# Properties

 Label 490.2.c.d.99.1 Level $490$ Weight $2$ Character 490.99 Analytic conductor $3.913$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$490 = 2 \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 490.c (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.91266969904$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 99.1 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 490.99 Dual form 490.2.c.d.99.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000i q^{2} -1.00000 q^{4} +(2.00000 - 1.00000i) q^{5} +1.00000i q^{8} +3.00000 q^{9} +O(q^{10})$$ $$q-1.00000i q^{2} -1.00000 q^{4} +(2.00000 - 1.00000i) q^{5} +1.00000i q^{8} +3.00000 q^{9} +(-1.00000 - 2.00000i) q^{10} +3.00000 q^{11} +5.00000i q^{13} +1.00000 q^{16} -2.00000i q^{17} -3.00000i q^{18} -5.00000 q^{19} +(-2.00000 + 1.00000i) q^{20} -3.00000i q^{22} -7.00000i q^{23} +(3.00000 - 4.00000i) q^{25} +5.00000 q^{26} +4.00000 q^{29} +2.00000 q^{31} -1.00000i q^{32} -2.00000 q^{34} -3.00000 q^{36} -1.00000i q^{37} +5.00000i q^{38} +(1.00000 + 2.00000i) q^{40} -3.00000 q^{41} +2.00000i q^{43} -3.00000 q^{44} +(6.00000 - 3.00000i) q^{45} -7.00000 q^{46} -7.00000i q^{47} +(-4.00000 - 3.00000i) q^{50} -5.00000i q^{52} +9.00000i q^{53} +(6.00000 - 3.00000i) q^{55} -4.00000i q^{58} -4.00000 q^{59} -6.00000 q^{61} -2.00000i q^{62} -1.00000 q^{64} +(5.00000 + 10.0000i) q^{65} -2.00000i q^{67} +2.00000i q^{68} -6.00000 q^{71} +3.00000i q^{72} +16.0000i q^{73} -1.00000 q^{74} +5.00000 q^{76} -14.0000 q^{79} +(2.00000 - 1.00000i) q^{80} +9.00000 q^{81} +3.00000i q^{82} +6.00000i q^{83} +(-2.00000 - 4.00000i) q^{85} +2.00000 q^{86} +3.00000i q^{88} +2.00000 q^{89} +(-3.00000 - 6.00000i) q^{90} +7.00000i q^{92} -7.00000 q^{94} +(-10.0000 + 5.00000i) q^{95} -12.0000i q^{97} +9.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{4} + 4 q^{5} + 6 q^{9}+O(q^{10})$$ 2 * q - 2 * q^4 + 4 * q^5 + 6 * q^9 $$2 q - 2 q^{4} + 4 q^{5} + 6 q^{9} - 2 q^{10} + 6 q^{11} + 2 q^{16} - 10 q^{19} - 4 q^{20} + 6 q^{25} + 10 q^{26} + 8 q^{29} + 4 q^{31} - 4 q^{34} - 6 q^{36} + 2 q^{40} - 6 q^{41} - 6 q^{44} + 12 q^{45} - 14 q^{46} - 8 q^{50} + 12 q^{55} - 8 q^{59} - 12 q^{61} - 2 q^{64} + 10 q^{65} - 12 q^{71} - 2 q^{74} + 10 q^{76} - 28 q^{79} + 4 q^{80} + 18 q^{81} - 4 q^{85} + 4 q^{86} + 4 q^{89} - 6 q^{90} - 14 q^{94} - 20 q^{95} + 18 q^{99}+O(q^{100})$$ 2 * q - 2 * q^4 + 4 * q^5 + 6 * q^9 - 2 * q^10 + 6 * q^11 + 2 * q^16 - 10 * q^19 - 4 * q^20 + 6 * q^25 + 10 * q^26 + 8 * q^29 + 4 * q^31 - 4 * q^34 - 6 * q^36 + 2 * q^40 - 6 * q^41 - 6 * q^44 + 12 * q^45 - 14 * q^46 - 8 * q^50 + 12 * q^55 - 8 * q^59 - 12 * q^61 - 2 * q^64 + 10 * q^65 - 12 * q^71 - 2 * q^74 + 10 * q^76 - 28 * q^79 + 4 * q^80 + 18 * q^81 - 4 * q^85 + 4 * q^86 + 4 * q^89 - 6 * q^90 - 14 * q^94 - 20 * q^95 + 18 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/490\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$197$$ $$\chi(n)$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.00000i 0.707107i
$$3$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$4$$ −1.00000 −0.500000
$$5$$ 2.00000 1.00000i 0.894427 0.447214i
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 1.00000i 0.353553i
$$9$$ 3.00000 1.00000
$$10$$ −1.00000 2.00000i −0.316228 0.632456i
$$11$$ 3.00000 0.904534 0.452267 0.891883i $$-0.350615\pi$$
0.452267 + 0.891883i $$0.350615\pi$$
$$12$$ 0 0
$$13$$ 5.00000i 1.38675i 0.720577 + 0.693375i $$0.243877\pi$$
−0.720577 + 0.693375i $$0.756123\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 1.00000 0.250000
$$17$$ 2.00000i 0.485071i −0.970143 0.242536i $$-0.922021\pi$$
0.970143 0.242536i $$-0.0779791\pi$$
$$18$$ 3.00000i 0.707107i
$$19$$ −5.00000 −1.14708 −0.573539 0.819178i $$-0.694430\pi$$
−0.573539 + 0.819178i $$0.694430\pi$$
$$20$$ −2.00000 + 1.00000i −0.447214 + 0.223607i
$$21$$ 0 0
$$22$$ 3.00000i 0.639602i
$$23$$ 7.00000i 1.45960i −0.683660 0.729800i $$-0.739613\pi$$
0.683660 0.729800i $$-0.260387\pi$$
$$24$$ 0 0
$$25$$ 3.00000 4.00000i 0.600000 0.800000i
$$26$$ 5.00000 0.980581
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 4.00000 0.742781 0.371391 0.928477i $$-0.378881\pi$$
