# Properties

 Label 49.6.g.a.25.12 Level $49$ Weight $6$ Character 49.25 Analytic conductor $7.859$ Analytic rank $0$ Dimension $264$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [49,6,Mod(2,49)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(49, base_ring=CyclotomicField(42))

chi = DirichletCharacter(H, H._module([26]))

N = Newforms(chi, 6, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("49.2");

S:= CuspForms(chi, 6);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$49 = 7^{2}$$ Weight: $$k$$ $$=$$ $$6$$ Character orbit: $$[\chi]$$ $$=$$ 49.g (of order $$21$$, degree $$12$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$7.85880717084$$ Analytic rank: $$0$$ Dimension: $$264$$ Relative dimension: $$22$$ over $$\Q(\zeta_{21})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

## Embedding invariants

 Embedding label 25.12 Character $$\chi$$ $$=$$ 49.25 Dual form 49.6.g.a.2.12

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.768968 + 0.237195i) q^{2} +(-8.72763 - 22.2376i) q^{3} +(-25.9046 + 17.6615i) q^{4} +(28.5592 + 4.30461i) q^{5} +(11.9859 + 15.0299i) q^{6} +(-107.947 - 71.7951i) q^{7} +(31.7861 - 39.8585i) q^{8} +(-240.209 + 222.882i) q^{9} +O(q^{10})$$ $$q+(-0.768968 + 0.237195i) q^{2} +(-8.72763 - 22.2376i) q^{3} +(-25.9046 + 17.6615i) q^{4} +(28.5592 + 4.30461i) q^{5} +(11.9859 + 15.0299i) q^{6} +(-107.947 - 71.7951i) q^{7} +(31.7861 - 39.8585i) q^{8} +(-240.209 + 222.882i) q^{9} +(-22.9821 + 3.46400i) q^{10} +(432.017 + 400.853i) q^{11} +(618.834 + 421.914i) q^{12} +(-206.502 + 904.746i) q^{13} +(100.037 + 29.6037i) q^{14} +(-153.530 - 672.658i) q^{15} +(351.550 - 895.735i) q^{16} +(-156.851 + 2093.03i) q^{17} +(131.847 - 228.365i) q^{18} +(-953.349 - 1651.25i) q^{19} +(-815.840 + 392.888i) q^{20} +(-654.435 + 3027.08i) q^{21} +(-427.287 - 205.771i) q^{22} +(-24.4696 - 326.523i) q^{23} +(-1163.78 - 358.977i) q^{24} +(-2189.07 - 675.238i) q^{25} +(-55.8077 - 744.702i) q^{26} +(1822.67 + 877.751i) q^{27} +(4064.32 - 46.6713i) q^{28} +(3836.61 - 1847.61i) q^{29} +(277.611 + 480.836i) q^{30} +(-3561.03 + 6167.89i) q^{31} +(-179.781 + 2399.01i) q^{32} +(5143.54 - 13105.5i) q^{33} +(-375.843 - 1646.68i) q^{34} +(-2773.82 - 2515.08i) q^{35} +(2286.11 - 10016.1i) q^{36} +(-5543.25 - 3779.32i) q^{37} +(1124.76 + 1043.63i) q^{38} +(21921.7 - 3304.16i) q^{39} +(1079.36 - 1001.50i) q^{40} +(-8496.33 + 10654.1i) q^{41} +(-214.769 - 2482.95i) q^{42} +(-2372.92 - 2975.55i) q^{43} +(-18270.9 - 2753.89i) q^{44} +(-7819.60 + 5331.31i) q^{45} +(96.2661 + 245.282i) q^{46} +(-14695.8 + 4533.05i) q^{47} -22987.2 q^{48} +(6497.93 + 15500.1i) q^{49} +1843.49 q^{50} +(47913.0 - 14779.2i) q^{51} +(-10629.8 - 27084.2i) q^{52} +(3382.97 - 2306.47i) q^{53} +(-1609.77 - 242.634i) q^{54} +(10612.5 + 13307.7i) q^{55} +(-6292.84 + 2020.50i) q^{56} +(-28399.4 + 35611.7i) q^{57} +(-2511.98 + 2330.78i) q^{58} +(35270.7 - 5316.20i) q^{59} +(15857.2 + 14713.4i) q^{60} +(12422.3 + 8469.36i) q^{61} +(1275.33 - 5587.57i) q^{62} +(41931.6 - 6813.47i) q^{63} +(6421.09 + 28132.6i) q^{64} +(-9792.12 + 24949.9i) q^{65} +(-846.649 + 11297.7i) q^{66} +(-24515.4 + 42461.9i) q^{67} +(-32902.8 - 56989.3i) q^{68} +(-7047.55 + 3393.92i) q^{69} +(2729.54 + 1276.08i) q^{70} +(-25296.4 - 12182.1i) q^{71} +(1248.41 + 16658.9i) q^{72} +(-56676.3 - 17482.3i) q^{73} +(5159.02 + 1591.35i) q^{74} +(4089.67 + 54572.9i) q^{75} +(53859.6 + 25937.4i) q^{76} +(-17855.5 - 74287.4i) q^{77} +(-16073.3 + 7740.52i) q^{78} +(779.260 + 1349.72i) q^{79} +(13895.8 - 24068.2i) q^{80} +(-2339.02 + 31212.0i) q^{81} +(4006.31 - 10207.9i) q^{82} +(824.981 + 3614.48i) q^{83} +(-36509.7 - 89973.5i) q^{84} +(-13489.2 + 59100.1i) q^{85} +(2530.49 + 1725.26i) q^{86} +(-74571.0 - 69191.8i) q^{87} +(29709.5 - 4477.99i) q^{88} +(-18058.2 + 16755.6i) q^{89} +(4748.46 - 5954.38i) q^{90} +(87247.6 - 82838.4i) q^{91} +(6400.75 + 8026.29i) q^{92} +(168239. + 25357.9i) q^{93} +(10225.4 - 6971.55i) q^{94} +(-20118.9 - 51262.1i) q^{95} +(54917.3 - 16939.7i) q^{96} +37144.3 q^{97} +(-8673.25 - 10377.8i) q^{98} -193117. q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$264 q - 13 q^{2} - 22 q^{3} + 307 q^{4} - 52 q^{5} - 130 q^{6} + 154 q^{7} - 320 q^{8} + 6 q^{9}+O(q^{10})$$ 264 * q - 13 * q^2 - 22 * q^3 + 307 * q^4 - 52 * q^5 - 130 * q^6 + 154 * q^7 - 320 * q^8 + 6 * q^9 $$264 q - 13 q^{2} - 22 q^{3} + 307 q^{4} - 52 q^{5} - 130 q^{6} + 154 q^{7} - 320 q^{8} + 6 q^{9} - 792 q^{10} - 635 q^{11} + 3605 q^{12} + 1834 q^{13} - 875 q^{14} - 2572 q^{15} + 3735 q^{16} - 1023 q^{17} - 1336 q^{18} + 9741 q^{19} + 8330 q^{20} + 1512 q^{21} + 842 q^{22} - 1553 q^{23} + 1756 q^{24} + 13144 q^{25} - 1946 q^{26} - 19849 q^{27} - 31584 q^{28} - 30356 q^{29} + 6129 q^{30} + 43903 q^{31} + 27725 q^{32} - 3412 q^{33} - 73182 q^{34} - 17360 q^{35} - 102868 q^{36} - 22105 q^{37} + 19116 q^{38} + 109165 q^{39} + 77354 q^{40} + 47446 q^{41} + 157738 q^{42} + 6674 q^{43} + 15154 q^{44} - 130923 q^{45} - 136952 q^{46} - 195163 q^{47} - 151484 q^{48} - 131194 q^{49} + 263000 q^{50} - 84276 q^{51} - 58758 q^{52} - 110577 q^{53} + 170313 q^{54} + 290245 q^{55} + 79688 q^{56} + 47310 q^{57} + 252156 q^{58} + 127308 q^{59} + 86254 q^{60} + 166863 q^{61} - 63578 q^{62} - 243033 q^{63} - 293812 q^{64} - 16702 q^{65} - 661788 q^{66} + 46195 q^{67} + 393869 q^{68} + 321394 q^{69} - 64330 q^{70} - 61793 q^{71} + 333944 q^{72} + 21699 q^{73} + 133514 q^{74} - 431136 q^{75} + 3087 q^{76} - 48993 q^{77} - 450576 q^{78} - 181 q^{79} + 264228 q^{80} + 142090 q^{81} - 512442 q^{82} + 102424 q^{83} + 344932 q^{84} - 205502 q^{85} + 611991 q^{86} + 1427200 q^{87} + 685993 q^{88} + 145800 q^{89} + 677844 q^{90} + 732956 q^{91} + 10018 q^{92} - 1233536 q^{93} - 601938 q^{94} - 945265 q^{95} - 2372958 q^{96} - 1932952 q^{97} - 672973 q^{98} + 1090736 q^{99}+O(q^{100})$$ 264 * q - 13 * q^2 - 22 * q^3 + 307 * q^4 - 52 * q^5 - 130 * q^6 + 154 * q^7 - 320 * q^8 + 6 * q^9 - 792 * q^10 - 635 * q^11 + 3605 * q^12 + 1834 * q^13 - 875 * q^14 - 2572 * q^15 + 3735 * q^16 - 1023 * q^17 - 1336 * q^18 + 9741 * q^19 + 8330 * q^20 + 1512 * q^21 + 842 * q^22 - 1553 * q^23 + 1756 * q^24 + 13144 * q^25 - 1946 * q^26 - 19849 * q^27 - 31584 * q^28 - 30356 * q^29 + 6129 * q^30 + 43903 * q^31 + 27725 * q^32 - 3412 * q^33 - 73182 * q^34 - 17360 * q^35 - 102868 * q^36 - 22105 * q^37 + 19116 * q^38 + 109165 * q^39 + 77354 * q^40 + 47446 * q^41 + 157738 * q^42 + 6674 * q^43 + 15154 * q^44 - 130923 * q^45 - 136952 * q^46 - 195163 * q^47 - 151484 * q^48 - 131194 * q^49 + 263000 * q^50 - 84276 * q^51 - 58758 * q^52 - 110577 * q^53 + 170313 * q^54 + 290245 * q^55 + 79688 * q^56 + 47310 * q^57 + 252156 * q^58 + 127308 * q^59 + 86254 * q^60 + 166863 * q^61 - 63578 * q^62 - 243033 * q^63 - 293812 * q^64 - 16702 * q^65 - 661788 * q^66 + 46195 * q^67 + 393869 * q^68 + 321394 * q^69 - 64330 * q^70 - 61793 * q^71 + 333944 * q^72 + 21699 * q^73 + 133514 * q^74 - 431136 * q^75 + 3087 * q^76 - 48993 * q^77 - 450576 * q^78 - 181 * q^79 + 264228 * q^80 + 142090 * q^81 - 512442 * q^82 + 102424 * q^83 + 344932 * q^84 - 205502 * q^85 + 611991 * q^86 + 1427200 * q^87 + 685993 * q^88 + 145800 * q^89 + 677844 * q^90 + 732956 * q^91 + 10018 * q^92 - 1233536 * q^93 - 601938 * q^94 - 945265 * q^95 - 2372958 * q^96 - 1932952 * q^97 - 672973 * q^98 + 1090736 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/49\mathbb{Z}\right)^\times$$.

