00000 1.73205i −0.121268 0.210042i
\(69\) 0 0
\(70\) 0 0
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 1.50000 + 2.59808i 0.176777 + 0.306186i
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 5.00000 8.66025i 0.581238 1.00673i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 + 6.92820i 0.450035 + 0.779484i 0.998388 0.0567635i \(-0.0180781\pi\)
−0.548352 + 0.836247i \(0.684745\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −1.00000 1.73205i −0.110432 0.191273i
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) −2.00000 3.46410i −0.215666 0.373544i
\(87\) 0 0
\(88\) −2.00000 + 3.46410i −0.213201 + 0.369274i
\(89\) −5.00000 8.66025i −0.529999 0.917985i −0.999388 0.0349934i \(-0.988859\pi\)
0.469389 0.882992i \(-0.344474\pi\)
\(90\) 3.00000 0.316228
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −4.00000 + 6.92820i −0.412568 + 0.714590i
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) −12.0000 −1.20605
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) 0 0
\(103\) −8.00000 13.8564i −0.788263 1.36531i −0.927030 0.374987i \(-0.877647\pi\)
0.138767 0.990325i \(-0.455686\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −6.00000 10.3923i −0.580042 1.00466i −0.995474 0.0950377i \(-0.969703\pi\)
0.415432 0.909624i \(-0.363630\pi\)
\(108\) 0 0
\(109\) −3.00000 + 5.19615i −0.287348 + 0.497701i −0.973176 0.230063i \(-0.926107\pi\)
0.685828 + 0.727764i \(0.259440\pi\)
\(110\) 2.00000 + 3.46410i 0.190693 + 0.330289i
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.00000 + 5.19615i −0.278543 + 0.482451i
\(117\) −9.00000 15.5885i −0.832050 1.44115i
\(118\) −8.00000 −0.736460
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 7.00000 12.1244i 0.633750 1.09769i
\(123\) 0 0
\(124\) −4.00000 6.92820i −0.359211 0.622171i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −3.00000 + 5.19615i −0.263117 + 0.455733i
\(131\) 8.00000 + 13.8564i 0.698963 + 1.21064i 0.968826 + 0.247741i \(0.0796882\pi\)
−0.269863 + 0.962899i \(0.586978\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −12.0000 −1.03664
\(135\) 0 0
\(136\) −1.00000 + 1.73205i −0.0857493 + 0.148522i
\(137\) 3.00000 5.19615i 0.256307 0.443937i −0.708942 0.705266i \(-0.750827\pi\)
0.965250 + 0.261329i \(0.0841608\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.00000 + 13.8564i 0.671345 + 1.16280i
\(143\) 12.0000 20.7846i 1.00349 1.73810i
\(144\) 1.50000 2.59808i 0.125000 0.216506i
\(145\) 3.00000 + 5.19615i 0.249136 + 0.431517i
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) −10.0000 −0.821995
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) −4.00000 + 6.92820i −0.325515 + 0.563809i −0.981617 0.190864i \(-0.938871\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −5.00000 + 8.66025i −0.399043 + 0.691164i −0.993608 0.112884i \(-0.963991\pi\)
0.594565 + 0.804048i \(0.297324\pi\)
\(158\) 4.00000 6.92820i 0.318223 0.551178i
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 9.00000 0.707107
\(163\) 2.00000 + 3.46410i 0.156652 + 0.271329i 0.933659 0.358162i \(-0.116597\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(164\) −1.00000 + 1.73205i −0.0780869 + 0.135250i