0.371391 + 0.928477i $$0.378881\pi$$
$$30$$ 0 0
$$31$$ 2.00000 0.359211 0.179605 0.983739i $$-0.442518\pi$$
0.179605 + 0.983739i $$0.442518\pi$$
$$32$$ 1.00000i 0.176777i
$$33$$ 0 0
$$34$$ −2.00000 −0.342997
$$35$$ 0 0
$$36$$ −3.00000 −0.500000
$$37$$ 1.00000i 0.164399i −0.996616 0.0821995i $$-0.973806\pi$$
0.996616 0.0821995i $$-0.0261945\pi$$
$$38$$ 5.00000i 0.811107i
$$39$$ 0 0
$$40$$ 1.00000 + 2.00000i 0.158114 + 0.316228i
$$41$$ −3.00000 −0.468521 −0.234261 0.972174i $$-0.575267\pi$$
−0.234261 + 0.972174i $$0.575267\pi$$
$$42$$ 0 0
$$43$$ 2.00000i 0.304997i 0.988304 + 0.152499i $$0.0487319\pi$$
−0.988304 + 0.152499i $$0.951268\pi$$
$$44$$ −3.00000 −0.452267
$$45$$ 6.00000 3.00000i 0.894427 0.447214i
$$46$$ −7.00000 −1.03209
$$47$$ 7.00000i 1.02105i −0.859861 0.510527i $$-0.829450\pi$$
0.859861 0.510527i $$-0.170550\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ −4.00000 3.00000i −0.565685 0.424264i
$$51$$ 0 0
$$52$$ 5.00000i 0.693375i
$$53$$ 9.00000i 1.23625i 0.786082 + 0.618123i $$0.212106\pi$$
−0.786082 + 0.618123i $$0.787894\pi$$
$$54$$ 0 0
$$55$$ 6.00000 3.00000i 0.809040 0.404520i
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 4.00000i 0.525226i
$$59$$ −4.00000 −0.520756 −0.260378 0.965507i $$-0.583847\pi$$
−0.260378 + 0.965507i $$0.583847\pi$$
$$60$$ 0 0
$$61$$ −6.00000 −0.768221 −0.384111 0.923287i $$-0.625492\pi$$
−0.384111 + 0.923287i $$0.625492\pi$$
$$62$$ 2.00000i 0.254000i
$$63$$ 0 0
$$64$$ −1.00000 −0.125000
$$65$$ 5.00000 + 10.0000i 0.620174 + 1.24035i
$$66$$ 0 0
$$67$$ 2.00000i 0.244339i −0.992509 0.122169i $$-0.961015\pi$$
0.992509 0.122169i $$-0.0389851\pi$$
$$68$$ 2.00000i 0.242536i
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −6.00000 −0.712069 −0.356034 0.934473i $$-0.615871\pi$$
−0.356034 + 0.934473i $$0.615871\pi$$
$$72$$ 3.00000i 0.353553i
$$73$$ 16.0000i 1.87266i 0.351123 + 0.936329i $$0.385800\pi$$
−0.351123 + 0.936329i $$0.614200\pi$$
$$74$$ −1.00000 −0.116248
$$75$$ 0 0
$$76$$ 5.00000 0.573539
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −14.0000 −1.57512 −0.787562 0.616236i $$-0.788657\pi$$
−0.787562 + 0.616236i $$0.788657\pi$$
$$80$$ 2.00000 1.00000i 0.223607 0.111803i
$$81$$ 9.00000 1.00000
$$82$$ 3.00000i 0.331295i
$$83$$ 6.00000i 0.658586i 0.944228 + 0.329293i $$0.106810\pi$$
−0.944228 + 0.329293i $$0.893190\pi$$
$$84$$ 0 0
$$85$$ −2.00000 4.00000i −0.216930 0.433861i
$$86$$ 2.00000 0.215666
$$87$$ 0 0
$$88$$ 3.00000i 0.319801i
$$89$$ 2.00000 0.212000 0.106000 0.994366i $$-0.466196\pi$$
0.106000 + 0.994366i $$0.466196\pi$$
$$90$$ −3.00000 6.00000i −0.316228 0.632456i
$$91$$ 0 0
$$92$$ 7.00000i 0.729800i
$$93$$ 0 0
$$94$$ −7.00000 −0.721995
$$95$$ −10.0000 + 5.00000i −1.02598 + 0.512989i
$$96$$ 0 0
$$97$$ 12.0000i 1.21842i −0.793011 0.609208i $$-0.791488\pi$$
0.793011 0.609208i $$-0.208512\pi$$
$$98$$ 0 0
$$99$$ 9.00000 0.904534
$$100$$ −3.00000 + 4.00000i −0.300000 + 0.400000i
$$101$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$102$$ 0 0
$$103$$ 8.00000i 0.788263i 0.919054 + 0.394132i $$0.128955\pi$$
−0.919054 + 0.394132i $$0.871045\pi$$
$$104$$ −5.00000 −0.490290
$$105$$ 0 0
$$106$$ 9.00000 0.874157
$$107$$ 16.0000i 1.54678i 0.633932 + 0.773389i $$0.281440\pi$$
−0.633932 + 0.773389i $$0.718560\pi$$
$$108$$ 0 0
$$109$$ −2.00000 −0.191565 −0.0957826 0.995402i $$-0.530535\pi$$
−0.0957826 + 0.995402i $$0.530535\pi$$
$$110$$ −3.00000 6.00000i −0.286039 0.572078i
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 14.0000i 1.31701i 0.752577 + 0.658505i $$0.228811\pi$$
−0.752577 + 0.658505i $$0.771189\pi$$
$$114$$ 0 0
$$115$$ −7.00000 14.0000i −0.652753 1.30551i
$$116$$ −4.00000 −0.371391
$$117$$ 15.0000i 1.38675i
$$118$$ 4.00000i 0.368230i
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −2.00000 −0.181818
$$122$$ 6.00000i 0.543214i
$$123$$ 0 0
$$124$$ −2.00000 −0.179605
$$125$$ 2.00000 11.0000i 0.178885 0.983870i
$$126$$ 0 0
$$127$$ 7.00000i 0.621150i −0.950549 0.310575i $$-0.899478\pi$$
0.950549 0.310575i $$-0.100522\pi$$
$$128$$ 1.00000i 0.0883883i
$$129$$ 0 0
$$130$$ 10.0000 5.00000i 0.877058 0.438529i