 $$n$$ $$3$$ $$\chi(n)$$ $$e\left(\frac{8}{21}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.768968 + 0.237195i −0.135936 + 0.0419306i −0.361976 0.932187i $$-0.617898\pi$$
0.226041 + 0.974118i $$0.427422\pi$$
$$3$$ −8.72763 22.2376i −0.559878 1.42654i −0.878076 0.478521i $$-0.841173\pi$$
0.318199 0.948024i $$-0.396922\pi$$
$$4$$ −25.9046 + 17.6615i −0.809518 + 0.551920i
$$5$$ 28.5592 + 4.30461i 0.510882 + 0.0770031i 0.399425 0.916766i $$-0.369210\pi$$
0.111458 + 0.993769i $$0.464448\pi$$
$$6$$ 11.9859 + 15.0299i 0.135923 + 0.170442i
$$7$$ −107.947 71.7951i −0.832653 0.553796i
$$8$$ 31.7861 39.8585i 0.175595 0.220189i
$$9$$ −240.209 + 222.882i −0.988515 + 0.917208i
$$10$$ −22.9821 + 3.46400i −0.0726759 + 0.0109541i
$$11$$ 432.017 + 400.853i 1.07651 + 0.998857i 0.999998 + 0.00178816i $$0.000569191\pi$$
0.0765131 + 0.997069i $$0.475621\pi$$
$$12$$ 618.834 + 421.914i 1.24057 + 0.845806i
$$13$$ −206.502 + 904.746i −0.338896 + 1.48480i 0.462474 + 0.886633i $$0.346962\pi$$
−0.801370 + 0.598169i $$0.795895\pi$$
$$14$$ 100.037 + 29.6037i 0.136408 + 0.0403670i
$$15$$ −153.530 672.658i −0.176183 0.771909i
$$16$$ 351.550 895.735i 0.343311 0.874742i
$$17$$ −156.851 + 2093.03i −0.131633 + 1.75652i 0.406491 + 0.913655i $$0.366752\pi$$
−0.538124 + 0.842865i $$0.680867\pi$$
$$18$$ 131.847 228.365i 0.0959154 0.166130i
$$19$$ −953.349 1651.25i −0.605854 1.04937i −0.991916 0.126897i $$-0.959498\pi$$
0.386062 0.922473i $$-0.373835\pi$$
$$20$$ −815.840 + 392.888i −0.456068 + 0.219631i
$$21$$ −654.435 + 3027.08i −0.323831 + 1.49787i
$$22$$ −427.287 205.771i −0.188219 0.0906415i
$$23$$ −24.4696 326.523i −0.00964509 0.128705i 0.990303 0.138927i $$-0.0443653\pi$$
−0.999948 + 0.0102219i $$0.996746\pi$$
$$24$$ −1163.78 358.977i −0.412421 0.127215i
$$25$$ −2189.07 675.238i −0.700501 0.216076i
$$26$$ −55.8077 744.702i −0.0161905 0.216048i
$$27$$ 1822.67 + 877.751i 0.481170 + 0.231719i
$$28$$ 4064.32 46.6713i 0.979699 0.0112501i
$$29$$ 3836.61 1847.61i 0.847134 0.407958i 0.0406211 0.999175i $$-0.487066\pi$$
0.806513 + 0.591216i $$0.201352\pi$$
$$30$$ 277.611 + 480.836i 0.0563162 + 0.0975425i
$$31$$ −3561.03 + 6167.89i −0.665536 + 1.15274i 0.313603 + 0.949554i $$0.398464\pi$$
−0.979140 + 0.203189i $$0.934869\pi$$
$$32$$ −179.781 + 2399.01i −0.0310362 + 0.414149i
$$33$$ 5143.54 13105.5i 0.822199 2.09493i
$$34$$ −375.843 1646.68i −0.0557583 0.244293i
$$35$$ −2773.82 2515.08i −0.382744 0.347041i
$$36$$ 2286.11 10016.1i 0.293996 1.28808i
$$37$$ −5543.25 3779.32i −0.665671 0.453847i 0.182756 0.983158i $$-0.441498\pi$$
−0.848428 + 0.529311i $$0.822450\pi$$
$$38$$ 1124.76 + 1043.63i 0.126358 + 0.117243i
$$39$$ 21921.7 3304.16i 2.30788 0.347856i
$$40$$ 1079.36 1001.50i 0.106664 0.0989694i
$$41$$ −8496.33 + 10654.1i −0.789353 + 0.989818i 0.210572 + 0.977578i $$0.432467\pi$$
−0.999925 + 0.0122394i $$0.996104\pi$$
$$42$$ −214.769 2482.95i −0.0187866 0.217193i
$$43$$ −2372.92 2975.55i −0.195710 0.245412i 0.674287 0.738469i $$-0.264451\pi$$
−0.869997 + 0.493057i $$0.835880\pi$$
$$44$$ −18270.9 2753.89i −1.42275 0.214444i
$$45$$ −7819.60 + 5331.31i −0.575643 + 0.392467i
$$46$$ 96.2661 + 245.282i 0.00670778 + 0.0170911i
$$47$$ −14695.8 + 4533.05i −0.970395 + 0.299327i −0.739129 0.673563i $$-0.764763\pi$$
−0.231266 + 0.972891i $$0.574287\pi$$
$$48$$ −22987.2 −1.44007
$$49$$ 6497.93 + 15500.1i 0.386621 + 0.922239i
$$50$$ 1843.49 0.104283
$$51$$ 47913.0 14779.2i 2.57945 0.795656i
$$52$$ −10629.8 27084.2i −0.545149 1.38902i
$$53$$ 3382.97 2306.47i 0.165428 0.112787i −0.477776 0.878482i $$-0.658557\pi$$
0.643204 + 0.765695i $$0.277605\pi$$
$$54$$ −1609.77 242.634i −0.0751242 0.0113232i
$$55$$ 10612.5 + 13307.7i 0.473056 + 0.593193i
$$56$$ −6292.84 + 2020.50i −0.268149 + 0.0860973i
$$57$$ −28399.4 + 35611.7i −1.15777 + 1.45180i
$$58$$ −2511.98 + 2330.78i −0.0980498 + 0.0909769i
$$59$$ 35270.7 5316.20i 1.31912 0.198825i 0.548516 0.836140i $$-0.315193\pi$$
0.770604 + 0.637315i $$0.219955\pi$$
$$60$$ 15857.2 + 14713.4i 0.568656 + 0.527635i
$$61$$ 12422.3 + 8469.36i 0.427441 + 0.291424i 0.757869 0.652407i $$-0.226241\pi$$
−0.330428 + 0.943831i $$0.607193\pi$$
$$62$$ 1275.33 5587.57i 0.0421349 0.184605i
$$63$$ 41931.6 6813.47i 1.33104 0.216280i
$$64$$ 6421.09 + 28132.6i 0.195956 + 0.858540i
$$65$$ −9792.12 + 24949.9i −0.287471 + 0.732463i
$$66$$ −846.649 + 11297.7i −0.0239245 + 0.319251i
$$67$$ −24515.4 + 42461.9i −0.667194 + 1.15561i 0.311492 + 0.950249i $$0.399171\pi$$
−0.978685 + 0.205365i $$0.934162\pi$$
$$68$$ −32902.8 56989.3i −0.862900 1.49459i
$$69$$ −7047.55 + 3393.92i −0.178203 + 0.0858181i
$$70$$ 2729.54 + 1276.08i 0.0665801 + 0.0311266i
$$71$$ −25296.4 12182.1i −0.595542 0.286798i 0.111731 0.993739i $$-0.464361\pi$$
−0.707273 + 0.706940i $$0.750075\pi$$
$$72$$ 1248.41 + 16658.9i 0.0283810 + 0.378717i
$$73$$ −56676.3 17482.3i −1.24479 0.383965i −0.398734 0.917067i $$-0.630550\pi$$
−0.846051 + 0.533101i $$0.821026\pi$$
$$74$$ 5159.02 + 1591.35i 0.109519 + 0.0337820i
$$75$$ 4089.67 + 54572.9i 0.0839528 + 1.12027i
$$76$$ 53859.6 + 25937.4i 1.06962 + 0.515101i
$$77$$ −17855.5 74287.4i −0.343198 1.42787i
$$78$$ −16073.3 + 7740.52i −0.299137 + 0.144057i
$$79$$ 779.260 + 1349.72i 0.0140480 + 0.0243319i 0.872964 0.487785i $$-0.162195\pi$$
−0.858916 + 0.512117i $$0.828862\pi$$
$$80$$ 13895.8 24068.2i 0.242749 0.420454i
$$81$$ −2339.02 + 31212.0i −0.0396114 + 0.528578i
$$82$$ 4006.31 10207.9i 0.0657976 0.167650i
$$83$$ 824.981 + 3614.48i 0.0131446 + 0.0575905i 0.981075 0.193629i $$-0.0620257\pi$$
−0.967930 + 0.251219i $$0.919169\pi$$
$$84$$ −36509.7 89973.5i −0.564560 1.39129i
$$85$$ −13489.2 + 59100.1i −0.202507 + 0.887239i
$$86$$ 2530.49 + 1725.26i 0.0368942 + 0.0251541i
$$87$$ −74571.0 69191.8i −1.05626 0.980068i
$$88$$ 29709.5 4477.99i 0.408967 0.0616419i
$$89$$ −18058.2 + 16755.6i −0.241657 + 0.224225i −0.791698 0.610913i $$-0.790803\pi$$
0.550041 + 0.835138i $$0.314612\pi$$
$$90$$ 4748.46 5954.38i 0.0617940 0.0774873i
$$91$$ 87247.6 82838.4i 1.10446 1.04864i
$$92$$ 6400.75 + 8026.29i 0.0788427 + 0.0988656i
$$93$$ 168239. + 25357.9i 2.01706 + 0.304023i
$$94$$ 10225.4 6971.55i 0.119360 0.0813785i
$$95$$ −20118.9 51262.1i −0.228715 0.582757i
$$96$$ 54917.3 16939.7i 0.608178 0.187598i
$$97$$ 37144.3 0.400832 0.200416 0.979711i $$-0.435771\pi$$
0.200416 + 0.979711i $$0.435771\pi$$
$$98$$ −8673.25 10377.8i −0.0912255 0.109154i
$$99$$ −193117. −1.98031
$$100$$ 68632.6 21170.3i 0.686326 0.211703i
$$101$$ −12971.8 33051.6i −0.126531 0.322396i 0.853545 0.521019i $$-0.174448\pi$$
−0.980076 + 0.198624i $$0.936353\pi$$
$$102$$ −33338.0 + 22729.5i −0.317277 + 0.216316i
$$103$$ 57874.1 + 8723.12i 0.537516 + 0.0810174i 0.412189 0.911098i $$-0.364764\pi$$
