Properties

Label 49.7.d.a.31.1
Level $49$
Weight $7$
Character 49.31
Analytic conductor $11.273$
Analytic rank $0$
Dimension $2$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,7,Mod(19,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.19"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 7, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 49.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2726500974\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 31.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 49.31
Dual form 49.7.d.a.19.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 - 7.79423i) q^{2} +(-8.50000 + 14.7224i) q^{4} -423.000 q^{8} +(-364.500 - 631.333i) q^{9} +(-981.000 + 1699.14i) q^{11} +(2447.50 + 4239.19i) q^{16} +(-3280.50 + 5681.99i) q^{18} +17658.0 q^{22} +(11367.0 + 19688.2i) q^{23} +(-7812.50 + 13531.6i) q^{25} -21222.0 q^{29} +(8491.50 - 14707.7i) q^{32} +12393.0 q^{36} +(-50597.0 - 87636.6i) q^{37} -126614. q^{43} +(-16677.0 - 28885.4i) q^{44} +(102303. - 177194. i) q^{46} +140625. q^{50} +(-25173.0 + 43600.9i) q^{53} +(95499.0 + 165409. i) q^{58} +160433. q^{64} +(26963.0 - 46701.3i) q^{67} -242478. q^{71} +(154184. + 267054. i) q^{72} +(-455373. + 788729. i) q^{74} +(-464689. - 804865. i) q^{79} +(-265720. + 460241. i) q^{81} +(569763. + 986858. i) q^{86} +(414963. - 718737. i) q^{88} -386478. q^{92} +1.43030e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9 q^{2} - 17 q^{4} - 846 q^{8} - 729 q^{9} - 1962 q^{11} + 4895 q^{16} - 6561 q^{18} + 35316 q^{22} + 22734 q^{23} - 15625 q^{25} - 42444 q^{29} + 16983 q^{32} + 24786 q^{36} - 101194 q^{37} - 253228 q^{43}+ \cdots + 2860596 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.50000 7.79423i −0.562500 0.974279i −0.997277 0.0737406i \(-0.976506\pi\)
0.434777 0.900538i \(-0.356827\pi\)
\(3\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) −8.50000 + 14.7224i −0.132812 + 0.230038i
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −423.000 −0.826172
\(9\) −364.500 631.333i −0.500000 0.866025i
\(10\) 0 0
\(11\) −981.000 + 1699.14i −0.737040 + 1.27659i 0.216783 + 0.976220i \(0.430444\pi\)
−0.953823 + 0.300371i \(0.902890\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2447.50 + 4239.19i 0.597534 + 1.03496i
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) −3280.50 + 5681.99i −0.562500 + 0.974279i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 17658.0 1.65834
\(23\) 11367.0 + 19688.2i 0.934248 + 1.61817i 0.775969 + 0.630771i \(0.217261\pi\)
0.158280 + 0.987394i \(0.449405\pi\)
\(24\) 0 0
\(25\) −7812.50 + 13531.6i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −21222.0 −0.870146 −0.435073 0.900395i \(-0.643278\pi\)
−0.435073 + 0.900395i \(0.643278\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 8491.50 14707.7i 0.259140 0.448844i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 12393.0 0.265625
\(37\) −50597.0 87636.6i −0.998894 1.73014i −0.540159 0.841563i \(-0.681636\pi\)
−0.458736 0.888573i \(-0.651698\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −126614. −1.59249 −0.796244 0.604975i \(-0.793183\pi\)
−0.796244 + 0.604975i \(0.793183\pi\)
\(44\) −16677.0 28885.4i −0.195776 0.339094i
\(45\) 0 0
\(46\) 102303. 177194.i 1.05103 1.82044i
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 140625. 1.12500
\(51\) 0 0
\(52\) 0 0
\(53\) −25173.0 + 43600.9i −0.169086 + 0.292865i −0.938099 0.346368i \(-0.887415\pi\)