$$131$$ 1.00000 0.0873704 0.0436852 0.999045i $$-0.486090\pi$$
0.0436852 + 0.999045i $$0.486090\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ −2.00000 −0.172774
$$135$$ 0 0
$$136$$ 2.00000 0.171499
$$137$$ 8.00000i 0.683486i 0.939793 + 0.341743i $$0.111017\pi$$
−0.939793 + 0.341743i $$0.888983\pi$$
$$138$$ 0 0
$$139$$ 16.0000 1.35710 0.678551 0.734553i $$-0.262608\pi$$
0.678551 + 0.734553i $$0.262608\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 6.00000i 0.503509i
$$143$$ 15.0000i 1.25436i
$$144$$ 3.00000 0.250000
$$145$$ 8.00000 4.00000i 0.664364 0.332182i
$$146$$ 16.0000 1.32417
$$147$$ 0 0
$$148$$ 1.00000i 0.0821995i
$$149$$ 18.0000 1.47462 0.737309 0.675556i $$-0.236096\pi$$
0.737309 + 0.675556i $$0.236096\pi$$
$$150$$ 0 0
$$151$$ −6.00000 −0.488273 −0.244137 0.969741i $$-0.578505\pi$$
−0.244137 + 0.969741i $$0.578505\pi$$
$$152$$ 5.00000i 0.405554i
$$153$$ 6.00000i 0.485071i
$$154$$ 0 0
$$155$$ 4.00000 2.00000i 0.321288 0.160644i
$$156$$ 0 0
$$157$$ 9.00000i 0.718278i −0.933284 0.359139i $$-0.883070\pi$$
0.933284 0.359139i $$-0.116930\pi$$
$$158$$ 14.0000i 1.11378i
$$159$$ 0 0
$$160$$ −1.00000 2.00000i −0.0790569 0.158114i
$$161$$ 0 0
$$162$$ 9.00000i 0.707107i
$$163$$ 12.0000i 0.939913i −0.882690 0.469956i $$-0.844270\pi$$
0.882690 0.469956i $$-0.155730\pi$$
$$164$$ 3.00000 0.234261
$$165$$ 0 0
$$166$$ 6.00000 0.465690
$$167$$ 15.0000i 1.16073i 0.814355 + 0.580367i $$0.197091\pi$$
−0.814355 + 0.580367i $$0.802909\pi$$
$$168$$ 0 0
$$169$$ −12.0000 −0.923077
$$170$$ −4.00000 + 2.00000i −0.306786 + 0.153393i
$$171$$ −15.0000 −1.14708
$$172$$ 2.00000i 0.152499i
$$173$$ 9.00000i 0.684257i −0.939653 0.342129i $$-0.888852\pi$$
0.939653 0.342129i $$-0.111148\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 3.00000 0.226134
$$177$$ 0 0
$$178$$ 2.00000i 0.149906i
$$179$$ −13.0000 −0.971666 −0.485833 0.874052i $$-0.661484\pi$$
−0.485833 + 0.874052i $$0.661484\pi$$
$$180$$ −6.00000 + 3.00000i −0.447214 + 0.223607i
$$181$$ −26.0000 −1.93256 −0.966282 0.257485i $$-0.917106\pi$$
−0.966282 + 0.257485i $$0.917106\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 7.00000 0.516047
$$185$$ −1.00000 2.00000i −0.0735215 0.147043i
$$186$$ 0 0
$$187$$ 6.00000i 0.438763i
$$188$$ 7.00000i 0.510527i
$$189$$ 0 0
$$190$$ 5.00000 + 10.0000i 0.362738 + 0.725476i
$$191$$ −20.0000 −1.44715 −0.723575 0.690246i $$-0.757502\pi$$
−0.723575 + 0.690246i $$0.757502\pi$$
$$192$$ 0 0
$$193$$ 10.0000i 0.719816i −0.932988 0.359908i $$-0.882808\pi$$
0.932988 0.359908i $$-0.117192\pi$$
$$194$$ −12.0000 −0.861550
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 5.00000i 0.356235i 0.984009 + 0.178118i $$0.0570008\pi$$
−0.984009 + 0.178118i $$0.942999\pi$$
$$198$$ 9.00000i 0.639602i
$$199$$ 18.0000 1.27599 0.637993 0.770042i $$-0.279765\pi$$
0.637993 + 0.770042i $$0.279765\pi$$
$$200$$ 4.00000 + 3.00000i 0.282843 + 0.212132i
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ −6.00000 + 3.00000i −0.419058 + 0.209529i
$$206$$ 8.00000 0.557386
$$207$$ 21.0000i 1.45960i
$$208$$ 5.00000i 0.346688i
$$209$$ −15.0000 −1.03757
$$210$$ 0 0
$$211$$ −9.00000 −0.619586 −0.309793 0.950804i $$-0.600260\pi$$
−0.309793 + 0.950804i $$0.600260\pi$$
$$212$$ 9.00000i 0.618123i
$$213$$ 0 0
$$214$$ 16.0000 1.09374
$$215$$ 2.00000 + 4.00000i 0.136399 + 0.272798i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 2.00000i 0.135457i
$$219$$ 0 0
$$220$$ −6.00000 + 3.00000i −0.404520 + 0.202260i
$$221$$ 10.0000 0.672673
$$222$$ 0 0
$$223$$ 8.00000i 0.535720i 0.963458 + 0.267860i $$0.0863164\pi$$
−0.963458 + 0.267860i $$0.913684\pi$$
$$224$$ 0 0
$$225$$ 9.00000 12.0000i 0.600000 0.800000i
$$226$$ 14.0000 0.931266
$$227$$ 6.00000i 0.398234i −0.979976 0.199117i $$-0.936193\pi$$
0.979976 0.199117i $$-0.0638074\pi$$
$$228$$ 0 0
$$229$$ 16.0000 1.05731 0.528655 0.848837i $$-0.322697\pi$$
0.528655 + 0.848837i $$0.322697\pi$$
$$230$$ −14.0000 + 7.00000i −0.923133 + 0.461566i
$$231$$ 0 0
$$232$$ 4.00000i 0.262613i
$$233$$ 8.00000i 0.524097i −0.965055 0.262049i $$-0.915602\pi$$
0.965055 0.262049i $$-0.0843981\pi$$
$$234$$ 15.0000 0.980581
$$235$$ −7.00000 14.0000i −0.456630 0.913259i
