# Properties

 Label 490.2.c.e Level $490$ Weight $2$ Character orbit 490.c Analytic conductor $3.913$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$490 = 2 \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 490.c (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.91266969904$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{6})$$ Defining polynomial: $$x^{4} + 9$$ x^4 + 9 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{2} q^{2} + (\beta_{3} + \beta_1) q^{3} - q^{4} + (\beta_{2} - \beta_1 - 1) q^{5} + (\beta_{3} - \beta_1) q^{6} - \beta_{2} q^{8} - 3 q^{9}+O(q^{10})$$ q + b2 * q^2 + (b3 + b1) * q^3 - q^4 + (b2 - b1 - 1) * q^5 + (b3 - b1) * q^6 - b2 * q^8 - 3 * q^9 $$q + \beta_{2} q^{2} + (\beta_{3} + \beta_1) q^{3} - q^{4} + (\beta_{2} - \beta_1 - 1) q^{5} + (\beta_{3} - \beta_1) q^{6} - \beta_{2} q^{8} - 3 q^{9} + ( - \beta_{3} - \beta_{2} - 1) q^{10} + (2 \beta_{3} - 2 \beta_1) q^{11} + ( - \beta_{3} - \beta_1) q^{12} + ( - \beta_{3} - 2 \beta_{2} - \beta_1) q^{13} + ( - 3 \beta_{2} - 2 \beta_1 + 3) q^{15} + q^{16} + 2 \beta_{2} q^{17} - 3 \beta_{2} q^{18} + (\beta_{3} - \beta_1 + 4) q^{19} + ( - \beta_{2} + \beta_1 + 1) q^{20} + ( - 2 \beta_{3} - 2 \beta_1) q^{22} + (2 \beta_{3} - 2 \beta_{2} + 2 \beta_1) q^{23} + ( - \beta_{3} + \beta_1) q^{24} + ( - 2 \beta_{3} + \beta_{2} + 2 \beta_1) q^{25} + ( - \beta_{3} + \beta_1 + 2) q^{26} + (2 \beta_{3} - 2 \beta_1 - 2) q^{29} + ( - 2 \beta_{3} + 3 \beta_{2} + 3) q^{30} + (2 \beta_{3} - 2 \beta_1 - 4) q^{31} + \beta_{2} q^{32} - 12 \beta_{2} q^{33} - 2 q^{34} + 3 q^{36} - 2 \beta_{2} q^{37} + ( - \beta_{3} + 4 \beta_{2} - \beta_1) q^{38} + ( - 2 \beta_{3} + 2 \beta_1 + 6) q^{39} + (\beta_{3} + \beta_{2} + 1) q^{40} + (2 \beta_{3} - 2 \beta_1 + 6) q^{41} + ( - 2 \beta_{3} + 4 \beta_{2} - 2 \beta_1) q^{43} + ( - 2 \beta_{3} + 2 \beta_1) q^{44} + ( - 3 \beta_{2} + 3 \beta_1 + 3) q^{45} + (2 \beta_{3} - 2 \beta_1 + 2) q^{46} + (2 \beta_{3} + 4 \beta_{2} + 2 \beta_1) q^{47} + (\beta_{3} + \beta_1) q^{48} + (2 \beta_{3} + 2 \beta_1 - 1) q^{50} + (2 \beta_{3} - 2 \beta_1) q^{51} + (\beta_{3} + 2 \beta_{2} + \beta_1) q^{52} + ( - 2 \beta_{3} - 6 \beta_{2} - 2 \beta_1) q^{53} + ( - 4 \beta_{3} + 6 \beta_{2} + 6) q^{55} + (4 \beta_{3} - 6 \beta_{2} + 4 \beta_1) q^{57} + ( - 2 \beta_{3} - 2 \beta_{2} - 2 \beta_1) q^{58} + ( - \beta_{3} + \beta_1 - 4) q^{59} + (3 \beta_{2} + 2 \beta_1 - 3) q^{60} + ( - \beta_{3} + \beta_1 - 6) q^{61} + ( - 2 \beta_{3} - 4 \beta_{2} - 2 \beta_1) q^{62} - q^{64} + (2 \beta_{3} + 5 \beta_{2} + 2 \beta_1 - 1) q^{65} + 12 q^{66} + 8 \beta_{2} q^{67} - 2 \beta_{2} q^{68} + ( - 2 \beta_{3} + 2 \beta_1 - 12) q^{69} + ( - 2 \beta_{3} + 2 \beta_1 - 6) q^{71} + 3 \beta_{2} q^{72} + ( - 2 \beta_{3} + 2 \beta_{2} - 2 \beta_1) q^{73} + 2 q^{74} + (\beta_{3} + 12 \beta_{2} - \beta_1) q^{75} + ( - \beta_{3} + \beta_1 - 4) q^{76} + (2 \beta_{3} + 6 \beta_{2} + 2 \beta_1) q^{78} + (2 \beta_{3} - 2 \beta_1 - 2) q^{79} + (\beta_{2} - \beta_1 - 1) q^{80} - 9 q^{81} + ( - 2 \beta_{3} + 6 \beta_{2} - 2 \beta_1) q^{82} + (\beta_{3} + \beta_1) q^{83} + ( - 2 \beta_{3} - 2 \beta_{2} - 2) q^{85} + ( - 2 \beta_{3} + 2 \beta_1 - 4) q^{86} + ( - 2 \beta_{3} - 12 \beta_{2} - 2 \beta_1) q^{87} + (2 \beta_{3} + 2 \beta_1) q^{88} - 10 q^{89} + (3 \beta_{3} + 3 \beta_{2} + 3) q^{90} + ( - 2 \beta_{3} + 2 \beta_{2} - 2 \beta_1) q^{92} + ( - 4 \beta_{3} - 12 \beta_{2} - 4 \beta_1) q^{93} + (2 \beta_{3} - 2 \beta_1 - 4) q^{94} + ( - 2 \beta_{3} + 7 \beta_{2} - 4 \beta_1 - 1) q^{95} + (\beta_{3} - \beta_1) q^{96} + (4 \beta_{3} + 6 \beta_{2} + 4 \beta_1) q^{97} + ( - 6 \beta_{3} + 6 \beta_1) q^{99}+O(q^{100})$$ q + b2 * q^2 + (b3 + b1) * q^3 - q^4 + (b2 - b1 - 1) * q^5 + (b3 - b1) * q^6 - b2 * q^8 - 3 * q^9 + (-b3 - b2 - 1) * q^10 + (2*b3 - 2*b1) * q^11 + (-b3 - b1) * q^12 + (-b3 - 2*b2 - b1) * q^13 + (-3*b2 - 2*b1 + 3) * q^15 + q^16 + 2*b2 * q^17 - 3*b2 * q^18 + (b3 - b1 + 4) * q^19 + (-b2 + b1 + 1) * q^20 + (-2*b3 - 2*b1) * q^22 + (2*b3 - 2*b2 + 2*b1) * q^23 + (-b3 + b1) * q^24 + (-2*b3 + b2 + 2*b1) * q^25 + (-b3 + b1 + 2) * q^26 + (2*b3 - 2*b1 - 2) * q^29 + (-2*b3 + 3*b2 + 3) * q^30 + (2*b3 - 2*b1 - 4) * q^31 + b2 * q^32 - 12*b2 * q^33 - 2 * q^34 + 3 * q^36 - 2*b2 * q^37 + (-b3 + 4*b2 - b1) * q^38 + (-2*b3 + 2*b1 + 6) * q^39 + (b3 + b2 + 1) * q^40 + (2*b3 - 2*b1 + 6) * q^41 + (-2*b3 + 4*b2 - 2*b1) * q^43 + (-2*b3 + 2*b1) * q^44 + (-3*b2 + 3*b1 + 3) * q^45 + (2*b3 - 2*b1 + 2) * q^46 + (2*b3 + 4*b2 + 2*b1) * q^47 + (b3 + b1) * q^48 + (2*b3 + 2*b1 - 1) * q^50 + (2*b3 - 2*b1) * q^51 + (b3 + 2*b2 + b1) * q^52 + (-2*b3 - 6*b2 - 2*b1) * q^53 + (-4*b3 + 6*b2 + 6) * q^55 + (4*b3 - 6*b2 + 4*b1) * q^57 + (-2*b3 - 2*b2 - 2*b1) * q^58 + (-b3 + b1 - 4) * q^59 + (3*b2 + 2*b1 - 3) * q^60 + (-b3 + b1 - 6) * q^61 + (-2*b3 - 4*b2 - 2*b1) * q^62 - q^64 + (2*b3 + 5*b2 + 2*b1 - 1) * q^65 + 12 * q^66 + 8*b2 * q^67 - 2*b2 * q^68 + (-2*b3 + 2*b1 - 12) * q^69 + (-2*b3 + 2*b1 - 6) * q^71 + 3*b2 * q^72 + (-2*b3 + 2*b2 - 2*b1) * q^73 + 2 * q^74 + (b3 + 12*b2 - b1) * q^75 + (-b3 + b1 - 4) * q^76 + (2*b3 + 6*b2 + 2*b1) * q^78 + (2*b3 - 2*b1 - 2) * q^79 + (b2 - b1 - 1) * q^80 - 9 * q^81 + (-2*b3 + 6*b2 - 2*b1) * q^82 + (b3 + b1) * q^83 + (-2*b3 - 2*b2 - 2) * q^85 + (-2*b3 + 2*b1 - 4) * q^86 + (-2*b3 - 12*b2 - 2*b1) * q^87 + (2*b3 + 2*b1) * q^88 - 10 * q^89 + (3*b3 + 3*b2 + 3) * q^90 + (-2*b3 + 2*b2 - 2*b1) * q^92 + (-4*b3 - 12*b2 - 4*b1) * q^93 + (2*b3 - 2*b1 - 4) * q^94 + (-2*b3 + 7*b2 - 4*b1 - 1) * q^95 + (b3 - b1) * q^96 + (4*b3 + 6*b2 + 4*b1) * q^97 + (-6*b3 + 6*b1) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 4 q^{4} - 4 q^{5} - 12 q^{9}+O(q^{10})$$ 4 * q - 4 * q^4 - 4 * q^5 - 12 * q^9 $$4 q - 4 q^{4} - 4 q^{5} - 12 q^{9} - 4 q^{10} + 12 q^{15} + 4 q^{16} + 16 q^{19} + 4 q^{20} + 8 q^{26} - 8 q^{29} + 12 q^{30} - 16 q^{31} - 8 q^{34} + 12 q^{36} + 24 q^{39} + 4 q^{40} + 24 q^{41} + 12 q^{45} + 8 q^{46} - 4 q^{50} + 24 q^{55} - 16 q^{59} - 12 q^{60} - 24 q^{61} - 4 q^{64} - 4 q^{65} + 48 q^{66} - 48 q^{69} - 24 q^{71} + 8 q^{74} - 16 q^{76} - 8 q^{79} - 4 q^{80} - 36 q^{81} - 8 q^{85} - 16 q^{86} - 40 q^{89} + 12 q^{90} - 16 q^{94} - 4 q^{95}+O(q^{100})$$ 4 * q - 4 * q^4 - 4 * q^5 - 12 * q^9 - 4 * q^10 + 12 * q^15 + 4 * q^16 + 16 * q^19 + 4 * q^20 + 8 * q^26 - 8 * q^29 + 12 * q^30 - 16 * q^31 - 8 * q^34 + 12 * q^36 + 24 * q^39 + 4 * q^40 + 24 * q^41 + 12 * q^45 + 8 * q^46 - 4 * q^50 + 24 * q^55 - 16 * q^59 - 12 * q^60 - 24 * q^61 - 4 * q^64 - 4 * q^65 + 48 * q^66 - 48 * q^69 - 24 * q^71 + 8 * q^74 - 16 * q^76 - 8 * q^79 - 4 * q^80 - 36 * q^81 - 8 * q^85 - 16 * q^86 - 40 * q^89 + 12 * q^90 - 16 * q^94 - 4 * q^95

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 9$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{2} ) / 3$$ (v^2) / 3 $$\beta_{3}$$ $$=$$ $$( \nu^{3} ) / 3$$ (v^3) / 3
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$3\beta_{2}$$ 3*b2 $$\nu^{3}$$ $$=$$ $$3\beta_{3}$$ 3*b3

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/490\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$197$$ $$\chi(n)$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
99.1
 1.22474 − 1.22474i −1.22474 + 1.22474i −1.22474 − 1.22474i 1.22474 + 1.22474i
1.00000i 2.44949i −1.00000 −2.22474 + 0.224745i −2.44949 0 1.00000i −3.00000 0.224745 + 2.22474i
99.2 1.00000i 2.44949i −1.00000 0.224745 2.22474i 2.44949 0 1.00000i −3.00000 −2.22474 0.224745i
99.3 1.00000i 2.44949i −1.00000 0.224745 + 2.22474i 2.44949 0 1.00000i −3.00000 −2.22474 + 0.224745i