0.769013 + 0.639233i \(0.220748\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 95499.0 + 165409.i 0.489457 + 0.847765i
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 160433. 0.612003
\(65\) 0 0
\(66\) 0 0
\(67\) 26963.0 46701.3i 0.0896487 0.155276i −0.817714 0.575625i \(-0.804759\pi\)
0.907363 + 0.420349i \(0.138092\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −242478. −0.677481 −0.338741 0.940880i \(-0.610001\pi\)
−0.338741 + 0.940880i \(0.610001\pi\)
\(72\) 154184. + 267054.i 0.413086 + 0.715486i
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) −455373. + 788729.i −1.12376 + 1.94640i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −464689. 804865.i −0.942499 1.63246i −0.760682 0.649125i \(-0.775135\pi\)
−0.181817 0.983332i \(-0.558198\pi\)
\(80\) 0 0
\(81\) −265720. + 460241.i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 569763. + 986858.i 0.895775 + 1.55153i
\(87\) 0 0
\(88\) 414963. 718737.i 0.608922 1.05468i
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −386478. −0.496319
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 1.43030e6 1.47408
\(100\) −132812. 230038.i −0.132812 0.230038i
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 453114. 0.380443
\(107\) −23157.0 40109.1i −0.0189030 0.0327410i 0.856419 0.516281i \(-0.172684\pi\)
−0.875322 + 0.483540i \(0.839351\pi\)
\(108\) 0 0
\(109\) 1.29357e6 2.24053e6i 0.998874 1.73010i 0.458354 0.888770i \(-0.348439\pi\)
0.540520 0.841331i \(-0.318227\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.43689e6 −1.68889 −0.844445 0.535642i \(-0.820069\pi\)
−0.844445 + 0.535642i \(0.820069\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 180387. 312439.i 0.115566 0.200167i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.03894e6 1.79950e6i −0.586455 1.01577i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −96766.0 −0.0472402 −0.0236201 0.999721i \(-0.507519\pi\)
−0.0236201 + 0.999721i \(0.507519\pi\)
\(128\) −1.26540e6 2.19174e6i −0.603392 1.04511i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −485334. −0.201709
\(135\) 0 0
\(136\) 0 0
\(137\) −2.26470e6 + 3.92257e6i −0.880741 + 1.52549i −0.0302232 + 0.999543i \(0.509622\pi\)
−0.850518 + 0.525946i \(0.823712\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.09115e6 + 1.88993e6i 0.381083 + 0.660055i
\(143\) 0 0
\(144\) 1.78423e6 3.09037e6i 0.597534 1.03496i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 1.72030e6 0.530663
\(149\) 2.97665e6 + 5.15571e6i 0.899848 + 1.55858i 0.827688 + 0.561189i \(0.189656\pi\)
0.0721604 + 0.997393i \(0.477011\pi\)
\(150\) 0 0
\(151\) −914201. + 1.58344e6i −0.265528 + 0.459909i −0.967702 0.252097i \(-0.918880\pi\)
0.702174 + 0.712006i \(0.252213\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) −4.18220e6 + 7.24378e6i −1.06031 + 1.83651i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 4.78297e6 1.12500
\(163\) 2.74655e6 + 4.75716e6i 0.634197 + 1.09846i 0.986685 + 0.162645i \(0.0520025\pi\)
−0.352488 + 0.935816i \(0.614664\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 4.82681e6 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 1.07622e6 1.86407e6i 0.211502 0.366333i
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −9.60399e6 −1.76163
\(177\) 0 0
\(178\) 0 0
\(179\) 3.56381e6 6.17270e6i 0.621378 1.07626i −0.367852 0.929884i \(-0.619907\pi\)