$$236$$ 4.00000 0.260378
$$237$$ 0 0
$$238$$ 0 0
$$239$$ −20.0000 −1.29369 −0.646846 0.762620i $$-0.723912\pi$$
−0.646846 + 0.762620i $$0.723912\pi$$
$$240$$ 0 0
$$241$$ 9.00000 0.579741 0.289870 0.957066i $$-0.406388\pi$$
0.289870 + 0.957066i $$0.406388\pi$$
$$242$$ 2.00000i 0.128565i
$$243$$ 0 0
$$244$$ 6.00000 0.384111
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 25.0000i 1.59071i
$$248$$ 2.00000i 0.127000i
$$249$$ 0 0
$$250$$ −11.0000 2.00000i −0.695701 0.126491i
$$251$$ −5.00000 −0.315597 −0.157799 0.987471i $$-0.550440\pi$$
−0.157799 + 0.987471i $$0.550440\pi$$
$$252$$ 0 0
$$253$$ 21.0000i 1.32026i
$$254$$ −7.00000 −0.439219
$$255$$ 0 0
$$256$$ 1.00000 0.0625000
$$257$$ 6.00000i 0.374270i −0.982334 0.187135i $$-0.940080\pi$$
0.982334 0.187135i $$-0.0599201\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ −5.00000 10.0000i −0.310087 0.620174i
$$261$$ 12.0000 0.742781
$$262$$ 1.00000i 0.0617802i
$$263$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$264$$ 0 0
$$265$$ 9.00000 + 18.0000i 0.552866 + 1.10573i
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 2.00000i 0.122169i
$$269$$ −10.0000 −0.609711 −0.304855 0.952399i $$-0.598608\pi$$
−0.304855 + 0.952399i $$0.598608\pi$$
$$270$$ 0 0
$$271$$ −24.0000 −1.45790 −0.728948 0.684569i $$-0.759990\pi$$
−0.728948 + 0.684569i $$0.759990\pi$$
$$272$$ 2.00000i 0.121268i
$$273$$ 0 0
$$274$$ 8.00000 0.483298
$$275$$ 9.00000 12.0000i 0.542720 0.723627i
$$276$$ 0 0
$$277$$ 2.00000i 0.120168i 0.998193 + 0.0600842i $$0.0191369\pi$$
−0.998193 + 0.0600842i $$0.980863\pi$$
$$278$$ 16.0000i 0.959616i
$$279$$ 6.00000 0.359211
$$280$$ 0 0
$$281$$ 9.00000 0.536895 0.268447 0.963294i $$-0.413489\pi$$
0.268447 + 0.963294i $$0.413489\pi$$
$$282$$ 0 0
$$283$$ 14.0000i 0.832214i −0.909316 0.416107i $$-0.863394\pi$$
0.909316 0.416107i $$-0.136606\pi$$
$$284$$ 6.00000 0.356034
$$285$$ 0 0
$$286$$ 15.0000 0.886969
$$287$$ 0 0
$$288$$ 3.00000i 0.176777i
$$289$$ 13.0000 0.764706
$$290$$ −4.00000 8.00000i −0.234888 0.469776i
$$291$$ 0 0
$$292$$ 16.0000i 0.936329i
$$293$$ 9.00000i 0.525786i 0.964825 + 0.262893i $$0.0846766\pi$$
−0.964825 + 0.262893i $$0.915323\pi$$
$$294$$ 0 0
$$295$$ −8.00000 + 4.00000i −0.465778 + 0.232889i
$$296$$ 1.00000 0.0581238
$$297$$ 0 0
$$298$$ 18.0000i 1.04271i
$$299$$ 35.0000 2.02410
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 6.00000i 0.345261i
$$303$$ 0 0
$$304$$ −5.00000 −0.286770
$$305$$ −12.0000 + 6.00000i −0.687118 + 0.343559i
$$306$$ −6.00000 −0.342997
$$307$$ 22.0000i 1.25561i −0.778372 0.627803i $$-0.783954\pi$$
0.778372 0.627803i $$-0.216046\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ −2.00000 4.00000i −0.113592 0.227185i
$$311$$ −6.00000 −0.340229 −0.170114 0.985424i $$-0.554414\pi$$
−0.170114 + 0.985424i $$0.554414\pi$$
$$312$$ 0 0
$$313$$ 22.0000i 1.24351i 0.783210 + 0.621757i $$0.213581\pi$$
−0.783210 + 0.621757i $$0.786419\pi$$
$$314$$ −9.00000 −0.507899
$$315$$ 0 0
$$316$$ 14.0000 0.787562
$$317$$ 2.00000i 0.112331i 0.998421 + 0.0561656i $$0.0178875\pi$$
−0.998421 + 0.0561656i $$0.982113\pi$$
$$318$$ 0 0
$$319$$ 12.0000 0.671871
$$320$$ −2.00000 + 1.00000i −0.111803 + 0.0559017i
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 10.0000i 0.556415i
$$324$$ −9.00000 −0.500000
$$325$$ 20.0000 + 15.0000i 1.10940 + 0.832050i
$$326$$ −12.0000 −0.664619
$$327$$ 0 0
$$328$$ 3.00000i 0.165647i
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 5.00000 0.274825 0.137412 0.990514i $$-0.456121\pi$$
0.137412 + 0.990514i $$0.456121\pi$$
$$332$$ 6.00000i 0.329293i
$$333$$ 3.00000i 0.164399i
$$334$$ 15.0000 0.820763
$$335$$ −2.00000 4.00000i −0.109272 0.218543i
$$336$$ 0 0
$$337$$ 10.0000i 0.544735i −0.962193 0.272367i $$-0.912193\pi$$
0.962193 0.272367i $$-0.0878066\pi$$
$$338$$ 12.0000i 0.652714i
$$339$$ 0 0
$$340$$ 2.00000 + 4.00000i 0.108465 + 0.216930i
$$341$$ 6.00000 0.324918
$$342$$ 15.0000i 0.811107i
$$343$$ 0 0
$$344$$ −2.00000 −0.107833
$$345$$ 0 0
$$346$$ −9.00000 −0.483843
$$347$$ 12.0000i 0.644194i 0.946707 + 0.322097i $$0.104388\pi$$
−0.946707 + 0.322097i $$0.895612\pi$$
$$348$$ 0 0