0.125326 + 0.992116i $$0.460002\pi$$
$$104$$ 29497.9 + 36989.2i 0.267429 + 0.335345i
$$105$$ −31720.5 + 83633.8i −0.280780 + 0.740301i
$$106$$ −2054.31 + 2576.03i −0.0177583 + 0.0222683i
$$107$$ 98325.5 91232.7i 0.830246 0.770355i −0.145478 0.989362i $$-0.546472\pi$$
0.975723 + 0.219006i $$0.0702815\pi$$
$$108$$ −62717.8 + 9453.19i −0.517406 + 0.0779864i
$$109$$ −21597.1 20039.2i −0.174112 0.161552i 0.588303 0.808640i $$-0.299796\pi$$
−0.762415 + 0.647088i $$0.775987\pi$$
$$110$$ −11317.2 7715.95i −0.0891781 0.0608006i
$$111$$ −35663.8 + 156253.i −0.274739 + 1.20371i
$$112$$ −102258. + 71452.0i −0.770287 + 0.538232i
$$113$$ −24717.7 108295.i −0.182101 0.797836i −0.980628 0.195878i $$-0.937244\pi$$
0.798527 0.601958i $$-0.205613\pi$$
$$114$$ 13391.3 34120.5i 0.0965074 0.245897i
$$115$$ 706.724 9430.58i 0.00498317 0.0664957i
$$116$$ −66754.2 + 115622.i −0.460610 + 0.797800i
$$117$$ −152047. 263354.i −1.02687 1.77859i
$$118$$ −25861.1 + 12454.0i −0.170978 + 0.0823389i
$$119$$ 167201. 214674.i 1.08236 1.38967i
$$120$$ −31691.2 15261.7i −0.200903 0.0967497i
$$121$$ 13920.0 + 185749.i 0.0864322 + 1.15336i
$$122$$ −11561.2 3566.16i −0.0703241 0.0216921i
$$123$$ 311074. + 95953.5i 1.85396 + 0.571871i
$$124$$ −16686.8 222670.i −0.0974582 1.30049i
$$125$$ −140929. 67867.7i −0.806724 0.388498i
$$126$$ −30627.9 + 15185.3i −0.171866 + 0.0852113i
$$127$$ −35245.0 + 16973.1i −0.193904 + 0.0933795i −0.528317 0.849047i $$-0.677177\pi$$
0.334412 + 0.942427i $$0.391462\pi$$
$$128$$ −50102.3 86779.7i −0.270292 0.468159i
$$129$$ −45459.3 + 78737.7i −0.240518 + 0.416590i
$$130$$ 1611.83 21508.3i 0.00836488 0.111622i
$$131$$ −21264.5 + 54181.1i −0.108262 + 0.275848i −0.974730 0.223385i $$-0.928289\pi$$
0.866468 + 0.499232i $$0.166385\pi$$
$$132$$ 98221.3 + 430335.i 0.490649 + 2.14967i
$$133$$ −15640.8 + 246692.i −0.0766706 + 1.20928i
$$134$$ 8779.80 38466.8i 0.0422399 0.185065i
$$135$$ 48275.6 + 32913.7i 0.227978 + 0.155433i
$$136$$ 78439.3 + 72781.1i 0.363653 + 0.337420i
$$137$$ −149766. + 22573.6i −0.681729 + 0.102754i −0.480771 0.876846i $$-0.659643\pi$$
−0.200957 + 0.979600i $$0.564405\pi$$
$$138$$ 4614.32 4281.46i 0.0206257 0.0191379i
$$139$$ 384.903 482.653i 0.00168972 0.00211884i −0.780986 0.624549i $$-0.785283\pi$$
0.782676 + 0.622430i $$0.213854\pi$$
$$140$$ 116275. + 16162.4i 0.501377 + 0.0696924i
$$141$$ 229064. + 287237.i 0.970306 + 1.21673i
$$142$$ 22341.6 + 3367.46i 0.0929810 + 0.0140146i
$$143$$ −451883. + 308088.i −1.84793 + 1.25990i
$$144$$ 115197. + 293518.i 0.462952 + 1.17958i
$$145$$ 117524. 36251.2i 0.464200 0.143187i
$$146$$ 47729.0 0.185311
$$147$$ 287973. 279777.i 1.09915 1.06787i
$$148$$ 210344. 0.789361
$$149$$ 115949. 35765.5i 0.427859 0.131977i −0.0733439 0.997307i $$-0.523367\pi$$
0.501203 + 0.865330i $$0.332891\pi$$
$$150$$ −16089.3 40994.8i −0.0583859 0.148765i
$$151$$ 283957. 193599.i 1.01347 0.690972i 0.0617979 0.998089i $$-0.480317\pi$$
0.951672 + 0.307117i $$0.0993642\pi$$
$$152$$ −96119.5 14487.7i −0.337445 0.0508616i
$$153$$ −428821. 537724.i −1.48097 1.85708i
$$154$$ 31350.9 + 52889.4i 0.106524 + 0.179708i
$$155$$ −128251. + 160821.i −0.428776 + 0.537668i
$$156$$ −509516. + 472762.i −1.67628 + 1.55536i
$$157$$ −187687. + 28289.3i −0.607694 + 0.0915951i −0.445679 0.895193i $$-0.647038\pi$$
−0.162016 + 0.986788i $$0.551799\pi$$
$$158$$ −919.373 853.053i −0.00292987 0.00271853i
$$159$$ −80815.8 55099.3i −0.253515 0.172844i
$$160$$ −15461.2 + 67739.8i −0.0477466 + 0.209191i
$$161$$ −20801.4 + 37003.9i −0.0632452 + 0.112508i
$$162$$ −5604.71 24555.8i −0.0167790 0.0735135i
$$163$$ 164829. 419979.i 0.485921 1.23811i −0.452236 0.891898i $$-0.649374\pi$$
0.938157 0.346209i $$-0.112531\pi$$
$$164$$ 31927.8 426046.i 0.0926955 1.23694i
$$165$$ 203309. 352142.i 0.581363 1.00695i
$$166$$ −1491.72 2583.74i −0.00420163 0.00727743i
$$167$$ −497341. + 239507.i −1.37995 + 0.664548i −0.968989 0.247105i $$-0.920521\pi$$
−0.410960 + 0.911653i $$0.634807\pi$$
$$168$$ 99852.8 + 122304.i 0.272953 + 0.334323i
$$169$$ −441399. 212567.i −1.18882 0.572504i
$$170$$ −3645.49 48645.6i −0.00967460 0.129099i
$$171$$ 597036. + 184161.i 1.56139 + 0.481624i
$$172$$ 114022. + 35171.2i 0.293879 + 0.0906496i
$$173$$ −25901.1 345626.i −0.0657965 0.877993i −0.928274 0.371897i $$-0.878707\pi$$
0.862477 0.506096i $$-0.168912\pi$$
$$174$$ 73754.7 + 35518.4i 0.184678 + 0.0889365i
$$175$$ 187824. + 230054.i 0.463612 + 0.567851i
$$176$$ 510934. 246053.i 1.24332 0.598751i
$$177$$ −426049. 737939.i −1.02218 1.77047i
$$178$$ 9911.85 17167.8i 0.0234479 0.0406130i
$$179$$ −30316.5 + 404546.i −0.0707207 + 0.943703i 0.843145 + 0.537686i $$0.180701\pi$$
−0.913866 + 0.406016i $$0.866918\pi$$
$$180$$ 108405. 276211.i 0.249383 0.635418i
$$181$$ 62491.0 + 273791.i 0.141782 + 0.621188i 0.995021 + 0.0996674i $$0.0317779\pi$$
−0.853239 + 0.521521i $$0.825365\pi$$
$$182$$ −47441.7 + 84394.8i −0.106165 + 0.188859i
$$183$$ 79921.5 350159.i 0.176415 0.772926i
$$184$$ −13792.5 9403.58i −0.0300330 0.0204762i
$$185$$ −142042. 131796.i −0.305132 0.283121i
$$186$$ −135385. + 20406.0i −0.286938 + 0.0432489i
$$187$$ −906759. + 841349.i −1.89622 + 1.75943i
$$188$$ 300628. 376976.i 0.620348 0.777892i
$$189$$ −133733. 225609.i −0.272322 0.459411i
$$190$$ 27629.9 + 34646.8i 0.0555259 + 0.0696273i
$$191$$ 177150. + 26701.1i 0.351365 + 0.0529598i 0.322354 0.946619i $$-0.395526\pi$$
0.0290114 + 0.999579i $$0.490764\pi$$
$$192$$ 569563. 388321.i 1.11503 0.760218i
$$193$$ 26274.2 + 66945.6i 0.0507734 + 0.129369i 0.954010 0.299774i $$-0.0969111\pi$$
−0.903237 + 0.429142i $$0.858816\pi$$
$$194$$ −28562.8 + 8810.45i −0.0544874 + 0.0168071i
$$195$$ 640289. 1.20584
$$196$$ −442080. 286760.i −0.821979 0.533186i
$$197$$ 174499. 0.320352 0.160176 0.987088i $$-0.448794\pi$$
0.160176 + 0.987088i $$0.448794\pi$$
$$198$$ 148501. 45806.4i 0.269194 0.0830355i
$$199$$ −36511.0 93028.6i −0.0653569 0.166527i 0.894464 0.447140i $$-0.147557\pi$$
−0.959821 + 0.280613i $$0.909462\pi$$
$$200$$ −96495.9 + 65789.8i −0.170582 + 0.116301i
$$201$$ 1.15821e6 + 174573.i 2.02208 + 0.304780i
$$202$$ 17814.6 + 22338.8i 0.0307183 + 0.0385195i
$$203$$ −546798. 76006.0i −0.931294 0.129452i
$$204$$ −980144. + 1.22906e6i −1.64898 + 2.06775i
$$205$$ −288510. + 267698.i −0.479486 + 0.444898i
$$206$$ −46572.4 + 7019.66i −0.0764646 + 0.0115252i
$$207$$ 78653.9 + 72980.1i 0.127583 + 0.118380i
$$208$$ 737817. + 503035.i 1.18247 + 0.806195i
$$209$$ 250045. 1.09552e6i 0.395961 1.73482i
$$210$$ 4554.52 71835.7i 0.00712679 0.112407i
$$211$$ −185947. 814687.i −0.287530 1.25975i −0.887903 0.460031i $$-0.847838\pi$$
0.600373 0.799720i $$-0.295019\pi$$
$$212$$ −46898.9 + 119496.i −0.0716676 + 0.182606i
