# Properties

 Label 49.6.g.a.2.3 Level $49$ Weight $6$ Character 49.2 Analytic conductor $7.859$ Analytic rank $0$ Dimension $264$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [49,6,Mod(2,49)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(49, base_ring=CyclotomicField(42))

chi = DirichletCharacter(H, H._module([26]))

N = Newforms(chi, 6, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("49.2");

S:= CuspForms(chi, 6);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$49 = 7^{2}$$ Weight: $$k$$ $$=$$ $$6$$ Character orbit: $$[\chi]$$ $$=$$ 49.g (of order $$21$$, degree $$12$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$7.85880717084$$ Analytic rank: $$0$$ Dimension: $$264$$ Relative dimension: $$22$$ over $$\Q(\zeta_{21})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

## Embedding invariants

 Embedding label 2.3 Character $$\chi$$ $$=$$ 49.2 Dual form 49.6.g.a.25.3

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-7.64989 - 2.35968i) q^{2} +(2.34348 - 5.97110i) q^{3} +(26.5131 + 18.0763i) q^{4} +(-0.467538 + 0.0704700i) q^{5} +(-32.0173 + 40.1484i) q^{6} +(116.464 - 56.9478i) q^{7} +(-0.443581 - 0.556232i) q^{8} +(147.969 + 137.296i) q^{9} +O(q^{10})$$ $$q+(-7.64989 - 2.35968i) q^{2} +(2.34348 - 5.97110i) q^{3} +(26.5131 + 18.0763i) q^{4} +(-0.467538 + 0.0704700i) q^{5} +(-32.0173 + 40.1484i) q^{6} +(116.464 - 56.9478i) q^{7} +(-0.443581 - 0.556232i) q^{8} +(147.969 + 137.296i) q^{9} +(3.74290 + 0.564151i) q^{10} +(-107.596 + 99.8344i) q^{11} +(170.068 - 115.951i) q^{12} +(-183.341 - 803.269i) q^{13} +(-1025.32 + 160.826i) q^{14} +(-0.674884 + 2.95686i) q^{15} +(-373.067 - 950.560i) q^{16} +(-114.447 - 1527.19i) q^{17} +(-807.976 - 1399.46i) q^{18} +(206.763 - 358.124i) q^{19} +(-13.6697 - 6.58298i) q^{20} +(-67.1087 - 828.877i) q^{21} +(1058.67 - 509.831i) q^{22} +(2.84174 - 37.9204i) q^{23} +(-4.36084 + 1.34514i) q^{24} +(-2985.95 + 921.044i) q^{25} +(-492.919 + 6577.54i) q^{26} +(2570.93 - 1238.10i) q^{27} +(4117.23 + 595.384i) q^{28} +(4637.96 + 2233.52i) q^{29} +(12.1400 - 21.0272i) q^{30} +(-4722.32 - 8179.30i) q^{31} +(612.609 + 8174.70i) q^{32} +(343.972 + 876.427i) q^{33} +(-2728.18 + 11952.9i) q^{34} +(-50.4384 + 34.8325i) q^{35} +(1441.33 + 6314.87i) q^{36} +(9595.14 - 6541.85i) q^{37} +(-2426.77 + 2251.71i) q^{38} +(-5226.06 - 787.701i) q^{39} +(0.246588 + 0.228801i) q^{40} +(4901.03 + 6145.70i) q^{41} +(-1442.51 + 6499.17i) q^{42} +(4931.44 - 6183.83i) q^{43} +(-4657.34 + 701.980i) q^{44} +(-78.8566 - 53.7635i) q^{45} +(-111.219 + 283.381i) q^{46} +(-7182.38 - 2215.47i) q^{47} -6550.17 q^{48} +(10320.9 - 13264.8i) q^{49} +25015.6 q^{50} +(-9387.24 - 2895.58i) q^{51} +(9659.20 - 24611.2i) q^{52} +(-19010.2 - 12961.0i) q^{53} +(-22588.9 + 3404.72i) q^{54} +(43.2698 - 54.2587i) q^{55} +(-83.3375 - 39.5203i) q^{56} +(-1653.85 - 2073.86i) q^{57} +(-30209.5 - 28030.3i) q^{58} +(-12087.9 - 1821.95i) q^{59} +(-71.3424 + 66.1961i) q^{60} +(-13558.8 + 9244.20i) q^{61} +(16824.7 + 73713.9i) q^{62} +(25051.9 + 7563.51i) q^{63} +(7332.01 - 32123.6i) q^{64} +(142.325 + 362.639i) q^{65} +(-563.264 - 7516.23i) q^{66} +(4850.44 + 8401.22i) q^{67} +(24571.7 - 42559.4i) q^{68} +(-219.767 - 105.834i) q^{69} +(468.042 - 147.446i) q^{70} +(36752.6 - 17699.1i) q^{71} +(10.7319 - 143.207i) q^{72} +(40736.9 - 12565.7i) q^{73} +(-88838.4 + 27403.0i) q^{74} +(-1497.88 + 19987.9i) q^{75} +(11955.5 - 5757.45i) q^{76} +(-6845.74 + 17754.5i) q^{77} +(38120.0 + 18357.6i) q^{78} +(17586.1 - 30460.0i) q^{79} +(241.409 + 418.133i) q^{80} +(2297.69 + 30660.6i) q^{81} +(-22990.5 - 58578.8i) q^{82} +(-15197.4 + 66584.2i) q^{83} +(13203.8 - 23189.1i) q^{84} +(161.130 + 705.956i) q^{85} +(-52316.8 + 35669.0i) q^{86} +(24205.6 - 22459.5i) q^{87} +(103.259 + 15.5637i) q^{88} +(-43286.7 - 40164.2i) q^{89} +(476.379 + 597.361i) q^{90} +(-67097.1 - 83111.3i) q^{91} +(760.804 - 954.018i) q^{92} +(-59906.1 + 9029.39i) q^{93} +(49716.6 + 33896.2i) q^{94} +(-71.4325 + 182.007i) q^{95} +(50247.6 + 15499.3i) q^{96} +86398.0 q^{97} +(-110254. + 77120.1i) q^{98} -29627.7 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$264 q - 13 q^{2} - 22 q^{3} + 307 q^{4} - 52 q^{5} - 130 q^{6} + 154 q^{7} - 320 q^{8} + 6 q^{9}+O(q^{10})$$ 264 * q - 13 * q^2 - 22 * q^3 + 307 * q^4 - 52 * q^5 - 130 * q^6 + 154 * q^7 - 320 * q^8 + 6 * q^9 $$264 q - 13 q^{2} - 22 q^{3} + 307 q^{4} - 52 q^{5} - 130 q^{6} + 154 q^{7} - 320 q^{8} + 6 q^{9} - 792 q^{10} - 635 q^{11} + 3605 q^{12} + 1834 q^{13} - 875 q^{14} - 2572 q^{15} + 3735 q^{16} - 1023 q^{17} - 1336 q^{18} + 9741 q^{19} + 8330 q^{20} + 1512 q^{21} + 842 q^{22} - 1553 q^{23} + 1756 q^{24} + 13144 q^{25} - 1946 q^{26} - 19849 q^{27} - 31584 q^{28} - 30356 q^{29} + 6129 q^{30} + 43903 q^{31} + 27725 q^{32} - 3412 q^{33} - 73182 q^{34} - 17360 q^{35} - 102868 q^{36} - 22105 q^{37} + 19116 q^{38} + 109165 q^{39} + 77354 q^{40} + 47446 q^{41} + 157738 q^{42} + 6674 q^{43} + 15154 q^{44} - 130923 q^{45} - 136952 q^{46} - 195163 q^{47} - 151484 q^{48} - 131194 q^{49} + 263000 q^{50} - 84276 q^{51} - 58758 q^{52} - 110577 q^{53} + 170313 q^{54} + 290245 q^{55} + 79688 q^{56} + 47310 q^{57} + 252156 q^{58} + 127308 q^{59} + 86254 q^{60} + 166863 q^{61} - 63578 q^{62} - 243033 q^{63} - 293812 q^{64} - 16702 q^{65} - 661788 q^{66} + 46195 q^{67} + 393869 q^{68} + 321394 q^{69} - 64330 q^{70} - 61793 q^{71} + 333944 q^{72} + 21699 q^{73} + 133514 q^{74} - 431136 q^{75} + 3087 q^{76} - 48993 q^{77} - 450576 q^{78} - 181 q^{79} + 264228 q^{80} + 142090 q^{81} - 512442 q^{82} + 102424 q^{83} + 344932 q^{84} - 205502 q^{85} + 611991 q^{86} + 1427200 q^{87} + 685993 q^{88} + 145800 q^{89} + 677844 q^{90} + 732956 q^{91} + 10018 q^{92} - 1233536 q^{93} - 601938 q^{94} - 945265 q^{95} - 2372958 q^{96} - 1932952 q^{97} - 672973 q^{98} + 1090736 q^{99}+O(q^{100})$$ 264 * q - 13 * q^2 - 22 * q^3 + 307 * q^4 - 52 * q^5 - 130 * q^6 + 154 * q^7 - 320 * q^8 + 6 * q^9 - 792 * q^10 - 635 * q^11 + 3605 * q^12 + 1834 * q^13 - 875 * q^14 - 2572 * q^15 + 3735 * q^16 - 1023 * q^17 - 1336 * q^18 + 9741 * q^19 + 8330 * q^20 + 1512 * q^21 + 842 * q^22 - 1553 * q^23 + 1756 * q^24 + 13144 * q^25 - 1946 * q^26 - 19849 * q^27 - 31584 * q^28 - 30356 * q^29 + 6129 * q^30 + 43903 * q^31 + 27725 * q^32 - 3412 * q^33 - 73182 * q^34 - 17360 * q^35 - 102868 * q^36 - 22105 * q^37 + 19116 * q^38 + 109165 * q^39 + 77354 * q^40 + 47446 * q^41 + 157738 * q^42 + 6674 * q^43 + 15154 * q^44 - 130923 * q^45 - 136952 * q^46 - 195163 * q^47 - 151484 * q^48 - 131194 * q^49 + 263000 * q^50 - 84276 * q^51 - 58758 * q^52 - 110577 * q^53 + 170313 * q^54 + 290245 * q^55 + 79688 * q^56 + 47310 * q^57 + 252156 * q^58 + 127308 * q^59 + 86254 * q^60 + 166863 * q^61 - 63578 * q^62 - 243033 * q^63 - 293812 * q^64 - 16702 * q^65 - 661788 * q^66 + 46195 * q^67 + 393869 * q^68 + 321394 * q^69 - 64330 * q^70 - 61793 * q^71 + 333944 * q^72 + 21699 * q^73 + 133514 * q^74 - 431136 * q^75 + 3087 * q^76 - 48993 * q^77 - 450576 * q^78 - 181 * q^79 + 264228 * q^80 + 142090 * q^81 - 512442 * q^82 + 102424 * q^83 + 344932 * q^84 - 205502 * q^85 + 611991 * q^86 + 1427200 * q^87 + 685993 * q^88 + 145800 * q^89 + 677844 * q^90 + 732956 * q^91 + 10018 * q^92 - 1233536 * q^93 - 601938 * q^94 - 945265 * q^95 - 2372958 * q^96 - 1932952 * q^97 - 672973 * q^98 + 1090736 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/49\mathbb{Z}\right)^\times$$.