0.989229 0.146373i \(-0.0467600\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.80824e6 8.32812e6i −0.771850 1.33688i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.32272e6 2.29102e6i −0.189831 0.328798i 0.755362 0.655307i \(-0.227461\pi\)
−0.945194 + 0.326509i \(0.894127\pi\)
\(192\) 0 0
\(193\) −3.34499e6 + 5.79370e6i −0.465290 + 0.805905i −0.999215 0.0396267i \(-0.987383\pi\)
0.533925 + 0.845532i \(0.320716\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.04066e7 −1.36117 −0.680585 0.732670i \(-0.738274\pi\)
−0.680585 + 0.732670i \(0.738274\pi\)
\(198\) −6.43634e6 1.11481e7i −0.829170 1.43616i
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 3.30469e6 5.72389e6i 0.413086 0.715486i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.28654e6 1.43527e7i 0.934248 1.61817i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.56456e7 1.66550 0.832748 0.553652i \(-0.186766\pi\)
0.832748 + 0.553652i \(0.186766\pi\)
\(212\) −427941. 741216.i −0.0449134 0.0777924i
\(213\) 0 0
\(214\) −208413. + 360982.i −0.0212659 + 0.0368336i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −2.32843e7 −2.24747
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.13906e7 1.00000
\(226\) 1.09660e7 + 1.89937e7i 0.950001 + 1.64545i
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.97691e6 0.718890
\(233\) 1.46289e6 + 2.53379e6i 0.115649 + 0.200310i 0.918039 0.396490i \(-0.129772\pi\)
−0.802390 + 0.596800i \(0.796438\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.71015e7 1.98518 0.992591 0.121505i \(-0.0387721\pi\)
0.992591 + 0.121505i \(0.0387721\pi\)
\(240\) 0 0
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) −9.35047e6 + 1.61955e7i −0.659762 + 1.14274i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) −4.46041e7 −2.75431
\(254\) 435447. + 754216.i 0.0265726 + 0.0460251i
\(255\) 0 0
\(256\) −6.25478e6 + 1.08336e7i −0.372814 + 0.645733i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 7.73542e6 + 1.33981e7i 0.435073 + 0.753569i
\(262\) 0 0
\(263\) −1.00838e7 + 1.74656e7i −0.554313 + 0.960098i 0.443644 + 0.896203i \(0.353686\pi\)
−0.997957 + 0.0638948i \(0.979648\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 458371. + 793922.i 0.0238129 + 0.0412452i
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 4.07645e7 1.98167
\(275\) −1.53281e7 2.65491e7i −0.737040 1.27659i
\(276\) 0 0
\(277\) −5.46412e6 + 9.46413e6i −0.257087 + 0.445288i −0.965460 0.260550i \(-0.916096\pi\)
0.708373 + 0.705838i \(0.249429\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.55231e7 −1.15031 −0.575155 0.818045i \(-0.695058\pi\)
−0.575155 + 0.818045i \(0.695058\pi\)
\(282\) 0 0
\(283\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) 2.06106e6 3.56987e6i 0.0899780 0.155846i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.23806e7 −0.518280
\(289\) −1.20688e7 2.09037e7i −0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.14025e7 + 3.70703e7i 0.825258 + 1.42939i
\(297\) 0 0
\(298\) 2.67899e7 4.64014e7i 1.01233 1.75341i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 1.64556e7 0.597439
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.57994e7 0.500703
\(317\) 7.56456e6 + 1.31022e7i 0.237469 + 0.411308i 0.959987 0.280044i \(-0.0903490\pi\)
−0.722519 + 0.691351i \(0.757016\pi\)
\(318\) 0 0
\(319\) 2.08188e7 3.60592e7i 0.641333 1.11082i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −4.51725e6 7.82410e6i −0.132812 0.230038i
\(325\) 0 0
\(326\) 2.47189e7 4.28144e7i 0.713472 1.23577i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.32275e7 4.02313e7i −0.640500 1.10938i −0.985321 0.170710i \(-0.945394\pi\)