$$213$$ −50123.6 + 668852.i −0.0756995 + 1.01014i
$$214$$ −53969.2 + 93477.4i −0.0805585 + 0.139531i
$$215$$ −54960.2 95193.9i −0.0810872 0.140447i
$$216$$ 92921.3 44748.6i 0.135513 0.0652596i
$$217$$ 827226. 410138.i 1.19254 0.591263i
$$218$$ 21360.7 + 10286.8i 0.0304420 + 0.0146601i
$$219$$ 105884. + 1.41293e6i 0.149184 + 1.99072i
$$220$$ −509946. 157298.i −0.710343 0.219112i
$$221$$ −1.86127e6 574126.i −2.56347 0.790727i
$$222$$ −9638.21 128613.i −0.0131254 0.175147i
$$223$$ 272080. + 131027.i 0.366382 + 0.176440i 0.608011 0.793928i $$-0.291967\pi$$
−0.241629 + 0.970369i $$0.577682\pi$$
$$224$$ 191644. 246057.i 0.255196 0.327654i
$$225$$ 676332. 325704.i 0.890643 0.428911i
$$226$$ 44694.3 + 77412.8i 0.0582077 + 0.100819i
$$227$$ −103708. + 179628.i −0.133582 + 0.231371i −0.925055 0.379834i $$-0.875981\pi$$
0.791473 + 0.611204i $$0.209315\pi$$
$$228$$ 106720. 1.42408e6i 0.135959 1.81425i
$$229$$ −553079. + 1.40922e6i −0.696944 + 1.77579i −0.0688787 + 0.997625i $$0.521942\pi$$
−0.628066 + 0.778160i $$0.716153\pi$$
$$230$$ 1693.44 + 7419.45i 0.00211082 + 0.00924809i
$$231$$ −1.49614e6 + 1.04542e6i −1.84477 + 1.28902i
$$232$$ 48307.7 211650.i 0.0589245 0.258165i
$$233$$ 191737. + 130724.i 0.231375 + 0.157749i 0.673458 0.739225i $$-0.264808\pi$$
−0.442083 + 0.896974i $$0.645760\pi$$
$$234$$ 179386. + 166446.i 0.214165 + 0.198716i
$$235$$ −439213. + 66200.7i −0.518807 + 0.0781975i
$$236$$ −819781. + 760646.i −0.958116 + 0.889002i
$$237$$ 23213.4 29108.7i 0.0268453 0.0336630i
$$238$$ −77652.3 + 204737.i −0.0888612 + 0.234290i
$$239$$ 905923. + 1.13599e6i 1.02588 + 1.28641i 0.957401 + 0.288760i $$0.0932430\pi$$
0.0684785 + 0.997653i $$0.478186\pi$$
$$240$$ −656497. 98951.0i −0.735706 0.110890i
$$241$$ 654163. 446001.i 0.725510 0.494645i −0.143369 0.989669i $$-0.545793\pi$$
0.868879 + 0.495025i $$0.164841\pi$$
$$242$$ −54762.9 139534.i −0.0601102 0.153158i
$$243$$ 1.18425e6 365292.i 1.28655 0.396848i
$$244$$ −471375. −0.506864
$$245$$ 118854. + 470640.i 0.126502 + 0.500927i
$$246$$ −261965. −0.275998
$$247$$ 1.69083e6 521552.i 1.76343 0.543945i
$$248$$ 132652. + 337991.i 0.136957 + 0.348960i
$$249$$ 73177.3 49891.5i 0.0747960 0.0509950i
$$250$$ 124468. + 18760.5i 0.125952 + 0.0189843i
$$251$$ 229129. + 287319.i 0.229560 + 0.287859i 0.883249 0.468904i $$-0.155351\pi$$
−0.653689 + 0.756763i $$0.726780\pi$$
$$252$$ −965884. + 917072.i −0.958128 + 0.909708i
$$253$$ 120317. 150872.i 0.118175 0.148186i
$$254$$ 23076.3 21411.7i 0.0224431 0.0208241i
$$255$$ 1.43197e6 215835.i 1.37906 0.207861i
$$256$$ −617787. 573222.i −0.589167 0.546667i
$$257$$ 135166. + 92154.7i 0.127654 + 0.0870331i 0.625464 0.780253i $$-0.284910\pi$$
−0.497810 + 0.867286i $$0.665862\pi$$
$$258$$ 16280.5 71329.5i 0.0152271 0.0667145i
$$259$$ 327038. + 805943.i 0.302934 + 0.746543i
$$260$$ −186991. 819260.i −0.171548 0.751603i
$$261$$ −509789. + 1.29892e6i −0.463222 + 1.18027i
$$262$$ 3500.23 46707.3i 0.00315024 0.0420370i
$$263$$ −178686. + 309493.i −0.159294 + 0.275906i −0.934614 0.355663i $$-0.884255\pi$$
0.775320 + 0.631569i $$0.217589\pi$$
$$264$$ −358873. 621587.i −0.316907 0.548898i
$$265$$ 106543. 51308.6i 0.0931992 0.0448824i
$$266$$ −46487.0 193409.i −0.0402835 0.167599i
$$267$$ 530210. + 255335.i 0.455166 + 0.219196i
$$268$$ −114878. 1.53294e6i −0.0977010 1.30373i
$$269$$ 1.82158e6 + 561882.i 1.53485 + 0.473439i 0.943052 0.332646i $$-0.107941\pi$$
0.591800 + 0.806085i $$0.298418\pi$$
$$270$$ −44929.3 13858.9i −0.0375077 0.0115696i
$$271$$ 37759.6 + 503866.i 0.0312323 + 0.416766i 0.990804 + 0.135303i $$0.0432007\pi$$
−0.959572 + 0.281463i $$0.909180\pi$$
$$272$$ 1.81966e6 + 876302.i 1.49131 + 0.718177i
$$273$$ −2.60359e6 1.21720e6i −2.11430 0.988449i
$$274$$ 109811. 52882.1i 0.0883627 0.0425532i
$$275$$ −675042. 1.16921e6i −0.538269 0.932309i
$$276$$ 122622. 212388.i 0.0968940 0.167825i
$$277$$ −36731.0 + 490142.i −0.0287630 + 0.383815i 0.964182 + 0.265241i $$0.0854515\pi$$
−0.992945 + 0.118574i $$0.962168\pi$$
$$278$$ −181.495 + 462.442i −0.000140849 + 0.000358876i
$$279$$ −519316. 2.27527e6i −0.399412 1.74994i
$$280$$ −188416. + 30615.8i −0.143623 + 0.0233373i
$$281$$ 176833. 774754.i 0.133597 0.585326i −0.863165 0.504921i $$-0.831522\pi$$
0.996762 0.0804049i $$-0.0256213\pi$$
$$282$$ −244274. 166543.i −0.182917 0.124711i
$$283$$ −955080. 886185.i −0.708881 0.657746i 0.240939 0.970540i $$-0.422544\pi$$
−0.949821 + 0.312794i $$0.898735\pi$$
$$284$$ 870446. 131199.i 0.640392 0.0965236i
$$285$$ −964358. + 894793.i −0.703277 + 0.652545i
$$286$$ 274406. 344094.i 0.198371 0.248750i
$$287$$ 1.68206e6 540075.i 1.20541 0.387034i
$$288$$ −491509. 616333.i −0.349181 0.437859i
$$289$$ −2.95217e6 444968.i −2.07920 0.313390i
$$290$$ −81773.3 + 55752.1i −0.0570974 + 0.0389284i
$$291$$ −324181. 826001.i −0.224417 0.571805i
$$292$$ 1.77694e6 548113.i 1.21960 0.376195i
$$293$$ −1.16749e6 −0.794483 −0.397242 0.917714i $$-0.630032\pi$$
−0.397242 + 0.917714i $$0.630032\pi$$
$$294$$ −155080. + 283446.i −0.104638 + 0.191250i
$$295$$ 1.03019e6 0.689225
$$296$$ −326836. + 100816.i −0.216821 + 0.0668803i
$$297$$ 435574. + 1.10982e6i 0.286531 + 0.730068i
$$298$$ −80677.6 + 55005.1i −0.0526275 + 0.0358808i
$$299$$ 300474. + 45289.2i 0.194370 + 0.0292965i
$$300$$ −1.06978e6 1.34146e6i −0.686263 0.860546i
$$301$$ 42519.0 + 491565.i 0.0270500 + 0.312727i
$$302$$ −172433. + 216225.i −0.108794 + 0.136423i
$$303$$ −621777. + 576924.i −0.389070 + 0.361004i
$$304$$ −1.81423e6 + 273451.i −1.12592 + 0.169706i
$$305$$ 318313. + 295351.i 0.195932 + 0.181798i
$$306$$ 457295. + 311778.i 0.279186 + 0.190345i
$$307$$ −98050.0 + 429585.i −0.0593747 + 0.260138i −0.995900 0.0904628i $$-0.971165\pi$$
0.936525 + 0.350601i $$0.114023\pi$$
$$308$$ 1.77456e6 + 1.60903e6i 1.06589 + 0.966468i
$$309$$ −311122. 1.36311e6i −0.185368 0.812150i
$$310$$ 60474.6 154087.i 0.0357412 0.0910670i
$$311$$ −164008. + 2.18854e6i −0.0961533 + 1.28308i 0.715365 + 0.698751i $$0.246260\pi$$
−0.811519 + 0.584327i $$0.801359\pi$$
$$312$$ 565106. 978792.i 0.328657 0.569251i
$$313$$ −1.44846e6 2.50880e6i −0.835689 1.44746i −0.893468 0.449127i $$-0.851735\pi$$
0.0577789 0.998329i $$-0.481598\pi$$
$$314$$ 137615. 66272.0i 0.0787666 0.0379320i
$$315$$ 1.22686e6 14088.3i 0.696657 0.00799983i
$$316$$ −44024.4 21201.0i −0.0248014 0.0119437i
$$317$$ 132882. + 1.77318e6i 0.0742705 + 0.991071i 0.902502 + 0.430685i $$0.141728\pi$$
−0.828232 + 0.560386i $$0.810653\pi$$
$$318$$ 75214.1 + 23200.5i 0.0417092 + 0.0128656i
$$319$$ 2.39810e6 + 739715.i 1.31944 + 0.406994i
$$320$$ 62281.3 + 831086.i 0.0340003 + 0.453702i
$$321$$ −2.88695e6 1.39028e6i −1.56378 0.753078i
$$322$$ 7218.45 33388.8i 0.00387975 0.0179457i