\(165\) 0 0
\(166\) −4.00000 6.92820i −0.310460 0.537733i
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 1.00000 + 1.73205i 0.0766965 + 0.132842i
\(171\) 0 0
\(172\) −2.00000 + 3.46410i −0.152499 + 0.264135i
\(173\) 11.0000 + 19.0526i 0.836315 + 1.44854i 0.892956 + 0.450145i \(0.148628\pi\)
−0.0566411 + 0.998395i \(0.518039\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) −5.00000 + 8.66025i −0.374766 + 0.649113i
\(179\) 6.00000 10.3923i 0.448461 0.776757i −0.549825 0.835280i \(-0.685306\pi\)
0.998286 + 0.0585225i \(0.0186389\pi\)
\(180\) −1.50000 2.59808i −0.111803 0.193649i
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.00000 + 8.66025i −0.367607 + 0.636715i
\(186\) 0 0
\(187\) −4.00000 6.92820i −0.292509 0.506640i
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 20.7846i −0.868290 1.50392i −0.863743 0.503932i \(-0.831886\pi\)
−0.00454614 0.999990i \(-0.501447\pi\)
\(192\) 0 0
\(193\) −1.00000 + 1.73205i −0.0719816 + 0.124676i −0.899770 0.436365i \(-0.856266\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) −1.00000 1.73205i −0.0717958 0.124354i
\(195\) 0 0
\(196\) 0 0
\(197\) 14.0000 0.997459 0.498729 0.866758i \(-0.333800\pi\)
0.498729 + 0.866758i \(0.333800\pi\)
\(198\) 6.00000 + 10.3923i 0.426401 + 0.738549i
\(199\) 8.00000 13.8564i 0.567105 0.982255i −0.429745 0.902950i \(-0.641397\pi\)
0.996850 0.0793045i \(-0.0252700\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −6.00000 −0.422159
\(203\) 0 0
\(204\) 0 0
\(205\) 1.00000 + 1.73205i 0.0698430 + 0.120972i
\(206\) −8.00000 + 13.8564i −0.557386 + 0.965422i
\(207\) 0 0
\(208\) 3.00000 + 5.19615i 0.208013 + 0.360288i
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 1.00000 + 1.73205i 0.0686803 + 0.118958i
\(213\) 0 0
\(214\) −6.00000 + 10.3923i −0.410152 + 0.710403i
\(215\) 2.00000 + 3.46410i 0.136399 + 0.236250i
\(216\) 0 0
\(217\) 0 0
\(218\) 6.00000 0.406371
\(219\) 0 0
\(220\) 2.00000 3.46410i 0.134840 0.233550i
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) −3.00000 −0.200000
\(226\) −1.00000 1.73205i −0.0665190 0.115214i
\(227\) −4.00000 + 6.92820i −0.265489 + 0.459841i −0.967692 0.252136i \(-0.918867\pi\)
0.702202 + 0.711977i \(0.252200\pi\)
\(228\) 0 0
\(229\) 7.00000 + 12.1244i 0.462573 + 0.801200i 0.999088 0.0426906i \(-0.0135930\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 3.00000 + 5.19615i 0.196537 + 0.340411i 0.947403 0.320043i \(-0.103697\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) −9.00000 + 15.5885i −0.588348 + 1.01905i
\(235\) 4.00000 6.92820i 0.260931 0.451946i
\(236\) 4.00000 + 6.92820i 0.260378 + 0.450988i
\(237\) 0 0
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −5.00000 + 8.66025i −0.322078 + 0.557856i −0.980917 0.194429i \(-0.937715\pi\)
0.658838 + 0.752285i \(0.271048\pi\)
\(242\) −2.50000 + 4.33013i −0.160706 + 0.278351i
\(243\) 0 0
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −4.00000 + 6.92820i −0.254000 + 0.439941i
\(249\) 0 0
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 4.00000 + 6.92820i 0.250982 + 0.434714i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.0000 + 19.0526i 0.686161 + 1.18847i 0.973070 + 0.230508i \(0.0740389\pi\)
