Properties

Label 49.7.d.b
Level $49$
Weight $7$
Character orbit 49.d
Analytic conductor $11.273$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,7,Mod(19,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.19"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 7, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 49.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2726500974\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 12 \zeta_{6} q^{2} + (7 \zeta_{6} + 7) q^{3} + (80 \zeta_{6} - 80) q^{4} + (105 \zeta_{6} - 210) q^{5} + (168 \zeta_{6} - 84) q^{6} - 192 q^{8} - 582 \zeta_{6} q^{9} + ( - 1260 \zeta_{6} - 1260) q^{10} + \cdots + 860778 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 12 q^{2} + 21 q^{3} - 80 q^{4} - 315 q^{5} - 384 q^{8} - 582 q^{9} - 3780 q^{10} - 1479 q^{11} - 1680 q^{12} - 4410 q^{15} + 2816 q^{16} + 5229 q^{17} + 6984 q^{18} - 11907 q^{19} - 35496 q^{22} + 5913 q^{23}+ \cdots + 1721556 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.500000 0.866025i
0.500000 + 0.866025i
6.00000 10.3923i 10.5000 6.06218i −40.0000 69.2820i −157.500 90.9327i 145.492i 0 −192.000 −291.000 + 504.027i −1890.00 + 1091.19i
31.1 6.00000 + 10.3923i 10.5000 + 6.06218i −40.0000 + 69.2820i −157.500 + 90.9327i 145.492i 0 −192.000 −291.000 504.027i −1890.00 1091.19i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 49.7.d.b 2
7.b odd 2 1 7.7.d.a 2
7.c even 3 1 7.7.d.a 2
7.c even 3 1 49.7.b.a 2
7.d odd 6 1 49.7.b.a 2
7.d odd 6 1 inner 49.7.d.b 2
21.c even 2 1 63.7.m.a 2
21.g even 6 1 441.7.d.a 2
21.h odd 6 1 63.7.m.a 2
21.h odd 6 1 441.7.d.a 2
28.d even 2 1 112.7.s.a 2
28.g odd 6 1 112.7.s.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.7.d.a 2 7.b odd 2 1
7.7.d.a 2 7.c even 3 1
49.7.b.a 2 7.c even 3 1
49.7.b.a 2 7.d odd 6 1
49.7.d.b 2 1.a even 1 1 trivial
49.7.d.b 2 7.d odd 6 1 inner
63.7.m.a 2 21.c even 2 1
63.7.m.a 2 21.h odd 6 1
112.7.s.a 2 28.d even 2 1
112.7.s.a 2 28.g odd 6 1
441.7.d.a 2 21.g even 6 1
441.7.d.a 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 12T_{2} + 144 \) acting on \(S_{7}^{\mathrm{new}}(49, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$3$ \( T^{2} - 21T + 147 \) Copy content Toggle raw display
$5$ \( T^{2} + 315T + 33075 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1479 T + 2187441 \) Copy content Toggle raw display
$13$ \( T^{2} + 235200 \) Copy content Toggle raw display
$17$ \( T^{2} - 5229 T + 9114147 \) Copy content Toggle raw display
$19$ \( T^{2} + 11907 T + 47258883 \) Copy content Toggle raw display
$23$ \( T^{2} - 5913 T + 34963569 \) Copy content Toggle raw display
$29$ \( (T - 3978)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 22197 T + 164235603 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 3791726929 \) Copy content Toggle raw display
$41$ \( T^{2} + 12226636800 \) Copy content Toggle raw display
$43$ \( (T + 17414)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 53109 T + 940188627 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 3661823169 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 46538854803 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 26486008563 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 72241075729 \) Copy content Toggle raw display
$71$ \( (T - 101922)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 100898977347 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 131211297361 \) Copy content Toggle raw display
$83$ \( T^{2} + 46995076800 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 1781061603363 \) Copy content Toggle raw display
$97$ \( T^{2} + 2292467116800 \) Copy content Toggle raw display
show more
show less