$$323$$ 3.60565e6 1.73639e6i 1.92299 0.926063i
$$324$$ −490658. 849844.i −0.259667 0.449756i
$$325$$ 1.06297e6 1.84111e6i 0.558227 0.966878i
$$326$$ −27131.7 + 362047.i −0.0141394 + 0.188678i
$$327$$ −257132. + 655162.i −0.132980 + 0.338828i
$$328$$ 154590. + 677302.i 0.0793407 + 0.347614i
$$329$$ 1.91181e6 + 565758.i 0.973768 + 0.288165i
$$330$$ −72812.0 + 319010.i −0.0368059 + 0.161257i
$$331$$ −959676. 654296.i −0.481454 0.328250i 0.298154 0.954518i $$-0.403629\pi$$
−0.779608 + 0.626268i $$0.784582\pi$$
$$332$$ −85207.8 79061.2i −0.0424262 0.0393657i
$$333$$ 2.17388e6 327660.i 1.07430 0.161924i
$$334$$ 325629. 302140.i 0.159719 0.148198i
$$335$$ −882922. + 1.10715e6i −0.429844 + 0.539007i
$$336$$ 2.48139e6 + 1.65037e6i 1.19908 + 0.797505i
$$337$$ 2.45728e6 + 3.08133e6i 1.17864 + 1.47796i 0.844597 + 0.535402i $$0.179840\pi$$
0.334038 + 0.942560i $$0.391589\pi$$
$$338$$ 389842. + 58759.2i 0.185608 + 0.0279759i
$$339$$ −2.19251e6 + 1.49482e6i −1.03619 + 0.706466i
$$340$$ −694361. 1.76920e6i −0.325752 0.830004i
$$341$$ −4.01084e6 + 1.23718e6i −1.86788 + 0.576165i
$$342$$ −502784. −0.232443
$$343$$ 411399. 2.13970e6i 0.188811 0.982013i
$$344$$ −194027. −0.0884028
$$345$$ −215882. + 66590.7i −0.0976491 + 0.0301208i
$$346$$ 101898. + 259632.i 0.0457589 + 0.116592i
$$347$$ −3.06947e6 + 2.09273e6i −1.36848 + 0.933016i −0.368490 + 0.929632i $$0.620125\pi$$
−0.999994 + 0.00338454i $$0.998923\pi$$
$$348$$ 3.15376e6 + 475352.i 1.39598 + 0.210411i
$$349$$ 747749. + 937648.i 0.328619 + 0.412075i 0.918504 0.395412i $$-0.129398\pi$$
−0.589885 + 0.807487i $$0.700827\pi$$
$$350$$ −198998. 132353.i −0.0868318 0.0577516i
$$351$$ −1.17053e6 + 1.46779e6i −0.507123 + 0.635913i
$$352$$ −1.03932e6 + 964345.i −0.447086 + 0.414835i
$$353$$ 675204. 101771.i 0.288402 0.0434696i −0.00324797 0.999995i $$-0.501034\pi$$
0.291650 + 0.956525i $$0.405796\pi$$
$$354$$ 502654. + 466395.i 0.213187 + 0.197809i
$$355$$ −670005. 456802.i −0.282168 0.192379i
$$356$$ 171863. 752980.i 0.0718716 0.314890i
$$357$$ −6.23311e6 1.84455e6i −2.58842 0.765985i
$$358$$ −72643.9 318274.i −0.0299565 0.131248i
$$359$$ 920697. 2.34590e6i 0.377034 0.960667i −0.608857 0.793280i $$-0.708372\pi$$
0.985891 0.167387i $$-0.0535330\pi$$
$$360$$ −36056.4 + 481139.i −0.0146631 + 0.195666i
$$361$$ −579699. + 1.00407e6i −0.234118 + 0.405504i
$$362$$ −112996. 195714.i −0.0453200 0.0784966i
$$363$$ 4.00914e6 1.93070e6i 1.59693 0.769039i
$$364$$ −797066. + 3.68681e6i −0.315312 + 1.45847i
$$365$$ −1.54338e6 743250.i −0.606372 0.292014i
$$366$$ 21599.0 + 288218.i 0.00842811 + 0.112465i
$$367$$ −276158. 85183.5i −0.107027 0.0330134i 0.240779 0.970580i $$-0.422597\pi$$
−0.347806 + 0.937567i $$0.613073\pi$$
$$368$$ −301081. 92871.2i −0.115895 0.0357488i
$$369$$ −333697. 4.45288e6i −0.127581 1.70245i
$$370$$ 140487. + 67655.1i 0.0533498 + 0.0256919i
$$371$$ −530774. + 6094.97i −0.200205 + 0.00229899i
$$372$$ −4.80601e6 + 2.31445e6i −1.80064 + 0.867144i
$$373$$ 1.18849e6 + 2.05852e6i 0.442307 + 0.766097i 0.997860 0.0653832i $$-0.0208270\pi$$
−0.555554 + 0.831481i $$0.687494\pi$$
$$374$$ 497705. 862050.i 0.183989 0.318679i
$$375$$ −279244. + 3.72625e6i −0.102543 + 1.36834i
$$376$$ −286441. + 729840.i −0.104488 + 0.266231i
$$377$$ 879352. + 3.85269e6i 0.318647 + 1.39608i
$$378$$ 156349. + 141765.i 0.0562817 + 0.0510317i
$$379$$ 660323. 2.89306e6i 0.236134 1.03457i −0.708311 0.705900i $$-0.750543\pi$$
0.944445 0.328669i $$-0.106600\pi$$
$$380$$ 1.42654e6 + 972595.i 0.506785 + 0.345520i
$$381$$ 685046. + 635630.i 0.241773 + 0.224332i
$$382$$ −142556. + 21486.9i −0.0499837 + 0.00753383i
$$383$$ 297881. 276394.i 0.103764 0.0962789i −0.626585 0.779353i $$-0.715548\pi$$
0.730349 + 0.683074i $$0.239357\pi$$
$$384$$ −1.49250e6 + 1.87154e6i −0.516519 + 0.647695i
$$385$$ −190160. 2.19845e6i −0.0653833 0.755900i
$$386$$ −36083.2 45246.9i −0.0123264 0.0154568i
$$387$$ 1.23319e6 + 185874.i 0.418556 + 0.0630872i
$$388$$ −962208. + 656022.i −0.324481 + 0.221227i
$$389$$ 925475. + 2.35807e6i 0.310092 + 0.790102i 0.997934 + 0.0642417i $$0.0204629\pi$$
−0.687842 + 0.725860i $$0.741442\pi$$
$$390$$ −492362. + 151873.i −0.163917 + 0.0505616i
$$391$$ 687261. 0.227342
$$392$$ 824353. + 233689.i 0.270956 + 0.0768109i
$$393$$ 1.39045e6 0.454123
$$394$$ −134184. + 41390.3i −0.0435473 + 0.0134326i
$$395$$ 16445.0 + 41901.3i 0.00530325 + 0.0135125i
$$396$$ 5.00262e6 3.41073e6i 1.60310 1.09297i
$$397$$ 1.08776e6 + 163954.i 0.346384 + 0.0522090i 0.319931 0.947441i $$-0.396340\pi$$
0.0264538 + 0.999650i $$0.491579\pi$$
$$398$$ 50141.8 + 62875.8i 0.0158669 + 0.0198965i
$$399$$ 5.62236e6 1.80523e6i 1.76802 0.567674i
$$400$$ −1.37440e6 + 1.72344e6i −0.429500 + 0.538577i
$$401$$ 3.28026e6 3.04364e6i 1.01870 0.945219i 0.0201938 0.999796i $$-0.493572\pi$$
0.998510 + 0.0545775i $$0.0173812\pi$$
$$402$$ −932037. + 140482.i −0.287653 + 0.0433566i
$$403$$ −4.84501e6 4.49552e6i −1.48605 1.37885i
$$404$$ 919769. + 627088.i 0.280366 + 0.191150i
$$405$$ −201156. + 881321.i −0.0609389 + 0.266991i
$$406$$ 438498. 71251.7i 0.132024 0.0214526i
$$407$$ −879823. 3.85475e6i −0.263275 1.15348i
$$408$$ 933889. 2.37951e6i 0.277744 0.707681i
$$409$$ 252169. 3.36496e6i 0.0745390 0.994654i −0.827069 0.562100i $$-0.809994\pi$$
0.901608 0.432554i $$-0.142387\pi$$
$$410$$ 158358. 274284.i 0.0465244 0.0805826i
$$411$$ 1.80908e6 + 3.13342e6i 0.528268 + 0.914987i
$$412$$ −1.65327e6 + 796172.i −0.479844 + 0.231081i
$$413$$ −4.18903e6 1.95840e6i −1.20848 0.564970i
$$414$$ −77792.8 37463.1i −0.0223069 0.0107424i
$$415$$ 8001.89 + 106778.i 0.00228072 + 0.0304341i
$$416$$ −2.13337e6 658056.i −0.604411 0.186436i
$$417$$ −14092.3 4346.91i −0.00396865 0.00122417i
$$418$$ 67575.2 + 901729.i 0.0189168 + 0.252427i
$$419$$ 1.57494e6 + 758451.i 0.438257 + 0.211053i 0.639984 0.768388i $$-0.278941\pi$$
−0.201727 + 0.979442i $$0.564655\pi$$
$$420$$ −655387. 2.72673e6i −0.181290 0.754256i
$$421$$ −4.40836e6 + 2.12295e6i −1.21219 + 0.583761i −0.927127 0.374746i $$-0.877730\pi$$
−0.285066 + 0.958508i $$0.592015\pi$$
$$422$$ 336227. + 582363.i 0.0919077 + 0.159189i
$$423$$ 2.51973e6 4.36430e6i 0.684705 1.18594i
$$424$$ 15599.0 208154.i 0.00421388 0.0562303i
$$425$$ 1.75665e6 4.47587e6i 0.471751 1.20200i
$$426$$ −120105. 526215.i −0.0320655 0.140488i
$$427$$ −732883. 1.80610e6i −0.194520 0.479370i
$$428$$ −935779. + 4.09992e6i −0.246924 + 1.08185i
$$429$$ 1.07950e7 + 7.35992e6i 2.83191 + 1.93077i
$$430$$ 64842.2 + 60164.8i 0.0169117 + 0.0156917i
$$431$$ −3.86077e6 + 581917.i −1.00111 + 0.150893i −0.629089 0.777333i $$-0.716572\pi$$
−0.372018 + 0.928226i $$0.621334\pi$$
$$432$$ 1.42699e6 1.32406e6i 0.367885 0.341347i
$$433$$ −1.21745e6 + 1.52663e6i −0.312054 + 0.391303i −0.912982 0.408000i $$-0.866226\pi$$