−0.286909 + 0.957958i \(0.592628\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 6.00000 0.372104
\(261\) 9.00000 + 15.5885i 0.557086 + 0.964901i
\(262\) 8.00000 13.8564i 0.494242 0.856052i
\(263\) −4.00000 + 6.92820i −0.246651 + 0.427211i −0.962594 0.270947i \(-0.912663\pi\)
0.715944 + 0.698158i \(0.245997\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) 0 0
\(267\) 0 0
\(268\) 6.00000 + 10.3923i 0.366508 + 0.634811i
\(269\) 3.00000 5.19615i 0.182913 0.316815i −0.759958 0.649972i \(-0.774781\pi\)
0.942871 + 0.333157i \(0.108114\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) −2.00000 3.46410i −0.120605 0.208893i
\(276\) 0 0
\(277\) 9.00000 15.5885i 0.540758 0.936620i −0.458103 0.888899i \(-0.651471\pi\)
0.998861 0.0477206i \(-0.0151957\pi\)
\(278\) −8.00000 13.8564i −0.479808 0.831052i
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) −16.0000 + 27.7128i −0.951101 + 1.64736i −0.208053 + 0.978117i \(0.566713\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) 8.00000 13.8564i 0.474713 0.822226i
\(285\) 0 0
\(286\) −24.0000 −1.41915
\(287\) 0 0
\(288\) −3.00000 −0.176777
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 3.00000 5.19615i 0.176166 0.305129i
\(291\) 0 0
\(292\) −1.00000 1.73205i −0.0585206 0.101361i
\(293\) 10.0000 0.584206 0.292103 0.956387i \(-0.405645\pi\)
0.292103 + 0.956387i \(0.405645\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 5.00000 + 8.66025i 0.290619 + 0.503367i
\(297\) 0 0
\(298\) −3.00000 + 5.19615i −0.173785 + 0.301005i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) 0 0
\(305\) −7.00000 + 12.1244i −0.400819 + 0.694239i
\(306\) 3.00000 + 5.19615i 0.171499 + 0.297044i
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.00000 + 6.92820i 0.227185 + 0.393496i
\(311\) 12.0000 20.7846i 0.680458 1.17859i −0.294384 0.955687i \(-0.595114\pi\)
0.974841 0.222900i \(-0.0715523\pi\)
\(312\) 0 0
\(313\) 11.0000 + 19.0526i 0.621757 + 1.07691i 0.989158 + 0.146852i \(0.0469141\pi\)
−0.367402 + 0.930062i \(0.619753\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) −11.0000 19.0526i −0.617822 1.07010i −0.989882 0.141890i \(-0.954682\pi\)
0.372061 0.928208i \(-0.378651\pi\)
\(318\) 0 0
\(319\) −12.0000 + 20.7846i −0.671871 + 1.16371i
\(320\) 0.500000 + 0.866025i 0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) 3.00000 5.19615i 0.166410 0.288231i
\(326\) 2.00000 3.46410i 0.110770 0.191859i
\(327\) 0 0
\(328\) 2.00000 0.110432
\(329\) 0 0
\(330\) 0 0
\(331\) −2.00000 3.46410i −0.109930 0.190404i 0.805812 0.592172i \(-0.201729\pi\)
−0.915742 + 0.401768i \(0.868396\pi\)
\(332\) −4.00000 + 6.92820i −0.219529 + 0.380235i
\(333\) −15.0000 + 25.9808i −0.821995 + 1.42374i
\(334\) 0 0
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) −11.5000 19.9186i −0.625518 1.08343i
\(339\) 0 0
\(340\) 1.00000 1.73205i 0.0542326 0.0939336i
\(341\) −16.0000 27.7128i −0.866449 1.50073i
\(342\) 0 0
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 11.0000 19.0526i 0.591364 1.02427i
\(347\) −2.00000 + 3.46410i −0.107366 + 0.185963i −0.914702 0.404128i \(-0.867575\pi\)