0.344821 0.938668i \(-0.387940\pi\)
\(332\) 0 0
\(333\) −3.68852e7 + 6.38871e7i −0.998894 + 1.73014i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.54566e7 −1.71027 −0.855133 0.518408i \(-0.826525\pi\)
−0.855133 + 0.518408i \(0.826525\pi\)
\(338\) −2.17206e7 3.76213e7i −0.562500 0.974279i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 5.35577e7 1.31567
\(345\) 0 0
\(346\) 0 0
\(347\) 3.33769e7 5.78105e7i 0.798836 1.38363i −0.121538 0.992587i \(-0.538783\pi\)
0.920374 0.391039i \(-0.127884\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.66603e7 + 2.88565e7i 0.381993 + 0.661631i
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −6.41486e7 −1.39810
\(359\) 1.34309e7 + 2.32630e7i 0.290282 + 0.502784i 0.973876 0.227078i \(-0.0729174\pi\)
−0.683594 + 0.729863i \(0.739584\pi\)
\(360\) 0 0
\(361\) −2.35229e7 + 4.07429e7i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −5.56415e7 + 9.63738e7i −1.11649 + 1.93382i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.56853e7 7.91293e7i −0.880340 1.52479i −0.850964 0.525225i \(-0.823981\pi\)
−0.0293761 0.999568i \(-0.509352\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 3.31112e7 0.608215 0.304107 0.952638i \(-0.401642\pi\)
0.304107 + 0.952638i \(0.401642\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.19045e7 + 2.06192e7i −0.213560 + 0.369897i
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.02099e7 1.04690
\(387\) 4.61508e7 + 7.99355e7i 0.796244 + 1.37914i
\(388\) 0 0
\(389\) 3.46553e6 6.00248e6i 0.0588737 0.101972i −0.835086 0.550119i \(-0.814582\pi\)
0.893960 + 0.448147i \(0.147916\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 4.68299e7 + 8.11118e7i 0.765658 + 1.32616i
\(395\) 0 0
\(396\) −1.21575e7 + 2.10575e7i −0.195776 + 0.339094i
\(397\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −7.64844e7 −1.19507
\(401\) 6.32044e7 + 1.09473e8i 0.980199 + 1.69775i 0.661586 + 0.749869i \(0.269884\pi\)
0.318613 + 0.947885i \(0.396783\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.98543e8 2.94490
\(408\) 0 0
\(409\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −1.49158e8 −2.10206
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 8.36917e7 1.12160 0.560798 0.827953i \(-0.310495\pi\)
0.560798 + 0.827953i \(0.310495\pi\)
\(422\) −7.04050e7 1.21945e8i −0.936842 1.62266i
\(423\) 0 0
\(424\) 1.06482e7 1.84432e7i 0.139694 0.241957i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 787338. 0.0100422
\(429\) 0 0
\(430\) 0 0
\(431\) 4.30142e7 7.45027e7i 0.537254 0.930551i −0.461797 0.886986i \(-0.652795\pi\)
0.999051 0.0435653i \(-0.0138717\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.19907e7 + 3.80890e7i 0.265326 + 0.459558i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.56699e7 1.48385e8i −0.985410 1.70678i −0.640099 0.768292i \(-0.721107\pi\)
−0.345311 0.938488i \(-0.612226\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.73823e8 −1.92030 −0.960149 0.279490i \(-0.909835\pi\)
−0.960149 + 0.279490i \(0.909835\pi\)
\(450\) −5.12578e7 8.87811e7i −0.562500 0.974279i
\(451\) 0 0
\(452\) 2.07136e7 3.58770e7i 0.224306 0.388509i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.33639e7 + 1.09750e8i 0.663886 + 1.14988i 0.979586 + 0.201025i \(0.0644274\pi\)
−0.315700 + 0.948859i \(0.602239\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −1.27272e8 −1.28230 −0.641151 0.767415i \(-0.721543\pi\)