$$349$$ −12.0000 −0.642345 −0.321173 0.947021i $$-0.604077\pi$$
−0.321173 + 0.947021i $$0.604077\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 3.00000i 0.159901i
$$353$$ 24.0000i 1.27739i −0.769460 0.638696i $$-0.779474\pi$$
0.769460 0.638696i $$-0.220526\pi$$
$$354$$ 0 0
$$355$$ −12.0000 + 6.00000i −0.636894 + 0.318447i
$$356$$ −2.00000 −0.106000
$$357$$ 0 0
$$358$$ 13.0000i 0.687071i
$$359$$ −16.0000 −0.844448 −0.422224 0.906492i $$-0.638750\pi$$
−0.422224 + 0.906492i $$0.638750\pi$$
$$360$$ 3.00000 + 6.00000i 0.158114 + 0.316228i
$$361$$ 6.00000 0.315789
$$362$$ 26.0000i 1.36653i
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 16.0000 + 32.0000i 0.837478 + 1.67496i
$$366$$ 0 0
$$367$$ 13.0000i 0.678594i 0.940679 + 0.339297i $$0.110189\pi$$
−0.940679 + 0.339297i $$0.889811\pi$$
$$368$$ 7.00000i 0.364900i
$$369$$ −9.00000 −0.468521
$$370$$ −2.00000 + 1.00000i −0.103975 + 0.0519875i
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 26.0000i 1.34623i 0.739538 + 0.673114i $$0.235044\pi$$
−0.739538 + 0.673114i $$0.764956\pi$$
$$374$$ −6.00000 −0.310253
$$375$$ 0 0
$$376$$ 7.00000 0.360997
$$377$$ 20.0000i 1.03005i
$$378$$ 0 0
$$379$$ 29.0000 1.48963 0.744815 0.667271i $$-0.232538\pi$$
0.744815 + 0.667271i $$0.232538\pi$$
$$380$$ 10.0000 5.00000i 0.512989 0.256495i
$$381$$ 0 0
$$382$$ 20.0000i 1.02329i
$$383$$ 21.0000i 1.07305i −0.843884 0.536525i $$-0.819737\pi$$
0.843884 0.536525i $$-0.180263\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ −10.0000 −0.508987
$$387$$ 6.00000i 0.304997i
$$388$$ 12.0000i 0.609208i
$$389$$ 6.00000 0.304212 0.152106 0.988364i $$-0.451394\pi$$
0.152106 + 0.988364i $$0.451394\pi$$
$$390$$ 0 0
$$391$$ −14.0000 −0.708010
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 5.00000 0.251896
$$395$$ −28.0000 + 14.0000i −1.40883 + 0.704416i
$$396$$ −9.00000 −0.452267
$$397$$ 14.0000i 0.702640i −0.936255 0.351320i $$-0.885733\pi$$
0.936255 0.351320i $$-0.114267\pi$$
$$398$$ 18.0000i 0.902258i
$$399$$ 0 0
$$400$$ 3.00000 4.00000i 0.150000 0.200000i
$$401$$ −15.0000 −0.749064 −0.374532 0.927214i $$-0.622197\pi$$
−0.374532 + 0.927214i $$0.622197\pi$$
$$402$$ 0 0
$$403$$ 10.0000i 0.498135i
$$404$$ 0 0
$$405$$ 18.0000 9.00000i 0.894427 0.447214i
$$406$$ 0 0
$$407$$ 3.00000i 0.148704i
$$408$$ 0 0
$$409$$ −14.0000 −0.692255 −0.346128 0.938187i $$-0.612504\pi$$
−0.346128 + 0.938187i $$0.612504\pi$$
$$410$$ 3.00000 + 6.00000i 0.148159 + 0.296319i
$$411$$ 0 0
$$412$$ 8.00000i 0.394132i
$$413$$ 0 0
$$414$$ −21.0000 −1.03209
$$415$$ 6.00000 + 12.0000i 0.294528 + 0.589057i
$$416$$ 5.00000 0.245145
$$417$$ 0 0
$$418$$ 15.0000i 0.733674i
$$419$$ 35.0000 1.70986 0.854931 0.518742i $$-0.173599\pi$$
0.854931 + 0.518742i $$0.173599\pi$$
$$420$$ 0 0
$$421$$ −20.0000 −0.974740 −0.487370 0.873195i $$-0.662044\pi$$
−0.487370 + 0.873195i $$0.662044\pi$$
$$422$$ 9.00000i 0.438113i
$$423$$ 21.0000i 1.02105i
$$424$$ −9.00000 −0.437079
$$425$$ −8.00000 6.00000i −0.388057 0.291043i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 16.0000i 0.773389i
$$429$$ 0 0
$$430$$ 4.00000 2.00000i 0.192897 0.0964486i
$$431$$ 2.00000 0.0963366 0.0481683 0.998839i $$-0.484662\pi$$
0.0481683 + 0.998839i $$0.484662\pi$$
$$432$$ 0 0
$$433$$ 28.0000i 1.34559i −0.739827 0.672797i $$-0.765093\pi$$
0.739827 0.672797i $$-0.234907\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 2.00000 0.0957826
$$437$$ 35.0000i 1.67428i
$$438$$ 0 0
$$439$$ −28.0000 −1.33637 −0.668184 0.743996i $$-0.732928\pi$$
−0.668184 + 0.743996i $$0.732928\pi$$
$$440$$ 3.00000 + 6.00000i 0.143019 + 0.286039i
$$441$$ 0 0
$$442$$ 10.0000i 0.475651i
$$443$$ 30.0000i 1.42534i 0.701498 + 0.712672i $$0.252515\pi$$
−0.701498 + 0.712672i $$0.747485\pi$$
$$444$$ 0 0
$$445$$ 4.00000 2.00000i 0.189618 0.0948091i
$$446$$ 8.00000 0.378811
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −5.00000 −0.235965 −0.117982 0.993016i $$-0.537643\pi$$
−0.117982 + 0.993016i $$0.537643\pi$$
$$450$$ −12.0000 9.00000i −0.565685 0.424264i
$$451$$ −9.00000 −0.423793
$$452$$ 14.0000i 0.658505i
$$453$$ 0 0
$$454$$ −6.00000 −0.281594
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 10.0000i 0.467780i 0.972263 + 0.233890i $$0.0751456\pi$$