0.807337 + 0.590091i \(0.200908\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 3.46410i −0.106600 0.184637i
\(353\) 3.00000 5.19615i 0.159674 0.276563i −0.775077 0.631867i \(-0.782289\pi\)
0.934751 + 0.355303i \(0.115622\pi\)
\(354\) 0 0
\(355\) −8.00000 13.8564i −0.424596 0.735422i
\(356\) 10.0000 0.529999
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) −4.00000 6.92820i −0.211112 0.365657i 0.740951 0.671559i \(-0.234375\pi\)
−0.952063 + 0.305903i \(0.901042\pi\)
\(360\) −1.50000 + 2.59808i −0.0790569 + 0.136931i
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 7.00000 + 12.1244i 0.367912 + 0.637242i
\(363\) 0 0
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) −8.00000 + 13.8564i −0.417597 + 0.723299i −0.995697 0.0926670i \(-0.970461\pi\)
0.578101 + 0.815966i \(0.303794\pi\)
\(368\) 0 0
\(369\) 3.00000 + 5.19615i 0.156174 + 0.270501i
\(370\) 10.0000 0.519875
\(371\) 0 0
\(372\) 0 0
\(373\) −7.00000 12.1244i −0.362446 0.627775i 0.625917 0.779890i \(-0.284725\pi\)
−0.988363 + 0.152115i \(0.951392\pi\)
\(374\) −4.00000 + 6.92820i −0.206835 + 0.358249i
\(375\) 0 0
\(376\) −4.00000 6.92820i −0.206284 0.357295i
\(377\) −36.0000 −1.85409
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −12.0000 + 20.7846i −0.613973 + 1.06343i
\(383\) −12.0000 20.7846i −0.613171 1.06204i −0.990702 0.136047i \(-0.956560\pi\)
0.377531 0.925997i \(-0.376773\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 6.00000 + 10.3923i 0.304997 + 0.528271i
\(388\) −1.00000 + 1.73205i −0.0507673 + 0.0879316i
\(389\) −7.00000 + 12.1244i −0.354914 + 0.614729i −0.987103 0.160085i \(-0.948823\pi\)
0.632189 + 0.774814i \(0.282157\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −7.00000 12.1244i −0.352655 0.610816i
\(395\) −4.00000 + 6.92820i −0.201262 + 0.348596i
\(396\) 6.00000 10.3923i 0.301511 0.522233i
\(397\) −5.00000 8.66025i −0.250943 0.434646i 0.712843 0.701324i \(-0.247407\pi\)
−0.963786 + 0.266678i \(0.914074\pi\)
\(398\) −16.0000 −0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 7.00000 + 12.1244i 0.349563 + 0.605461i 0.986172 0.165726i \(-0.0529966\pi\)
−0.636609 + 0.771187i \(0.719663\pi\)
\(402\) 0 0
\(403\) 24.0000 41.5692i 1.19553 2.07071i
\(404\) 3.00000 + 5.19615i 0.149256 + 0.258518i
\(405\) −9.00000 −0.447214
\(406\) 0 0
\(407\) −40.0000 −1.98273
\(408\) 0 0
\(409\) 15.0000 25.9808i 0.741702 1.28467i −0.210017 0.977698i \(-0.567352\pi\)
0.951720 0.306968i \(-0.0993146\pi\)
\(410\) 1.00000 1.73205i 0.0493865 0.0855399i
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 + 6.92820i 0.196352 + 0.340092i
\(416\) 3.00000 5.19615i 0.147087 0.254762i
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −2.00000 3.46410i −0.0973585 0.168630i
\(423\) 12.0000 20.7846i 0.583460 1.01058i
\(424\) 1.00000 1.73205i 0.0485643 0.0841158i
\(425\) −1.00000 1.73205i −0.0485071 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 2.00000 3.46410i 0.0964486 0.167054i
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.00000 5.19615i −0.143674 0.248851i
\(437\) 0 0
\(438\) 0 0