0.600928 + 0.799303i $$0.294798\pi$$
$$434$$ −538827. + 511597.i −0.137317 + 0.130378i
$$435$$ −1.83184e6 2.29706e6i −0.464157 0.582035i
$$436$$ 913384. + 137671.i 0.230111 + 0.0346836i
$$437$$ −515843. + 351696.i −0.129215 + 0.0880976i
$$438$$ −416561. 1.06138e6i −0.103751 0.264354i
$$439$$ −2.97905e6 + 918916.i −0.737763 + 0.227570i −0.640789 0.767717i $$-0.721393\pi$$
−0.0969741 + 0.995287i $$0.530916\pi$$
$$440$$ 867756. 0.213681
$$441$$ −5.01554e6 2.27499e6i −1.22807 0.557036i
$$442$$ 1.56744e6 0.381623
$$443$$ −1.28444e6 + 396197.i −0.310960 + 0.0959184i −0.446307 0.894880i $$-0.647261\pi$$
0.135347 + 0.990798i $$0.456785\pi$$
$$444$$ −1.83580e6 4.67755e6i −0.441945 1.12606i
$$445$$ −587854. + 400792.i −0.140724 + 0.0959443i
$$446$$ −240300. 36219.4i −0.0572026 0.00862191i
$$447$$ −1.80730e6 2.26628e6i −0.427820 0.536470i
$$448$$ 1.32665e6 3.49783e6i 0.312292 0.823386i
$$449$$ −3.76110e6 + 4.71627e6i −0.880439 + 1.10404i 0.113439 + 0.993545i $$0.463813\pi$$
−0.993877 + 0.110490i $$0.964758\pi$$
$$450$$ −442822. + 410879.i −0.103086 + 0.0956495i
$$451$$ −7.94126e6 + 1.19695e6i −1.83843 + 0.277099i
$$452$$ 2.55296e6 + 2.36880e6i 0.587756 + 0.545358i
$$453$$ −6.78345e6 4.62488e6i −1.55312 1.05890i
$$454$$ 37141.3 162727.i 0.00845703 0.0370527i
$$455$$ 2.84831e6 1.99023e6i 0.644998 0.450687i
$$456$$ 516724. + 2.26391e6i 0.116371 + 0.509856i
$$457$$ 809672. 2.06301e6i 0.181350 0.462073i −0.811072 0.584946i $$-0.801116\pi$$
0.992422 + 0.122873i $$0.0392108\pi$$
$$458$$ 91039.2 1.21483e6i 0.0202799 0.270616i
$$459$$ −2.12305e6 + 3.67722e6i −0.470357 + 0.814682i
$$460$$ 148250. + 256777.i 0.0326664 + 0.0565798i
$$461$$ 3.06488e6 1.47597e6i 0.671678 0.323463i −0.0667751 0.997768i $$-0.521271\pi$$
0.738453 + 0.674305i $$0.235557\pi$$
$$462$$ 902516. 1.15877e6i 0.196721 0.252576i
$$463$$ 4.49940e6 + 2.16680e6i 0.975444 + 0.469749i 0.852536 0.522669i $$-0.175064\pi$$
0.122908 + 0.992418i $$0.460778\pi$$
$$464$$ −306212. 4.08611e6i −0.0660278 0.881080i
$$465$$ 4.69560e6 + 1.44840e6i 1.00707 + 0.310640i
$$466$$ −178447. 55043.6i −0.0380667 0.0117420i
$$467$$ 21059.9 + 281025.i 0.00446853 + 0.0596284i 0.998992 0.0448825i $$-0.0142913\pi$$
−0.994524 + 0.104511i $$0.966672\pi$$
$$468$$ 8.58994e6 + 4.13670e6i 1.81291 + 0.873050i
$$469$$ 5.69491e6 2.82354e6i 1.19551 0.592736i
$$470$$ 322038. 155086.i 0.0672455 0.0323837i
$$471$$ 2.26715e6 + 3.92682e6i 0.470899 + 0.815621i
$$472$$ 909222. 1.57482e6i 0.187852 0.325369i
$$473$$ 167616. 2.23668e6i 0.0344479 0.459675i
$$474$$ −10945.9 + 27889.8i −0.00223773 + 0.00570164i
$$475$$ 971959. + 4.25843e6i 0.197658 + 0.865995i
$$476$$ −539807. + 8.51406e6i −0.109200 + 1.72234i
$$477$$ −298551. + 1.30804e6i −0.0600790 + 0.263223i
$$478$$ −966078. 658661.i −0.193394 0.131854i
$$479$$ −6.44671e6 5.98167e6i −1.28381 1.19120i −0.970379 0.241586i $$-0.922332\pi$$
−0.313427 0.949612i $$-0.601477\pi$$
$$480$$ 1.64131e6 247388.i 0.325153 0.0490090i
$$481$$ 4.56402e6 4.23479e6i 0.899466 0.834583i
$$482$$ −397241. + 498125.i −0.0778820 + 0.0976609i
$$483$$ 1.00443e6 + 139617.i 0.195907 + 0.0272315i
$$484$$ −3.64120e6 4.56592e6i −0.706530 0.885961i
$$485$$ 1.06081e6 + 159892.i 0.204778 + 0.0308653i
$$486$$ −824002. + 561795.i −0.158248 + 0.107891i
$$487$$ 2.71661e6 + 6.92182e6i 0.519046 + 1.32251i 0.914710 + 0.404111i $$0.132419\pi$$
−0.395664 + 0.918395i $$0.629486\pi$$
$$488$$ 732431. 225925.i 0.139225 0.0429452i
$$489$$ −1.07779e7 −2.03827
$$490$$ −203029. 333716.i −0.0382003 0.0627895i
$$491$$ −2.37168e6 −0.443969 −0.221985 0.975050i $$-0.571253\pi$$
−0.221985 + 0.975050i $$0.571253\pi$$
$$492$$ −9.75292e6 + 3.00838e6i −1.81644 + 0.560298i
$$493$$ 3.26533e6 + 8.31993e6i 0.605076 + 1.54171i
$$494$$ −1.17648e6 + 802114.i −0.216905 + 0.147883i
$$495$$ −5.51527e6 831293.i −1.01170 0.152490i
$$496$$ 4.27292e6 + 5.35807e6i 0.779866 + 0.977921i
$$497$$ 1.85604e6 + 3.13117e6i 0.337052 + 0.568612i
$$498$$ −44437.0 + 55722.3i −0.00802919 + 0.0100683i
$$499$$ 2.56750e6 2.38229e6i 0.461593 0.428296i −0.414785 0.909919i $$-0.636143\pi$$
0.876378 + 0.481624i $$0.159953\pi$$
$$500$$ 4.84935e6 730921.i 0.867477 0.130751i
$$501$$ 9.66667e6 + 8.96936e6i 1.72061 + 1.59649i
$$502$$ −244344. 166591.i −0.0432755 0.0295047i
$$503$$ 1.36287e6 5.97112e6i 0.240179 1.05229i −0.700676 0.713480i $$-0.747118\pi$$
0.940854 0.338811i $$-0.110025\pi$$
$$504$$ 1.06127e6 1.88790e6i 0.186101 0.331057i
$$505$$ −228190. 999766.i −0.0398170 0.174450i
$$506$$ −56733.4 + 144554.i −0.00985060 + 0.0250989i
$$507$$ −874611. + 1.16709e7i −0.151111 + 2.01643i
$$508$$ 613237. 1.06216e6i 0.105431 0.182612i
$$509$$ 4.34440e6 + 7.52473e6i 0.743251 + 1.28735i 0.951007 + 0.309168i $$0.100051\pi$$
−0.207756 + 0.978181i $$0.566616\pi$$
$$510$$ −1.04995e6 + 505628.i −0.178748 + 0.0860807i
$$511$$ 4.86287e6 + 5.95624e6i 0.823835 + 1.00907i
$$512$$ 3.50002e6 + 1.68552e6i 0.590059 + 0.284158i
$$513$$ −288254. 3.84648e6i −0.0483595 0.645313i
$$514$$ −125797. 38803.2i −0.0210021 0.00647829i
$$515$$ 1.61529e6 + 498250.i 0.268369 + 0.0827808i
$$516$$ −213019. 2.84255e6i −0.0352204 0.469984i
$$517$$ −8.16592e6 3.93250e6i −1.34363 0.647056i
$$518$$ −442647. 542172.i −0.0724826 0.0887795i
$$519$$ −7.45985e6 + 3.59247e6i −1.21566 + 0.585430i
$$520$$ 683213. + 1.18336e6i 0.110802 + 0.191915i
$$521$$ −990997. + 1.71646e6i −0.159948 + 0.277038i −0.934850 0.355044i $$-0.884466\pi$$
0.774902 + 0.632082i $$0.217799\pi$$
$$522$$ 83913.6 1.11975e6i 0.0134789 0.179864i
$$523$$ −3.88083e6 + 9.88819e6i −0.620398 + 1.58075i 0.181569 + 0.983378i $$0.441882\pi$$
−0.801967 + 0.597369i $$0.796213\pi$$
$$524$$ −406068. 1.77910e6i −0.0646057 0.283056i
$$525$$ 3.47660e6 6.18458e6i 0.550499 0.979291i
$$526$$ 63993.4 280373.i 0.0100849 0.0441848i
$$527$$ −1.23510e7 8.42079e6i −1.93721 1.32077i
$$528$$ −9.93087e6 9.21450e6i −1.55025 1.43842i
$$529$$ 6.25844e6 943307.i 0.972359 0.146560i
$$530$$ −69758.4 + 64726.3i −0.0107871 + 0.0100090i
$$531$$ −7.28746e6 + 9.13819e6i −1.12161 + 1.40645i
$$532$$ −3.95178e6 6.66671e6i −0.605360 1.02125i
$$533$$ −7.88470e6 9.88711e6i −1.20217 1.50748i
$$534$$ −468279. 70581.6i −0.0710642 0.0107112i
$$535$$ 3.20082e6 2.18228e6i 0.483478 0.329629i
$$536$$ 913220. + 2.32685e6i 0.137298 + 0.349829i
$$537$$ 9.26073e6 2.85656e6i 1.38583 0.427472i
$$538$$ −1.53401e6 −0.228493
$$539$$ −3.40603e6 + 9.30100e6i −0.504983 + 1.37898i
$$540$$ −1.83186e6 −0.270339
$$541$$ 4.33933e6 1.33851e6i 0.637425 0.196620i 0.0408354 0.999166i $$-0.486998\pi$$
0.596590 + 0.802546i $$0.296522\pi$$
$$542$$ −148551. 378501.i −0.0217208 0.0553437i
$$543$$ 5.54307e6 3.77920e6i 0.806772 0.550048i
$$544$$ −4.99299e6 752572.i −0.723375 0.109031i