−0.972263 + 0.233890i $$0.924854\pi$$
$$458$$ 16.0000i 0.747631i
$$459$$ 0 0
$$460$$ 7.00000 + 14.0000i 0.326377 + 0.652753i
$$461$$ 32.0000 1.49039 0.745194 0.666847i $$-0.232357\pi$$
0.745194 + 0.666847i $$0.232357\pi$$
$$462$$ 0 0
$$463$$ 17.0000i 0.790057i −0.918669 0.395029i $$-0.870735\pi$$
0.918669 0.395029i $$-0.129265\pi$$
$$464$$ 4.00000 0.185695
$$465$$ 0 0
$$466$$ −8.00000 −0.370593
$$467$$ 34.0000i 1.57333i 0.617379 + 0.786666i $$0.288195\pi$$
−0.617379 + 0.786666i $$0.711805\pi$$
$$468$$ 15.0000i 0.693375i
$$469$$ 0 0
$$470$$ −14.0000 + 7.00000i −0.645772 + 0.322886i
$$471$$ 0 0
$$472$$ 4.00000i 0.184115i
$$473$$ 6.00000i 0.275880i
$$474$$ 0 0
$$475$$ −15.0000 + 20.0000i −0.688247 + 0.917663i
$$476$$ 0 0
$$477$$ 27.0000i 1.23625i
$$478$$ 20.0000i 0.914779i
$$479$$ 36.0000 1.64488 0.822441 0.568850i $$-0.192612\pi$$
0.822441 + 0.568850i $$0.192612\pi$$
$$480$$ 0 0
$$481$$ 5.00000 0.227980
$$482$$ 9.00000i 0.409939i
$$483$$ 0 0
$$484$$ 2.00000 0.0909091
$$485$$ −12.0000 24.0000i −0.544892 1.08978i
$$486$$ 0 0
$$487$$ 32.0000i 1.45006i 0.688718 + 0.725029i $$0.258174\pi$$
−0.688718 + 0.725029i $$0.741826\pi$$
$$488$$ 6.00000i 0.271607i
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 24.0000 1.08310 0.541552 0.840667i $$-0.317837\pi$$
0.541552 + 0.840667i $$0.317837\pi$$
$$492$$ 0 0
$$493$$ 8.00000i 0.360302i
$$494$$ −25.0000 −1.12480
$$495$$ 18.0000 9.00000i 0.809040 0.404520i
$$496$$ 2.00000 0.0898027
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −4.00000 −0.179065 −0.0895323 0.995984i $$-0.528537\pi$$
−0.0895323 + 0.995984i $$0.528537\pi$$
$$500$$ −2.00000 + 11.0000i −0.0894427 + 0.491935i
$$501$$ 0 0
$$502$$ 5.00000i 0.223161i
$$503$$ 40.0000i 1.78351i −0.452517 0.891756i $$-0.649474\pi$$
0.452517 0.891756i $$-0.350526\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ −21.0000 −0.933564
$$507$$ 0 0
$$508$$ 7.00000i 0.310575i
$$509$$ −34.0000 −1.50702 −0.753512 0.657434i $$-0.771642\pi$$
−0.753512 + 0.657434i $$0.771642\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 1.00000i 0.0441942i
$$513$$ 0 0
$$514$$ −6.00000 −0.264649
$$515$$ 8.00000 + 16.0000i 0.352522 + 0.705044i
$$516$$ 0 0
$$517$$ 21.0000i 0.923579i
$$518$$ 0 0
$$519$$ 0 0
$$520$$ −10.0000 + 5.00000i −0.438529 + 0.219265i
$$521$$ 27.0000 1.18289 0.591446 0.806345i $$-0.298557\pi$$
0.591446 + 0.806345i $$0.298557\pi$$
$$522$$ 12.0000i 0.525226i
$$523$$ 16.0000i 0.699631i −0.936819 0.349816i $$-0.886244\pi$$
0.936819 0.349816i $$-0.113756\pi$$
$$524$$ −1.00000 −0.0436852
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 4.00000i 0.174243i
$$528$$ 0 0
$$529$$ −26.0000 −1.13043
$$530$$ 18.0000 9.00000i 0.781870 0.390935i
$$531$$ −12.0000 −0.520756
$$532$$ 0 0
$$533$$ 15.0000i 0.649722i
$$534$$ 0 0
$$535$$ 16.0000 + 32.0000i 0.691740 + 1.38348i
$$536$$ 2.00000 0.0863868
$$537$$ 0 0
$$538$$ 10.0000i 0.431131i
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −16.0000 −0.687894 −0.343947 0.938989i $$-0.611764\pi$$
−0.343947 + 0.938989i $$0.611764\pi$$
$$542$$ 24.0000i 1.03089i
$$543$$ 0 0
$$544$$ −2.00000 −0.0857493
$$545$$ −4.00000 + 2.00000i −0.171341 + 0.0856706i
$$546$$ 0 0
$$547$$ 26.0000i 1.11168i 0.831289 + 0.555840i $$0.187603\pi$$
−0.831289 + 0.555840i $$0.812397\pi$$
$$548$$ 8.00000i 0.341743i
$$549$$ −18.0000 −0.768221
$$550$$ −12.0000 9.00000i −0.511682 0.383761i
$$551$$ −20.0000 −0.852029
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 2.00000 0.0849719
$$555$$ 0 0
$$556$$ −16.0000 −0.678551
$$557$$ 23.0000i 0.974541i −0.873251 0.487271i $$-0.837993\pi$$
0.873251 0.487271i $$-0.162007\pi$$
$$558$$ 6.00000i 0.254000i
$$559$$ −10.0000 −0.422955
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 9.00000i 0.379642i
$$563$$ 2.00000i 0.0842900i −0.999112 0.0421450i $$-0.986581\pi$$
0.999112 0.0421450i $$-0.0134191\pi$$
$$564$$ 0 0
$$565$$ 14.0000 + 28.0000i 0.588984 + 1.17797i
$$566$$ −14.0000 −0.588464
$$567$$ 0 0
$$568$$ 6.00000i 0.251754i
$$569$$ 15.0000 0.628833 0.314416 0.949285i $$-0.398191\pi$$
0.314416 + 0.949285i $$0.398191\pi$$
$$570$$ 0 0