\(439\) 4.00000 + 6.92820i 0.190910 + 0.330665i 0.945552 0.325471i \(-0.105523\pi\)
−0.754642 + 0.656136i \(0.772190\pi\)
\(440\) −4.00000 −0.190693
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) 10.0000 + 17.3205i 0.475114 + 0.822922i 0.999594 0.0285009i \(-0.00907336\pi\)
−0.524479 + 0.851423i \(0.675740\pi\)
\(444\) 0 0
\(445\) 5.00000 8.66025i 0.237023 0.410535i
\(446\) −8.00000 13.8564i −0.378811 0.656120i
\(447\) 0 0
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 1.50000 + 2.59808i 0.0707107 + 0.122474i
\(451\) −4.00000 + 6.92820i −0.188353 + 0.326236i
\(452\) −1.00000 + 1.73205i −0.0470360 + 0.0814688i
\(453\) 0 0
\(454\) 8.00000 0.375459
\(455\) 0 0
\(456\) 0 0
\(457\) −5.00000 8.66025i −0.233890 0.405110i 0.725059 0.688686i \(-0.241812\pi\)
−0.958950 + 0.283577i \(0.908479\pi\)
\(458\) 7.00000 12.1244i 0.327089 0.566534i
\(459\) 0 0
\(460\) 0 0
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 0 0
\(466\) 3.00000 5.19615i 0.138972 0.240707i
\(467\) 20.0000 + 34.6410i 0.925490 + 1.60300i 0.790772 + 0.612111i \(0.209679\pi\)
0.134718 + 0.990884i \(0.456987\pi\)
\(468\) 18.0000 0.832050
\(469\) 0 0
\(470\) −8.00000 −0.369012
\(471\) 0 0
\(472\) 4.00000 6.92820i 0.184115 0.318896i
\(473\) −8.00000 + 13.8564i −0.367840 + 0.637118i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) −8.00000 13.8564i −0.365911 0.633777i
\(479\) −12.0000 + 20.7846i −0.548294 + 0.949673i 0.450098 + 0.892979i \(0.351389\pi\)
−0.998392 + 0.0566937i \(0.981944\pi\)
\(480\) 0 0
\(481\) −30.0000 51.9615i −1.36788 2.36924i
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 1.00000 + 1.73205i 0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) −16.0000 + 27.7128i −0.725029 + 1.25579i 0.233933 + 0.972253i \(0.424840\pi\)
−0.958962 + 0.283535i \(0.908493\pi\)
\(488\) 7.00000 + 12.1244i 0.316875 + 0.548844i
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −6.00000 + 10.3923i −0.270226 + 0.468046i
\(494\) 0 0
\(495\) −6.00000 10.3923i −0.269680 0.467099i
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 6.00000 + 10.3923i 0.268597 + 0.465223i 0.968500 0.249015i \(-0.0801067\pi\)
−0.699903 + 0.714238i \(0.746773\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) 0 0
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 0 0
\(507\) 0 0
\(508\) 4.00000 6.92820i 0.177471 0.307389i
\(509\) −5.00000 8.66025i −0.221621 0.383859i 0.733679 0.679496i \(-0.237801\pi\)
−0.955300 + 0.295637i \(0.904468\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 11.0000 19.0526i 0.485189 0.840372i
\(515\) 8.00000 13.8564i 0.352522 0.610586i
\(516\) 0 0
\(517\) 32.0000 1.40736
\(518\) 0 0
\(519\) 0 0
\(520\) −3.00000 5.19615i −0.131559 0.227866i
\(521\) −1.00000 + 1.73205i −0.0438108 + 0.0758825i −0.887099 0.461579i \(-0.847283\pi\)
0.843288 + 0.537461i \(0.180617\pi\)
\(522\) 9.00000 15.5885i 0.393919 0.682288i
\(523\) −8.00000 13.8564i −0.349816 0.605898i 0.636401 0.771358i \(-0.280422\pi\)
−0.986216 + 0.165460i \(0.947089\pi\)
\(524\) −16.0000 −0.698963
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) −8.00000 13.8564i −0.348485 0.603595i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) −1.00000 1.73205i −0.0434372 0.0752355i