−0.641151 + 0.767415i \(0.721543\pi\)
\(464\) −5.19408e7 8.99642e7i −0.519942 0.900566i
\(465\) 0 0
\(466\) 1.31660e7 2.28042e7i 0.130105 0.225349i
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.24208e8 2.15135e8i 1.17373 2.03296i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3.67022e7 0.338172
\(478\) −1.21957e8 2.11236e8i −1.11666 1.93412i
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 3.53240e7 0.311554
\(485\) 0 0
\(486\) 0 0
\(487\) −1.10067e8 + 1.90642e8i −0.952955 + 1.65057i −0.213974 + 0.976839i \(0.568641\pi\)
−0.738981 + 0.673726i \(0.764693\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.78277e8 1.50609 0.753044 0.657970i \(-0.228585\pi\)
0.753044 + 0.657970i \(0.228585\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 9.80717e7 + 1.69865e8i 0.789300 + 1.36711i 0.926397 + 0.376549i \(0.122889\pi\)
−0.137097 + 0.990558i \(0.543777\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.00718e8 + 3.47655e8i 1.54930 + 2.68347i
\(507\) 0 0
\(508\) 822511. 1.42463e6i 0.00627409 0.0108670i
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −4.93857e7 −0.367952
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 6.96188e7 1.20583e8i 0.489457 0.847765i
\(523\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.81508e8 1.24720
\(527\) 0 0
\(528\) 0 0
\(529\) −1.84399e8 + 3.19389e8i −1.24564 + 2.15751i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −1.14053e7 + 1.97546e7i −0.0740652 + 0.128285i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 3.22850e7 + 5.59192e7i 0.203896 + 0.353158i 0.949780 0.312917i \(-0.101306\pi\)
−0.745884 + 0.666075i \(0.767973\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.58854e8 −0.970592 −0.485296 0.874350i \(-0.661288\pi\)
−0.485296 + 0.874350i \(0.661288\pi\)
\(548\) −3.84998e7 6.66837e7i −0.233947 0.405208i
\(549\) 0 0
\(550\) −1.37953e8 + 2.38942e8i −0.829170 + 1.43616i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 9.83541e7 0.578447
\(555\) 0 0
\(556\) 0 0
\(557\) −3.67018e7 + 6.35693e7i −0.212384 + 0.367859i −0.952460 0.304663i \(-0.901456\pi\)
0.740076 + 0.672523i \(0.234789\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 1.14854e8 + 1.98933e8i 0.647049 + 1.12072i
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 1.02568e8 0.559716
\(569\) −1.77746e8 3.07866e8i −0.964859 1.67119i −0.709992 0.704209i \(-0.751302\pi\)
−0.254867 0.966976i \(-0.582032\pi\)
\(570\) 0 0
\(571\) 1.63131e8 2.82551e8i 0.876250 1.51771i 0.0208247 0.999783i \(-0.493371\pi\)
0.855425 0.517926i \(-0.173296\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.55219e8 −1.86850
\(576\) −5.84778e7 1.01287e8i −0.306002 0.530010i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) −1.08619e8 + 1.88134e8i −0.562500 + 0.974279i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.93894e7 8.55450e7i −0.249246 0.431707i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 2.47672e8 4.28981e8i 1.19375 2.06763i
\(593\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.01206e8 −0.478044
\(597\) 0 0
\(598\) 0 0
\(599\) −9.10130e7 + 1.57639e8i −0.423471 + 0.733472i −0.996276 0.0862187i \(-0.972522\pi\)
0.572806 + 0.819691i \(0.305855\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −3.93121e7 −0.179297
\(604\) −1.55414e7 2.69185e7i −0.0705310 0.122163i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.17696e8 2.03856e8i 0.510954 0.884998i −0.488966 0.872303i \(-0.662626\pi\)