99.4 1.00000i 2.44949i −1.00000 −2.22474 0.224745i −2.44949 0 1.00000i −3.00000 0.224745 2.22474i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.2.c.e 4
5.b even 2 1 inner 490.2.c.e 4
5.c odd 4 1 2450.2.a.bl 2
5.c odd 4 1 2450.2.a.bq 2
7.b odd 2 1 70.2.c.a 4
7.c even 3 2 490.2.i.f 8
7.d odd 6 2 490.2.i.c 8
21.c even 2 1 630.2.g.g 4
28.d even 2 1 560.2.g.e 4
35.c odd 2 1 70.2.c.a 4
35.f even 4 1 350.2.a.g 2
35.f even 4 1 350.2.a.h 2
35.i odd 6 2 490.2.i.c 8
35.j even 6 2 490.2.i.f 8
56.e even 2 1 2240.2.g.i 4
56.h odd 2 1 2240.2.g.j 4
84.h odd 2 1 5040.2.t.t 4
105.g even 2 1 630.2.g.g 4
105.k odd 4 1 3150.2.a.bs 2
105.k odd 4 1 3150.2.a.bt 2
140.c even 2 1 560.2.g.e 4
140.j odd 4 1 2800.2.a.bl 2
140.j odd 4 1 2800.2.a.bm 2
280.c odd 2 1 2240.2.g.j 4
280.n even 2 1 2240.2.g.i 4
420.o odd 2 1 5040.2.t.t 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.c.a 4 7.b odd 2 1
70.2.c.a 4 35.c odd 2 1
350.2.a.g 2 35.f even 4 1
350.2.a.h 2 35.f even 4 1
490.2.c.e 4 1.a even 1 1 trivial
490.2.c.e 4 5.b even 2 1 inner
490.2.i.c 8 7.d odd 6 2
490.2.i.c 8 35.i odd 6 2
490.2.i.f 8 7.c even 3 2
490.2.i.f 8 35.j even 6 2
560.2.g.e 4 28.d even 2 1
560.2.g.e 4 140.c even 2 1
630.2.g.g 4 21.c even 2 1
630.2.g.g 4 105.g even 2 1
2240.2.g.i 4 56.e even 2 1
2240.2.g.i 4 280.n even 2 1
2240.2.g.j 4 56.h odd 2 1
2240.2.g.j 4 280.c odd 2 1
2450.2.a.bl 2 5.c odd 4 1
2450.2.a.bq 2 5.c odd 4 1
2800.2.a.bl 2 140.j odd 4 1
2800.2.a.bm 2 140.j odd 4 1
3150.2.a.bs 2 105.k odd 4 1
3150.2.a.bt 2 105.k odd 4 1
5040.2.t.t 4 84.h odd 2 1
5040.2.t.t 4 420.o odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(490, [\chi])$$:

 $$T_{3}^{2} + 6$$ T3^2 + 6 $$T_{11}^{2} - 24$$ T11^2 - 24 $$T_{19}^{2} - 8T_{19} + 10$$ T19^2 - 8*T19 + 10

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T^{2} + 1)^{2}$$
$3$ $$(T^{2} + 6)^{2}$$
$5$ $$T^{4} + 4 T^{3} + 8 T^{2} + 20 T + 25$$
$7$ $$T^{4}$$
$11$ $$(T^{2} - 24)^{2}$$
$13$ $$T^{4} + 20T^{2} + 4$$
$17$ $$(T^{2} + 4)^{2}$$
$19$ $$(T^{2} - 8 T + 10)^{2}$$
$23$ $$T^{4} + 56T^{2} + 400$$
$29$ $$(T^{2} + 4 T - 20)^{2}$$
$31$ $$(T^{2} + 8 T - 8)^{2}$$
$37$ $$(T^{2} + 4)^{2}$$
$41$ $$(T^{2} - 12 T + 12)^{2}$$
$43$ $$T^{4} + 80T^{2} + 64$$
$47$ $$T^{4} + 80T^{2} + 64$$
$53$ $$T^{4} + 120T^{2} + 144$$
$59$ $$(T^{2} + 8 T + 10)^{2}$$
$61$ $$(T^{2} + 12 T + 30)^{2}$$
$67$ $$(T^{2} + 64)^{2}$$
$71$ $$(T^{2} + 12 T + 12)^{2}$$
$73$ $$T^{4} + 56T^{2} + 400$$
$79$ $$(T^{2} + 4 T - 20)^{2}$$
$83$ $$(T^{2} + 6)^{2}$$
$89$ $$(T + 10)^{4}$$
$97$ $$T^{4} + 264T^{2} + 3600$$