\(531\) 24.0000 1.04151
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 6.00000 10.3923i 0.259403 0.449299i
\(536\) 6.00000 10.3923i 0.259161 0.448879i
\(537\) 0 0
\(538\) −6.00000 −0.258678
\(539\) 0 0
\(540\) 0 0
\(541\) 9.00000 + 15.5885i 0.386940 + 0.670200i 0.992036 0.125952i \(-0.0401986\pi\)
−0.605096 + 0.796152i \(0.706865\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1.00000 1.73205i −0.0428746 0.0742611i
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 3.00000 + 5.19615i 0.128154 + 0.221969i
\(549\) −21.0000 + 36.3731i −0.896258 + 1.55236i
\(550\) −2.00000 + 3.46410i −0.0852803 + 0.147710i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −18.0000 −0.764747
\(555\) 0 0
\(556\) −8.00000 + 13.8564i −0.339276 + 0.587643i
\(557\) −11.0000 + 19.0526i −0.466085 + 0.807283i −0.999250 0.0387286i \(-0.987669\pi\)
0.533165 + 0.846011i \(0.321003\pi\)
\(558\) 12.0000 + 20.7846i 0.508001 + 0.879883i
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) −13.0000 22.5167i −0.548372 0.949808i
\(563\) 8.00000 13.8564i 0.337160 0.583978i −0.646737 0.762713i \(-0.723867\pi\)
0.983897 + 0.178735i \(0.0572004\pi\)
\(564\) 0 0
\(565\) 1.00000 + 1.73205i 0.0420703 + 0.0728679i
\(566\) 32.0000 1.34506
\(567\) 0 0
\(568\) −16.0000 −0.671345
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) 6.00000 10.3923i 0.251092 0.434904i −0.712735 0.701434i \(-0.752544\pi\)
0.963827 + 0.266529i \(0.0858769\pi\)
\(572\) 12.0000 + 20.7846i 0.501745 + 0.869048i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) −5.00000 + 8.66025i −0.208153 + 0.360531i −0.951133 0.308783i \(-0.900078\pi\)
0.742980 + 0.669314i \(0.233412\pi\)
\(578\) 6.50000 11.2583i 0.270364 0.468285i
\(579\) 0 0
\(580\) −6.00000 −0.249136
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 + 6.92820i 0.165663 + 0.286937i
\(584\) −1.00000 + 1.73205i −0.0413803 + 0.0716728i
\(585\) 9.00000 15.5885i 0.372104 0.644503i
\(586\) −5.00000 8.66025i −0.206548 0.357752i
\(587\) 8.00000 0.330195 0.165098 0.986277i \(-0.447206\pi\)
0.165098 + 0.986277i \(0.447206\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −4.00000 6.92820i −0.164677 0.285230i
\(591\) 0 0
\(592\) 5.00000 8.66025i 0.205499 0.355934i
\(593\) 3.00000 + 5.19615i 0.123195 + 0.213380i 0.921026 0.389501i \(-0.127353\pi\)
−0.797831 + 0.602881i \(0.794019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) 42.0000 1.71322 0.856608 0.515968i \(-0.172568\pi\)
0.856608 + 0.515968i \(0.172568\pi\)
\(602\) 0 0
\(603\) 36.0000 1.46603
\(604\) −4.00000 6.92820i −0.162758 0.281905i
\(605\) 2.50000 4.33013i 0.101639 0.176045i
\(606\) 0 0
\(607\) 16.0000 + 27.7128i 0.649420 + 1.12483i 0.983262 + 0.182199i \(0.0583216\pi\)
−0.333842 + 0.942629i \(0.608345\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 14.0000 0.566843
\(611\) 24.0000 + 41.5692i 0.970936 + 1.68171i
\(612\) 3.00000 5.19615i 0.121268 0.210042i
\(613\) −3.00000 + 5.19615i −0.121169 + 0.209871i −0.920229 0.391381i \(-0.871998\pi\)
0.799060 + 0.601251i \(0.205331\pi\)
\(614\) 4.00000 + 6.92820i 0.161427 + 0.279600i