0.999919 0.0126948i \(-0.00404098\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.63532e8 1.97344 0.986721 0.162423i \(-0.0519308\pi\)
0.986721 + 0.162423i \(0.0519308\pi\)
\(618\) 0 0
\(619\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.22070e8 2.11432e8i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.83542e8 0.730544 0.365272 0.930901i \(-0.380976\pi\)
0.365272 + 0.930901i \(0.380976\pi\)
\(632\) 1.96563e8 + 3.40458e8i 0.778667 + 1.34869i
\(633\) 0 0
\(634\) 6.80811e7 1.17920e8i 0.267152 0.462721i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −3.74738e8 −1.44300
\(639\) 8.83832e7 + 1.53084e8i 0.338741 + 0.586716i
\(640\) 0 0
\(641\) 2.23965e8 3.87919e8i 0.850367 1.47288i −0.0305097 0.999534i \(-0.509713\pi\)
0.880877 0.473345i \(-0.156954\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 1.12400e8 1.94682e8i 0.413086 0.715486i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −9.33826e7 −0.336917
\(653\) −8.74062e7 1.51392e8i −0.313908 0.543705i 0.665297 0.746579i \(-0.268305\pi\)
−0.979205 + 0.202874i \(0.934972\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.69128e8 −1.98863 −0.994314 0.106485i \(-0.966040\pi\)
−0.994314 + 0.106485i \(0.966040\pi\)
\(660\) 0 0
\(661\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) −2.09048e8 + 3.62082e8i −0.720563 + 1.24805i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 6.63934e8 2.24751
\(667\) −2.41230e8 4.17823e8i −0.812933 1.40804i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 5.17302e8 1.69707 0.848534 0.529141i \(-0.177486\pi\)
0.848534 + 0.529141i \(0.177486\pi\)
\(674\) 2.94555e8 + 5.10184e8i 0.962025 + 1.66628i
\(675\) 0 0
\(676\) −4.10279e7 + 7.10624e7i −0.132812 + 0.230038i
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.61430e8 + 4.52810e8i −0.820527 + 1.42119i 0.0847629 + 0.996401i \(0.472987\pi\)
−0.905290 + 0.424794i \(0.860347\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −3.09888e8 5.36741e8i −0.951566 1.64816i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −6.00785e8 −1.79738
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.71321e8 −1.94884 −0.974420 0.224735i \(-0.927848\pi\)
−0.974420 + 0.224735i \(0.927848\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.57385e8 + 2.72598e8i −0.451071 + 0.781278i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.77700e8 + 4.80990e8i 0.779178 + 1.34958i 0.932416 + 0.361387i \(0.117697\pi\)
−0.153238 + 0.988189i \(0.548970\pi\)
\(710\) 0 0
\(711\) −3.38758e8 + 5.86747e8i −0.942499 + 1.63246i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 6.05848e7 + 1.04936e8i 0.165053 + 0.285881i
\(717\) 0 0
\(718\) 1.20878e8 2.09367e8i 0.326568 0.565632i
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.23413e8 1.12500
\(723\) 0 0
\(724\) 0 0
\(725\) 1.65797e8 2.87169e8i 0.435073 0.753569i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 3.87420e8 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 3.86092e8 0.968405
\(737\) 5.29014e7 + 9.16279e7i 0.132149 + 0.228889i
\(738\) 0 0
\(739\) 8.29309e7 1.43641e8i 0.205486 0.355913i −0.744801 0.667286i \(-0.767456\pi\)
0.950288 + 0.311373i \(0.100789\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.87319e8 −0.456684 −0.228342 0.973581i \(-0.573330\pi\)
−0.228342 + 0.973581i \(0.573330\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −4.11168e8 + 7.12164e8i −0.990382 + 1.71539i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.20568e8 + 7.28446e8i 0.992926 + 1.71980i 0.599291 + 0.800531i \(0.295449\pi\)