$$571$$ 32.0000 1.33916 0.669579 0.742741i $$-0.266474\pi$$
0.669579 + 0.742741i $$0.266474\pi$$
$$572$$ 15.0000i 0.627182i
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −28.0000 21.0000i −1.16768 0.875761i
$$576$$ −3.00000 −0.125000
$$577$$ 4.00000i 0.166522i −0.996528 0.0832611i $$-0.973466\pi$$
0.996528 0.0832611i $$-0.0265335\pi$$
$$578$$ 13.0000i 0.540729i
$$579$$ 0 0
$$580$$ −8.00000 + 4.00000i −0.332182 + 0.166091i
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 27.0000i 1.11823i
$$584$$ −16.0000 −0.662085
$$585$$ 15.0000 + 30.0000i 0.620174 + 1.24035i
$$586$$ 9.00000 0.371787
$$587$$ 34.0000i 1.40333i 0.712507 + 0.701665i $$0.247560\pi$$
−0.712507 + 0.701665i $$0.752440\pi$$
$$588$$ 0 0
$$589$$ −10.0000 −0.412043
$$590$$ 4.00000 + 8.00000i 0.164677 + 0.329355i
$$591$$ 0 0
$$592$$ 1.00000i 0.0410997i
$$593$$ 6.00000i 0.246390i 0.992382 + 0.123195i $$0.0393141\pi$$
−0.992382 + 0.123195i $$0.960686\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ −18.0000 −0.737309
$$597$$ 0 0
$$598$$ 35.0000i 1.43126i
$$599$$ 12.0000 0.490307 0.245153 0.969484i $$-0.421162\pi$$
0.245153 + 0.969484i $$0.421162\pi$$
$$600$$ 0 0
$$601$$ 22.0000 0.897399 0.448699 0.893683i $$-0.351887\pi$$
0.448699 + 0.893683i $$0.351887\pi$$
$$602$$ 0 0
$$603$$ 6.00000i 0.244339i
$$604$$ 6.00000 0.244137
$$605$$ −4.00000 + 2.00000i −0.162623 + 0.0813116i
$$606$$ 0 0
$$607$$ 13.0000i 0.527654i −0.964570 0.263827i $$-0.915015\pi$$
0.964570 0.263827i $$-0.0849848\pi$$
$$608$$ 5.00000i 0.202777i
$$609$$ 0 0
$$610$$ 6.00000 + 12.0000i 0.242933 + 0.485866i
$$611$$ 35.0000 1.41595
$$612$$ 6.00000i 0.242536i
$$613$$ 15.0000i 0.605844i −0.953015 0.302922i $$-0.902038\pi$$
0.953015 0.302922i $$-0.0979622\pi$$
$$614$$ −22.0000 −0.887848
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 14.0000i 0.563619i −0.959470 0.281809i $$-0.909065\pi$$
0.959470 0.281809i $$-0.0909346\pi$$
$$618$$ 0 0
$$619$$ 19.0000 0.763674 0.381837 0.924230i $$-0.375291\pi$$
0.381837 + 0.924230i $$0.375291\pi$$
$$620$$ −4.00000 + 2.00000i −0.160644 + 0.0803219i
$$621$$ 0 0
$$622$$ 6.00000i 0.240578i
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −7.00000 24.0000i −0.280000 0.960000i
$$626$$ 22.0000 0.879297
$$627$$ 0 0
$$628$$ 9.00000i 0.359139i
$$629$$ −2.00000 −0.0797452
$$630$$ 0 0
$$631$$ −18.0000 −0.716569 −0.358284 0.933613i $$-0.616638\pi$$
−0.358284 + 0.933613i $$0.616638\pi$$
$$632$$ 14.0000i 0.556890i
$$633$$ 0 0
$$634$$ 2.00000 0.0794301
$$635$$ −7.00000 14.0000i −0.277787 0.555573i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 12.0000i 0.475085i
$$639$$ −18.0000 −0.712069
$$640$$ 1.00000 + 2.00000i 0.0395285 + 0.0790569i
$$641$$ −5.00000 −0.197488 −0.0987441 0.995113i $$-0.531483\pi$$
−0.0987441 + 0.995113i $$0.531483\pi$$
$$642$$ 0 0
$$643$$ 14.0000i 0.552106i 0.961142 + 0.276053i $$0.0890266\pi$$
−0.961142 + 0.276053i $$0.910973\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 10.0000 0.393445
$$647$$ 27.0000i 1.06148i −0.847535 0.530740i $$-0.821914\pi$$
0.847535 0.530740i $$-0.178086\pi$$
$$648$$ 9.00000i 0.353553i
$$649$$ −12.0000 −0.471041
$$650$$ 15.0000 20.0000i 0.588348 0.784465i
$$651$$ 0 0
$$652$$ 12.0000i 0.469956i
$$653$$ 3.00000i 0.117399i 0.998276 + 0.0586995i $$0.0186954\pi$$
−0.998276 + 0.0586995i $$0.981305\pi$$
$$654$$ 0 0
$$655$$ 2.00000 1.00000i 0.0781465 0.0390732i
$$656$$ −3.00000 −0.117130
$$657$$ 48.0000i 1.87266i
$$658$$ 0 0
$$659$$ 36.0000 1.40236 0.701180 0.712984i $$-0.252657\pi$$
0.701180 + 0.712984i $$0.252657\pi$$
$$660$$ 0 0
$$661$$ −16.0000 −0.622328 −0.311164 0.950356i $$-0.600719\pi$$
−0.311164 + 0.950356i $$0.600719\pi$$
$$662$$ 5.00000i 0.194331i
$$663$$ 0 0
$$664$$ −6.00000 −0.232845
$$665$$ 0 0
$$666$$ −3.00000 −0.116248
$$667$$ 28.0000i 1.08416i
$$668$$ 15.0000i 0.580367i
$$669$$ 0 0
$$670$$ −4.00000 + 2.00000i −0.154533 + 0.0772667i
$$671$$ −18.0000 −0.694882
$$672$$ 0 0
$$673$$ 32.0000i 1.23351i 0.787155 + 0.616755i $$0.211553\pi$$
−0.787155 + 0.616755i $$0.788447\pi$$
$$674$$ −10.0000 −0.385186
$$675$$ 0 0
$$676$$ 12.0000 0.461538
$$677$$ 17.0000i 0.653363i −0.945134 0.326682i $$-0.894070\pi$$