$$545$$ −530535. 665269.i −0.0765107 0.0959414i
$$546$$ 2.29079e6 + 318425.i 0.328855 + 0.0457115i
$$547$$ 6.27105e6 7.86365e6i 0.896132 1.12371i −0.0956041 0.995419i $$-0.530478\pi$$
0.991736 0.128295i $$-0.0409503\pi$$
$$548$$ 3.48094e6 3.22984e6i 0.495160 0.459441i
$$549$$ −4.87161e6 + 734276.i −0.689829 + 0.103975i
$$550$$ 796416. + 738966.i 0.112262 + 0.104164i
$$551$$ −6.70849e6 4.57377e6i −0.941338 0.641794i
$$552$$ −88737.4 + 388784.i −0.0123954 + 0.0543076i
$$553$$ 12784.6 201645.i 0.00177777 0.0280397i
$$554$$ −88014.3 385616.i −0.0121837 0.0533802i
$$555$$ −1.69114e6 + 4.30895e6i −0.233048 + 0.593798i
$$556$$ −1446.40 + 19300.9i −0.000198427 + 0.00264783i
$$557$$ 4.56636e6 7.90916e6i 0.623637 1.08017i −0.365166 0.930943i $$-0.618988\pi$$
0.988803 0.149228i $$-0.0476790\pi$$
$$558$$ 939021. + 1.62643e6i 0.127670 + 0.221131i
$$559$$ 3.18214e6 1.53244e6i 0.430714 0.207421i
$$560$$ −3.22798e6 + 1.60043e6i −0.434971 + 0.215659i
$$561$$ 2.66235e7 + 1.28212e7i 3.57156 + 1.71997i
$$562$$ 47789.4 + 637705.i 0.00638250 + 0.0851685i
$$563$$ 8.99538e6 + 2.77471e6i 1.19605 + 0.368932i 0.827922 0.560844i $$-0.189523\pi$$
0.368126 + 0.929776i $$0.379999\pi$$
$$564$$ −1.10068e7 3.39516e6i −1.45702 0.449430i
$$565$$ −239749. 3.19923e6i −0.0315963 0.421623i
$$566$$ 944625. + 454907.i 0.123942 + 0.0596873i
$$567$$ 2.49336e6 3.20130e6i 0.325707 0.418185i
$$568$$ −1.28963e6 + 621055.i −0.167724 + 0.0807716i
$$569$$ 4.70510e6 + 8.14946e6i 0.609239 + 1.05523i 0.991366 + 0.131123i $$0.0418584\pi$$
−0.382127 + 0.924110i $$0.624808\pi$$
$$570$$ 529320. 916809.i 0.0682387 0.118193i
$$571$$ −388171. + 5.17979e6i −0.0498234 + 0.664847i 0.915253 + 0.402879i $$0.131991\pi$$
−0.965077 + 0.261968i $$0.915629\pi$$
$$572$$ 6.26455e6 1.59618e7i 0.800570 2.03982i
$$573$$ −952333. 4.17244e6i −0.121172 0.530889i
$$574$$ −1.16535e6 + 814276.i −0.147630 + 0.103155i
$$575$$ −166915. + 731305.i −0.0210536 + 0.0922420i
$$576$$ −7.81265e6 5.32658e6i −0.981166 0.668948i
$$577$$ −475047. 440780.i −0.0594015 0.0551165i 0.649913 0.760008i $$-0.274805\pi$$
−0.709315 + 0.704892i $$0.750996\pi$$
$$578$$ 2.37567e6 358075.i 0.295779 0.0445814i
$$579$$ 1.25940e6 1.16855e6i 0.156123 0.144861i
$$580$$ −2.40415e6 + 3.01471e6i −0.296751 + 0.372114i
$$581$$ 170448. 449400.i 0.0209484 0.0552323i
$$582$$ 445209. + 558274.i 0.0544824 + 0.0683188i
$$583$$ 2.38606e6 + 359640.i 0.290743 + 0.0438225i
$$584$$ −2.49834e6 + 1.70334e6i −0.303123 + 0.206666i
$$585$$ −3.20872e6 8.17568e6i −0.387652 0.987721i
$$586$$ 897764. 276923.i 0.107999 0.0333131i
$$587$$ −3.32469e6 −0.398250 −0.199125 0.979974i $$-0.563810\pi$$
−0.199125 + 0.979974i $$0.563810\pi$$
$$588$$ −2.51855e6 + 1.23335e7i −0.300406 + 1.47111i
$$589$$ 1.35796e7 1.61287
$$590$$ −792181. + 244355.i −0.0936902 + 0.0288996i
$$591$$ −1.52296e6 3.88045e6i −0.179358 0.456997i
$$592$$ −5.33400e6 + 3.63666e6i −0.625531 + 0.426480i
$$593$$ −1.36902e7 2.06346e6i −1.59872 0.240968i −0.711626 0.702559i $$-0.752041\pi$$
−0.887093 + 0.461591i $$0.847279\pi$$
$$594$$ −598188. 750104.i −0.0695619 0.0872278i
$$595$$ 5.69921e6 5.41119e6i 0.659967 0.626615i
$$596$$ −2.37194e6 + 2.97432e6i −0.273519 + 0.342982i
$$597$$ −1.75008e6 + 1.62384e6i −0.200966 + 0.186469i
$$598$$ −241797. + 36445.1i −0.0276502 + 0.00416760i
$$599$$ −7.31249e6 6.78500e6i −0.832718 0.772650i 0.143452 0.989657i $$-0.454180\pi$$
−0.976170 + 0.217008i $$0.930370\pi$$
$$600$$ 2.30519e6 + 1.57165e6i 0.261414 + 0.178229i
$$601$$ −93762.4 + 410800.i −0.0105887 + 0.0463921i −0.979946 0.199262i $$-0.936146\pi$$
0.969358 + 0.245654i $$0.0790027\pi$$
$$602$$ −149293. 367913.i −0.0167899 0.0413765i
$$603$$ −3.57516e6 1.56638e7i −0.400407 1.75430i
$$604$$ −3.93656e6 + 1.00302e7i −0.439061 + 1.11871i
$$605$$ −402034. + 5.36477e6i −0.0446555 + 0.595886i
$$606$$ 341283. 591119.i 0.0377514 0.0653873i
$$607$$ 474350. + 821599.i 0.0522549 + 0.0905082i 0.890970 0.454063i $$-0.150026\pi$$
−0.838715 + 0.544571i $$0.816692\pi$$
$$608$$ 4.13275e6 1.99023e6i 0.453399 0.218345i
$$609$$ 3.08206e6 + 1.28228e7i 0.336742 + 1.40101i
$$610$$ −314828. 151613.i −0.0342570 0.0164973i
$$611$$ −1.06655e6 1.42321e7i −0.115578 1.54228i
$$612$$ 2.06054e7 + 6.35593e6i 2.22384 + 0.685963i
$$613$$ 7.01756e6 + 2.16463e6i 0.754284 + 0.232666i 0.647969 0.761667i $$-0.275619\pi$$
0.106315 + 0.994333i $$0.466095\pi$$
$$614$$ −26498.2 353594.i −0.00283659 0.0378516i
$$615$$ 8.47097e6 + 4.07941e6i 0.903120 + 0.434920i
$$616$$ −3.52854e6 1.64961e6i −0.374665 0.175158i
$$617$$ −1.38621e7 + 6.67564e6i −1.46594 + 0.705960i −0.985280 0.170948i $$-0.945317\pi$$
−0.480660 + 0.876907i $$0.659603\pi$$
$$618$$ 562567. + 974395.i 0.0592520 + 0.102628i
$$619$$ −1.22481e6 + 2.12144e6i −0.128482 + 0.222537i −0.923089 0.384587i $$-0.874344\pi$$
0.794607 + 0.607125i $$0.207677\pi$$
$$620$$ 481944. 6.43110e6i 0.0503521 0.671902i
$$621$$ 242006. 616622.i 0.0251824 0.0641638i
$$622$$ −392993. 1.72182e6i −0.0407295 0.178448i
$$623$$ 3.15229e6 512216.i 0.325391 0.0528729i
$$624$$ 4.74692e6 2.07976e7i 0.488034 2.13822i
$$625$$ 2.18228e6 + 1.48785e6i 0.223465 + 0.152356i
$$626$$ 1.70889e6 + 1.58562e6i 0.174293 + 0.161720i
$$627$$ −2.65441e7 + 4.00087e6i −2.69649 + 0.406430i
$$628$$ 4.36232e6 4.04765e6i 0.441386 0.409547i
$$629$$ 8.77969e6 1.10094e7i 0.884816 1.10952i
$$630$$ −940075. + 301839.i −0.0943651 + 0.0302987i
$$631$$ −1.81283e6 2.27322e6i −0.181253 0.227283i 0.682902 0.730510i $$-0.260718\pi$$
−0.864155 + 0.503226i $$0.832146\pi$$
$$632$$ 78567.4 + 11842.1i 0.00782437 + 0.00117933i
$$633$$ −1.64938e7 + 1.12453e7i −1.63611 + 1.11548i
$$634$$ −522772. 1.33200e6i −0.0516522 0.131608i
$$635$$ −1.07963e6 + 333022.i −0.106253 + 0.0327747i
$$636$$ 3.06663e6 0.300621
$$637$$ −1.53655e7 + 2.67818e6i −1.50037 + 0.261512i
$$638$$ −2.01952e6 −0.196425
$$639$$ 8.79159e6 2.71185e6i 0.851756 0.262732i
$$640$$ −1.05733e6 2.69403e6i −0.102038 0.259987i
$$641$$ −4.69971e6 + 3.20421e6i −0.451779 + 0.308017i −0.767748 0.640752i $$-0.778623\pi$$
0.315969 + 0.948769i $$0.397670\pi$$
$$642$$ 2.54974e6 + 384311.i 0.244151 + 0.0367998i
$$643$$ −1.14058e7 1.43024e7i −1.08792 1.36421i −0.926052 0.377397i $$-0.876819\pi$$
−0.161869 0.986812i $$-0.551752\pi$$
$$644$$ −114691. 1.32595e6i −0.0108972 0.125983i
$$645$$ −1.63721e6 + 2.05300e6i −0.154955 + 0.194308i
$$646$$ −2.36076e6 + 2.19047e6i −0.222572 + 0.206517i
$$647$$ 9.69776e6 1.46170e6i 0.910774 0.137277i 0.323091 0.946368i $$-0.395278\pi$$
0.587683 + 0.809091i $$0.300040\pi$$
$$648$$ 1.16971e6 + 1.08534e6i 0.109432 + 0.101538i
$$649$$ 1.73685e7 + 1.18417e7i 1.61865 + 1.10357i
$$650$$ −380684. + 1.66789e6i −0.0353412 + 0.154840i