0.393635 + 0.919267i \(0.371218\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.45533e8 0.796529 0.398264 0.917271i \(-0.369613\pi\)
0.398264 + 0.917271i \(0.369613\pi\)
\(758\) −1.49000e8 2.58076e8i −0.342121 0.592571i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4.49725e7 0.100848
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.68649e7 9.84929e7i −0.123593 0.214069i
\(773\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(774\) 4.15357e8 7.19420e8i 0.895775 1.55153i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −6.23796e7 −0.132466
\(779\) 0 0
\(780\) 0 0
\(781\) 2.37871e8 4.12005e8i 0.499331 0.864866i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 8.84565e7 1.53211e8i 0.180780 0.313121i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −6.05016e8 −1.21784
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.32680e8 + 2.29808e8i 0.259140 + 0.448844i
\(801\) 0 0
\(802\) 5.68840e8 9.85259e8i 1.10272 1.90997i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.68186e8 + 2.91306e8i −0.317646 + 0.550179i −0.979996 0.199015i \(-0.936226\pi\)
0.662351 + 0.749194i \(0.269559\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −8.93442e8 1.54749e9i −1.65651 2.86915i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.94391e8 6.83105e8i −0.712685 1.23441i −0.963846 0.266461i \(-0.914146\pi\)
0.251161 0.967945i \(-0.419188\pi\)
\(822\) 0 0
\(823\) −5.11627e8 + 8.86164e8i −0.917813 + 1.58970i −0.115082 + 0.993356i \(0.536713\pi\)
−0.802731 + 0.596342i \(0.796620\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.56178e8 −0.983326 −0.491663 0.870786i \(-0.663611\pi\)
−0.491663 + 0.870786i \(0.663611\pi\)
\(828\) 1.40871e8 + 2.43996e8i 0.248160 + 0.429825i
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −1.44450e8 −0.242845
\(842\) −3.76613e8 6.52312e8i −0.630897 1.09275i
\(843\) 0 0
\(844\) −1.32987e8 + 2.30341e8i −0.221199 + 0.383128i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −2.46444e8 −0.404138
\(849\) 0 0
\(850\) 0 0
\(851\) 1.15027e9 1.99233e9i 1.86643 3.23275i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9.79541e6 + 1.69661e7i 0.0156171 + 0.0270497i
\(857\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −7.74255e8 −1.20882
\(863\) 4.38716e8 + 7.59878e8i 0.682576 + 1.18226i 0.974192 + 0.225720i \(0.0724735\pi\)
−0.291617 + 0.956535i \(0.594193\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.82344e9 2.77864
\(870\) 0 0
\(871\) 0 0
\(872\) −5.47181e8 + 9.47744e8i −0.825242 + 1.42936i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.53075e8 + 1.13116e9i 0.968198 + 1.67697i 0.700766 + 0.713392i \(0.252842\pi\)
0.267432 + 0.963577i \(0.413825\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −4.73327e8 −0.687510 −0.343755 0.939059i \(-0.611699\pi\)
−0.343755 + 0.939059i \(0.611699\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −7.71029e8 + 1.33546e9i −1.10859 + 1.92013i
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −5.21344e8 9.02994e8i −0.737040 1.27659i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 7.82204e8 + 1.35482e9i 1.08017 + 1.87090i
\(899\) 0 0
\(900\) −9.68203e7 + 1.67698e8i −0.132812 + 0.230038i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 1.03081e9 1.39531
\(905\) 0 0
\(906\) 0 0
\(907\) −6.44611e8 + 1.11650e9i −0.863925 + 1.49636i 0.00418597 + 0.999991i \(0.498668\pi\)