0.945134 0.326682i $$-0.105930\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 4.00000 2.00000i 0.153393 0.0766965i
$$681$$ 0 0
$$682$$ 6.00000i 0.229752i
$$683$$ 44.0000i 1.68361i −0.539779 0.841807i $$-0.681492\pi$$
0.539779 0.841807i $$-0.318508\pi$$
$$684$$ 15.0000 0.573539
$$685$$ 8.00000 + 16.0000i 0.305664 + 0.611329i
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 2.00000i 0.0762493i
$$689$$ −45.0000 −1.71436
$$690$$ 0 0
$$691$$ 44.0000 1.67384 0.836919 0.547326i $$-0.184354\pi$$
0.836919 + 0.547326i $$0.184354\pi$$
$$692$$ 9.00000i 0.342129i
$$693$$ 0 0
$$694$$ 12.0000 0.455514
$$695$$ 32.0000 16.0000i 1.21383 0.606915i
$$696$$ 0 0
$$697$$ 6.00000i 0.227266i
$$698$$ 12.0000i 0.454207i
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 26.0000 0.982006 0.491003 0.871158i $$-0.336630\pi$$
0.491003 + 0.871158i $$0.336630\pi$$
$$702$$ 0 0
$$703$$ 5.00000i 0.188579i
$$704$$ −3.00000 −0.113067
$$705$$ 0 0
$$706$$ −24.0000 −0.903252
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −12.0000 −0.450669 −0.225335 0.974281i $$-0.572348\pi$$
−0.225335 + 0.974281i $$0.572348\pi$$
$$710$$ 6.00000 + 12.0000i 0.225176 + 0.450352i
$$711$$ −42.0000 −1.57512
$$712$$ 2.00000i 0.0749532i
$$713$$ 14.0000i 0.524304i
$$714$$ 0 0
$$715$$ 15.0000 + 30.0000i 0.560968 + 1.12194i
$$716$$ 13.0000 0.485833
$$717$$ 0 0
$$718$$ 16.0000i 0.597115i
$$719$$ 26.0000 0.969636 0.484818 0.874615i $$-0.338886\pi$$
0.484818 + 0.874615i $$0.338886\pi$$
$$720$$ 6.00000 3.00000i 0.223607 0.111803i
$$721$$ 0 0
$$722$$ 6.00000i 0.223297i
$$723$$ 0 0
$$724$$ 26.0000 0.966282
$$725$$ 12.0000 16.0000i 0.445669 0.594225i
$$726$$ 0 0
$$727$$ 29.0000i 1.07555i −0.843088 0.537775i $$-0.819265\pi$$
0.843088 0.537775i $$-0.180735\pi$$
$$728$$ 0 0
$$729$$ 27.0000 1.00000
$$730$$ 32.0000 16.0000i 1.18437 0.592187i
$$731$$ 4.00000 0.147945
$$732$$ 0 0
$$733$$ 41.0000i 1.51437i −0.653201 0.757185i $$-0.726574\pi$$
0.653201 0.757185i $$-0.273426\pi$$
$$734$$ 13.0000 0.479839
$$735$$ 0 0
$$736$$ −7.00000 −0.258023
$$737$$ 6.00000i 0.221013i
$$738$$ 9.00000i 0.331295i
$$739$$ 29.0000 1.06678 0.533391 0.845869i $$-0.320917\pi$$
0.533391 + 0.845869i $$0.320917\pi$$
$$740$$ 1.00000 + 2.00000i 0.0367607 + 0.0735215i
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 21.0000i 0.770415i −0.922830 0.385208i $$-0.874130\pi$$
0.922830 0.385208i $$-0.125870\pi$$
$$744$$ 0 0
$$745$$ 36.0000 18.0000i 1.31894 0.659469i
$$746$$ 26.0000 0.951928
$$747$$ 18.0000i 0.658586i
$$748$$ 6.00000i 0.219382i
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 28.0000 1.02173 0.510867 0.859660i $$-0.329324\pi$$
0.510867 + 0.859660i $$0.329324\pi$$
$$752$$ 7.00000i 0.255264i
$$753$$ 0 0
$$754$$ 20.0000 0.728357
$$755$$ −12.0000 + 6.00000i −0.436725 + 0.218362i
$$756$$ 0 0
$$757$$ 42.0000i 1.52652i −0.646094 0.763258i $$-0.723599\pi$$
0.646094 0.763258i $$-0.276401\pi$$
$$758$$ 29.0000i 1.05333i
$$759$$ 0 0
$$760$$ −5.00000 10.0000i −0.181369 0.362738i
$$761$$ −1.00000 −0.0362500 −0.0181250 0.999836i $$-0.505770\pi$$
−0.0181250 + 0.999836i $$0.505770\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 20.0000 0.723575
$$765$$ −6.00000 12.0000i −0.216930 0.433861i
$$766$$ −21.0000 −0.758761
$$767$$ 20.0000i 0.722158i
$$768$$ 0 0
$$769$$ −29.0000 −1.04577 −0.522883 0.852404i $$-0.675144\pi$$
−0.522883 + 0.852404i $$0.675144\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 10.0000i 0.359908i
$$773$$ 45.0000i 1.61854i −0.587439 0.809269i $$-0.699864\pi$$
0.587439 0.809269i $$-0.300136\pi$$
$$774$$ 6.00000 0.215666
$$775$$ 6.00000 8.00000i 0.215526 0.287368i
$$776$$ 12.0000 0.430775
$$777$$ 0 0
$$778$$ 6.00000i 0.215110i
$$779$$ 15.0000 0.537431
$$780$$ 0 0
$$781$$ −18.0000 −0.644091
$$782$$ 14.0000i 0.500639i
$$783$$ 0 0
$$784$$ 0 0
$$785$$ −9.00000 18.0000i −0.321224 0.642448i
$$786$$ 0 0
$$787$$ 18.0000i 0.641631i 0.947142 + 0.320815i $$0.103957\pi$$
−0.947142 + 0.320815i $$0.896043\pi$$
$$788$$ 5.00000i 0.178118i
$$789$$ 0 0
$$790$$ 14.0000 + 28.0000i 0.498098 + 0.996195i
$$791$$ 0 0
$$792$$ 9.00000i 0.319801i
$$793$$ 30.0000i 1.06533i
$$794$$ −14.0000 −0.496841
$$795$$ 0 0
$$796$$ −18.0000