$$651$$ −1.63402e7 1.48160e7i −1.51114 1.37018i
$$652$$ 3.14759e6 + 1.37905e7i 0.289974 + 1.27046i
$$653$$ −510799. + 1.30150e6i −0.0468778 + 0.119443i −0.952395 0.304867i $$-0.901388\pi$$
0.905517 + 0.424310i $$0.139483\pi$$
$$654$$ 42325.1 564789.i 0.00386949 0.0516348i
$$655$$ −840525. + 1.45583e6i −0.0765504 + 0.132589i
$$656$$ 6.55633e6 + 1.13559e7i 0.594841 + 1.03030i
$$657$$ 1.75107e7 8.43269e6i 1.58267 0.762171i
$$658$$ −1.60432e6 + 18422.7i −0.144453 + 0.00165878i
$$659$$ −1.44266e7 6.94749e6i −1.29405 0.623181i −0.345087 0.938571i $$-0.612151\pi$$
−0.948962 + 0.315390i $$0.897865\pi$$
$$660$$ 952695. + 1.27128e7i 0.0851323 + 1.13601i
$$661$$ 9.17272e6 + 2.82941e6i 0.816572 + 0.251879i 0.674781 0.738018i $$-0.264238\pi$$
0.141790 + 0.989897i $$0.454714\pi$$
$$662$$ 893156. + 275502.i 0.0792104 + 0.0244332i
$$663$$ 3.47728e6 + 4.64010e7i 0.307224 + 4.09962i
$$664$$ 170291. + 82007.7i 0.0149889 + 0.00721829i
$$665$$ −1.50860e6 + 6.97801e6i −0.132288 + 0.611896i
$$666$$ −1.59392e6 + 767594.i −0.139246 + 0.0670573i
$$667$$ −697169. 1.20753e6i −0.0606769 0.105095i
$$668$$ 8.65338e6 1.49881e7i 0.750316 1.29959i
$$669$$ 539113. 7.19397e6i 0.0465709 0.621446i
$$670$$ 416328. 1.06079e6i 0.0358302 0.0912938i
$$671$$ 1.97166e6 + 8.63840e6i 0.169054 + 0.740674i
$$672$$ −7.14432e6 2.11420e6i −0.610292 0.180602i
$$673$$ −4.75446e6 + 2.08307e7i −0.404635 + 1.77282i 0.203587 + 0.979057i $$0.434740\pi$$
−0.608223 + 0.793766i $$0.708117\pi$$
$$674$$ −2.62044e6 1.78659e6i −0.222190 0.151487i
$$675$$ −3.39725e6 3.15219e6i −0.286991 0.266289i
$$676$$ 1.51885e7 2.28930e6i 1.27835 0.192680i
$$677$$ −273764. + 254016.i −0.0229564 + 0.0213005i −0.691568 0.722312i $$-0.743080\pi$$
0.668611 + 0.743612i $$0.266889\pi$$
$$678$$ 1.33140e6 1.66952e6i 0.111233 0.139482i
$$679$$ −4.00960e6 2.66678e6i −0.333754 0.221979i
$$680$$ 1.92687e6 + 2.41622e6i 0.159801 + 0.200384i
$$681$$ 4.89962e6 + 738498.i 0.404850 + 0.0610213i
$$682$$ 2.79076e6 1.90271e6i 0.229753 0.156643i
$$683$$ −3.20286e6 8.16076e6i −0.262716 0.669389i 0.737265 0.675604i $$-0.236117\pi$$
−0.999981 + 0.00621477i $$0.998022\pi$$
$$684$$ −1.87185e7 + 5.77390e6i −1.52979 + 0.471877i
$$685$$ −4.37436e6 −0.356195
$$686$$ 191174. + 1.74294e6i 0.0155102 + 0.141408i
$$687$$ 3.61648e7 2.92344
$$688$$ −3.49951e6 + 1.07946e6i −0.281862 + 0.0869429i
$$689$$ 1.38818e6 + 3.53703e6i 0.111403 + 0.283851i
$$690$$ 150211. 102412.i 0.0120110 0.00818897i
$$691$$ −1.05061e7 1.58353e6i −0.837037 0.126163i −0.283484 0.958977i $$-0.591490\pi$$
−0.553553 + 0.832814i $$0.686728\pi$$
$$692$$ 6.77521e6 + 8.49585e6i 0.537846 + 0.674437i
$$693$$ 2.08463e7 + 1.38649e7i 1.64891 + 1.09669i
$$694$$ 1.86394e6 2.33731e6i 0.146904 0.184212i
$$695$$ 13070.1 12127.3i 0.00102640 0.000952364i
$$696$$ −5.12820e6 + 772952.i −0.401275 + 0.0604824i
$$697$$ −2.09666e7 1.94542e7i −1.63473 1.51681i
$$698$$ −797401. 543659.i −0.0619495 0.0422365i
$$699$$ 1.23359e6 5.40470e6i 0.0954942 0.418387i
$$700$$ −8.92858e6 2.64221e6i −0.688711 0.203809i
$$701$$ −4.21249e6 1.84561e7i −0.323776 1.41855i −0.830775 0.556608i $$-0.812103\pi$$
0.507000 0.861946i $$-0.330755\pi$$
$$702$$ 551944. 1.40633e6i 0.0422720 0.107707i
$$703$$ −955952. + 1.27563e7i −0.0729538 + 0.973500i
$$704$$ −8.50303e6 + 1.47277e7i −0.646610 + 1.11996i
$$705$$ 5.30544e6 + 9.18928e6i 0.402021 + 0.696320i
$$706$$ −495071. + 238414.i −0.0373814 + 0.0180019i
$$707$$ −972681. + 4.49912e6i −0.0731850 + 0.338516i
$$708$$ 2.40697e7 + 1.15914e7i 1.80463 + 0.869063i
$$709$$ 1.86081e6 + 2.48308e7i 0.139023 + 1.85513i 0.435621 + 0.900130i $$0.356529\pi$$
−0.296598 + 0.955002i $$0.595852\pi$$
$$710$$ 623564. + 192344.i 0.0464232 + 0.0143197i
$$711$$ −488013. 150532.i −0.0362041 0.0111675i
$$712$$ 93852.0 + 1.25237e6i 0.00693814 + 0.0925831i
$$713$$ 2.10110e6 + 1.01184e6i 0.154783 + 0.0745394i
$$714$$ 5.23058e6 60063.7i 0.383977 0.00440927i
$$715$$ −1.42316e7 + 6.85358e6i −1.04109 + 0.501363i
$$716$$ −6.35953e6 1.10150e7i −0.463599 0.802977i
$$717$$ 1.73552e7 3.00601e7i 1.26076 2.18370i
$$718$$ −151551. + 2.02230e6i −0.0109710 + 0.146398i
$$719$$ 6.98779e6 1.78046e7i 0.504101 1.28443i −0.421809 0.906685i $$-0.638605\pi$$
0.925910 0.377744i $$-0.123300\pi$$
$$720$$ 2.02646e6 + 8.87851e6i 0.145683 + 0.638277i
$$721$$ −5.62103e6 5.09671e6i −0.402697 0.365133i
$$722$$ 207610. 909598.i 0.0148219 0.0649391i
$$723$$ −1.56273e7 1.06545e7i −1.11183 0.758033i
$$724$$ −6.45435e6 5.98877e6i −0.457621 0.424611i
$$725$$ −9.64616e6 + 1.45393e6i −0.681569 + 0.102730i
$$726$$ −2.62495e6 + 2.43559e6i −0.184833 + 0.171500i
$$727$$ −722492. + 905977.i −0.0506987 + 0.0635742i −0.806534 0.591187i $$-0.798659\pi$$
0.755836 + 0.654761i $$0.227231\pi$$
$$728$$ −528556. 6.11067e6i −0.0369626 0.427327i
$$729$$ −1.37167e7 1.72003e7i −0.955944 1.19872i
$$730$$ 1.36310e6 + 205455.i 0.0946719 + 0.0142695i
$$731$$ 6.60012e6 4.49988e6i 0.456834 0.311464i
$$732$$ 4.11398e6 + 1.04823e7i 0.283782 + 0.723065i
$$733$$ −3.83237e6 + 1.18213e6i −0.263456 + 0.0812653i −0.423669 0.905817i $$-0.639258\pi$$
0.160213 + 0.987082i $$0.448782\pi$$
$$734$$ 232562. 0.0159330
$$735$$ 9.42862e6 6.75061e6i 0.643768 0.460919i
$$736$$ 787731. 0.0536023
$$737$$ −2.76120e7 + 8.51719e6i −1.87253 + 0.577600i
$$738$$ 1.31280e6 + 3.34497e6i 0.0887276 + 0.226074i
$$739$$ 1.69080e7 1.15277e7i 1.13889 0.776479i 0.161277 0.986909i $$-0.448439\pi$$
0.977609 + 0.210430i $$0.0674864\pi$$
$$740$$ 6.00725e6 + 905447.i 0.403270 + 0.0607832i
$$741$$ −2.63550e7 3.30481e7i −1.76327 2.21107i
$$742$$ 406703. 130584.i 0.0271186 0.00870723i
$$743$$ −5.61188e6 + 7.03708e6i −0.372938 + 0.467649i −0.932516 0.361128i $$-0.882392\pi$$
0.559578 + 0.828777i $$0.310963\pi$$
$$744$$ 6.35838e6 5.89971e6i 0.421128 0.390750i
$$745$$ 3.46536e6 522320.i 0.228749 0.0344783i
$$746$$ −1.40218e6 1.30104e6i −0.0922481 0.0855938i
$$747$$ −1.00377e6 684358.i −0.0658161 0.0448727i
$$748$$ 8.62977e6 3.78095e7i 0.563956 2.47085i
$$749$$ −1.71640e7 + 2.78897e6i −1.11793 + 0.181652i
$$750$$ −669119. 2.93160e6i −0.0434360 0.190306i
$$751$$ −868421. + 2.21270e6i −0.0561863 + 0.143160i −0.956211 0.292679i $$-0.905453\pi$$
0.900024 + 0.435839i $$0.143548\pi$$
$$752$$ −1.10589e6 + 1.47571e7i −0.0713131 + 0.951607i
$$753$$ 4.38954e6 7.60290e6i 0.282118 0.488643i
$$754$$ −1.59003e6 2.75402e6i −0.101854 0.176416i
$$755$$ 8.94296e6 4.30670e6i 0.570971 0.274965i
$$756$$ 7.44887e6 + 3.48239e6i 0.474008 + 0.221602i
$$757$$ 1.86874e7 + 8.99936e6i 1.18525 + 0.570784i 0.919435 0.393241i $$-0.128646\pi$$
0.265810 + 0.964025i $$0.414361\pi$$
$$758$$ 178454. + 2.38130e6i 0.0112811 + 0.150536i
$$759$$ −4.40512e6 1.35880e6i −0.277558 0.0856152i
$$760$$ −2.68273e6 827513.i −0.168478 0.0519686i
$$761$$