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) −4.00000 + 6.92820i −0.160774 + 0.278468i −0.935146 0.354262i \(-0.884732\pi\)
0.774373 + 0.632730i \(0.218066\pi\)
\(620\) 4.00000 6.92820i 0.160644 0.278243i
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 11.0000 19.0526i 0.439648 0.761493i
\(627\) 0 0
\(628\) −5.00000 8.66025i −0.199522 0.345582i
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 4.00000 + 6.92820i 0.159111 + 0.275589i
\(633\) 0 0
\(634\) −11.0000 + 19.0526i −0.436866 + 0.756674i
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 24.0000 0.950169
\(639\) −24.0000 41.5692i −0.949425 1.64445i
\(640\) 0.500000 0.866025i 0.0197642 0.0342327i
\(641\) −1.00000 + 1.73205i −0.0394976 + 0.0684119i −0.885098 0.465404i \(-0.845909\pi\)
0.845601 + 0.533816i \(0.179242\pi\)
\(642\) 0 0
\(643\) −32.0000 −1.26196 −0.630978 0.775800i \(-0.717346\pi\)
−0.630978 + 0.775800i \(0.717346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.00000 + 13.8564i −0.314512 + 0.544752i −0.979334 0.202251i \(-0.935174\pi\)
0.664821 + 0.747002i \(0.268508\pi\)
\(648\) −4.50000 + 7.79423i −0.176777 + 0.306186i
\(649\) 16.0000 + 27.7128i 0.628055 + 1.08782i
\(650\) −6.00000 −0.235339
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −7.00000 12.1244i −0.273931 0.474463i 0.695934 0.718106i \(-0.254991\pi\)
−0.969865 + 0.243643i \(0.921657\pi\)
\(654\) 0 0
\(655\) −8.00000 + 13.8564i −0.312586 + 0.541415i
\(656\) −1.00000 1.73205i −0.0390434 0.0676252i
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 0 0
\(661\) 19.0000 32.9090i 0.739014 1.28001i −0.213925 0.976850i \(-0.568625\pi\)
0.952940 0.303160i \(-0.0980418\pi\)
\(662\) −2.00000 + 3.46410i −0.0777322 + 0.134636i
\(663\) 0 0
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) 30.0000 1.16248
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) −6.00000 10.3923i −0.231800 0.401490i
\(671\) −56.0000 −2.16186
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 7.00000 + 12.1244i 0.269630 + 0.467013i
\(675\) 0 0
\(676\) −11.5000 + 19.9186i −0.442308 + 0.766099i
\(677\) −9.00000 15.5885i −0.345898 0.599113i 0.639618 0.768693i \(-0.279092\pi\)
−0.985517 + 0.169580i \(0.945759\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.00000 −0.0766965
\(681\) 0 0
\(682\) −16.0000 + 27.7128i −0.612672 + 1.06118i
\(683\) 2.00000 3.46410i 0.0765279 0.132550i −0.825222 0.564809i \(-0.808950\pi\)
0.901750 + 0.432259i \(0.142283\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) −2.00000 3.46410i −0.0762493 0.132068i
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 0 0
\(691\) 16.0000 + 27.7128i 0.608669 + 1.05425i 0.991460 + 0.130410i \(0.0416295\pi\)
−0.382791 + 0.923835i \(0.625037\pi\)
\(692\) −22.0000 −0.836315
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 8.00000 + 13.8564i 0.303457 + 0.525603i
\(696\) 0 0
\(697\) −2.00000 + 3.46410i −0.0757554 + 0.131212i
\(698\) −5.00000 8.66025i −0.189253 0.327795i
\(699\) 0 0
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.00000 + 3.46410i −0.0753778 + 0.130558i
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 0 0
\(708\) 0 0