−0.868111 + 0.496370i \(0.834666\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.85794e7 0.0774800 0.0387400 0.999249i \(-0.487666\pi\)
0.0387400 + 0.999249i \(0.487666\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 5.70275e8 9.87746e8i 0.746872 1.29362i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.39751e8 + 9.34876e8i 0.695419 + 1.20450i 0.970039 + 0.242949i \(0.0781147\pi\)
−0.274620 + 0.961553i \(0.588552\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.58116e9 1.99779
\(926\) 5.72724e8 + 9.91988e8i 0.721295 + 1.24932i
\(927\) 0 0
\(928\) −1.80207e8 + 3.12127e8i −0.225490 + 0.390560i
\(929\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −4.97382e7 −0.0614387
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −2.23575e9 −2.64089
\(947\) −3.42418e8 5.93086e8i −0.403187 0.698341i 0.590921 0.806729i \(-0.298764\pi\)
−0.994109 + 0.108388i \(0.965431\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −8.73142e8 −1.00880 −0.504401 0.863469i \(-0.668287\pi\)
−0.504401 + 0.863469i \(0.668287\pi\)
\(954\) −1.65160e8 2.86066e8i −0.190222 0.329474i
\(955\) 0 0
\(956\) −2.30363e8 + 3.99001e8i −0.263657 + 0.456667i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −4.43752e8 7.68601e8i −0.500000 0.866025i
\(962\) 0 0
\(963\) −1.68815e7 + 2.92395e7i −0.0189030 + 0.0327410i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 8.99699e8 0.994988 0.497494 0.867467i \(-0.334254\pi\)
0.497494 + 0.867467i \(0.334254\pi\)
\(968\) 4.39472e8 + 7.61188e8i 0.484513 + 0.839201i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.98121e9 2.14415
\(975\) 0 0
\(976\) 0 0
\(977\) 2.29825e8 3.98068e8i 0.246441 0.426849i −0.716095 0.698003i \(-0.754072\pi\)
0.962536 + 0.271155i \(0.0874055\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1.88603e9 −1.99775
\(982\) −8.02246e8 1.38953e9i −0.847175 1.46735i
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.43922e9 2.49280e9i −1.48778 2.57691i
\(990\) 0 0
\(991\) −6.81493e8 + 1.18038e9i −0.700230 + 1.21283i 0.268156 + 0.963376i \(0.413586\pi\)
−0.968386 + 0.249458i \(0.919748\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 8.82645e8 1.52879e9i 0.887962 1.53800i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.7.d.a.31.1 2
7.2 even 3 inner 49.7.d.a.19.1 2
7.3 odd 6 7.7.b.a.6.1 1
7.4 even 3 7.7.b.a.6.1 1
7.5 odd 6 inner 49.7.d.a.19.1 2
7.6 odd 2 CM 49.7.d.a.31.1 2
21.11 odd 6 63.7.d.a.55.1 1
21.17 even 6 63.7.d.a.55.1 1
28.3 even 6 112.7.c.a.97.1 1
28.11 odd 6 112.7.c.a.97.1 1
35.3 even 12 175.7.c.a.174.1 2
35.4 even 6 175.7.d.a.76.1 1
35.17 even 12 175.7.c.a.174.2 2
35.18 odd 12 175.7.c.a.174.1 2
35.24 odd 6 175.7.d.a.76.1 1
35.32 odd 12 175.7.c.a.174.2 2
56.3 even 6 448.7.c.b.321.1 1
56.11 odd 6 448.7.c.b.321.1 1
56.45 odd 6 448.7.c.a.321.1 1
56.53 even 6 448.7.c.a.321.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.7.b.a.6.1 1 7.3 odd 6
7.7.b.a.6.1 1 7.4 even 3
49.7.d.a.19.1 2 7.2 even 3 inner
49.7.d.a.19.1 2 7.5 odd 6 inner
49.7.d.a.31.1 2 1.1 even 1 trivial
49.7.d.a.31.1 2 7.6 odd 2 CM
63.7.d.a.55.1 1 21.11 odd 6
63.7.d.a.55.1 1 21.17 even 6
112.7.c.a.97.1 1 28.3 even 6
112.7.c.a.97.1 1 28.11 odd 6
175.7.c.a.174.1 2 35.3 even 12
175.7.c.a.174.1 2 35.18 odd 12
175.7.c.a.174.2 2 35.17 even 12
175.7.c.a.174.2 2 35.32 odd 12
175.7.d.a.76.1 1 35.4 even 6
175.7.d.a.76.1 1 35.24 odd 6
448.7.c.a.321.1 1 56.45 odd 6
448.7.c.a.321.1 1 56.53 even 6
448.7.c.b.321.1 1 56.3 even 6
448.7.c.b.321.1 1 56.11 odd 6