\(709\) 1.00000 + 1.73205i 0.0375558 + 0.0650485i 0.884192 0.467123i \(-0.154709\pi\)
−0.846637 + 0.532172i \(0.821376\pi\)
\(710\) −8.00000 + 13.8564i −0.300235 + 0.520022i
\(711\) −12.0000 + 20.7846i −0.450035 + 0.779484i
\(712\) −5.00000 8.66025i −0.187383 0.324557i
\(713\) 0 0
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 6.00000 + 10.3923i 0.224231 + 0.388379i
\(717\) 0 0
\(718\) −4.00000 + 6.92820i −0.149279 + 0.258558i
\(719\) −12.0000 20.7846i −0.447524 0.775135i 0.550700 0.834703i \(-0.314361\pi\)
−0.998224 + 0.0595683i \(0.981028\pi\)
\(720\) 3.00000 0.111803
\(721\) 0 0
\(722\) −19.0000 −0.707107
\(723\) 0 0
\(724\) 7.00000 12.1244i 0.260153 0.450598i
\(725\) −3.00000 + 5.19615i −0.111417 + 0.192980i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 1.00000 + 1.73205i 0.0370117 + 0.0641061i
\(731\) −4.00000 + 6.92820i −0.147945 + 0.256249i
\(732\) 0 0
\(733\) 7.00000 + 12.1244i 0.258551 + 0.447823i 0.965854 0.259087i \(-0.0834217\pi\)
−0.707303 + 0.706910i \(0.750088\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000 + 41.5692i 0.884051 + 1.53122i
\(738\) 3.00000 5.19615i 0.110432 0.191273i
\(739\) −14.0000 + 24.2487i −0.514998 + 0.892003i 0.484850 + 0.874597i \(0.338874\pi\)
−0.999849 + 0.0174060i \(0.994459\pi\)
\(740\) −5.00000 8.66025i −0.183804 0.318357i
\(741\) 0 0
\(742\) 0 0
\(743\) 48.0000 1.76095 0.880475 0.474093i \(-0.157224\pi\)
0.880475 + 0.474093i \(0.157224\pi\)
\(744\) 0 0
\(745\) 3.00000 5.19615i 0.109911 0.190372i
\(746\) −7.00000 + 12.1244i −0.256288 + 0.443904i
\(747\) 12.0000 + 20.7846i 0.439057 + 0.760469i
\(748\) 8.00000 0.292509
\(749\) 0 0
\(750\) 0 0
\(751\) 8.00000 + 13.8564i 0.291924 + 0.505627i 0.974265 0.225407i \(-0.0723712\pi\)
−0.682341 + 0.731034i \(0.739038\pi\)
\(752\) −4.00000 + 6.92820i −0.145865 + 0.252646i
\(753\) 0 0
\(754\) 18.0000 + 31.1769i 0.655521 + 1.13540i
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 6.00000 + 10.3923i 0.217930 + 0.377466i
\(759\) 0 0
\(760\) 0 0
\(761\) −9.00000 15.5885i −0.326250 0.565081i 0.655515 0.755182i \(-0.272452\pi\)
−0.981764 + 0.190101i \(0.939118\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 24.0000 0.868290
\(765\) −3.00000 5.19615i −0.108465 0.187867i
\(766\) −12.0000 + 20.7846i −0.433578 + 0.750978i
\(767\) −24.0000 + 41.5692i −0.866590 + 1.50098i
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.00000 1.73205i −0.0359908 0.0623379i
\(773\) −21.0000 + 36.3731i −0.755318 + 1.30825i 0.189899 + 0.981804i \(0.439184\pi\)
−0.945216 + 0.326445i \(0.894149\pi\)
\(774\) 6.00000 10.3923i 0.215666 0.373544i
\(775\) −4.00000 6.92820i −0.143684 0.248868i
\(776\) 2.00000 0.0717958
\(777\) 0 0
\(778\) 14.0000 0.501924
\(779\) 0 0
\(780\) 0 0
\(781\) 32.0000 55.4256i 1.14505 1.98328i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) 4.00000 6.92820i 0.142585 0.246964i −0.785885 0.618373i \(-0.787792\pi\)
0.928469 + 0.371409i \(0.121125\pi\)
\(788\) −7.00000 + 12.1244i −0.249365 + 0.431912i
\(789\) 0 0
\(790\) 8.00000 0.284627
\(791\) 0 0
\(792\) −12.0000 −0.426401
\(793\) −42.0000 72.7461i −1.49146 2.58329i
\(794\) −5.00000 + 8.66025i −0.177443 + 0.307341i