 $$n$$ $$3$$ $$\chi(n)$$ $$e\left(\frac{13}{21}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −7.64989 2.35968i −1.35232 0.417136i −0.467882 0.883791i $$-0.654983\pi$$
−0.884440 + 0.466655i $$0.845459\pi$$
$$3$$ 2.34348 5.97110i 0.150335 0.383046i −0.835791 0.549048i $$-0.814990\pi$$
0.986125 + 0.166002i $$0.0530857\pi$$
$$4$$ 26.5131 + 18.0763i 0.828533 + 0.564884i
$$5$$ −0.467538 + 0.0704700i −0.00836357 + 0.00126061i −0.153223 0.988192i $$-0.548965\pi$$
0.144859 + 0.989452i $$0.453727\pi$$
$$6$$ −32.0173 + 40.1484i −0.363083 + 0.455292i
$$7$$ 116.464 56.9478i 0.898355 0.439270i
$$8$$ −0.443581 0.556232i −0.00245046 0.00307278i
$$9$$ 147.969 + 137.296i 0.608928 + 0.565002i
$$10$$ 3.74290 + 0.564151i 0.0118361 + 0.00178400i
$$11$$ −107.596 + 99.8344i −0.268111 + 0.248770i −0.802758 0.596305i $$-0.796635\pi$$
0.534647 + 0.845075i $$0.320444\pi$$
$$12$$ 170.068 115.951i 0.340934 0.232445i
$$13$$ −183.341 803.269i −0.300885 1.31826i −0.868794 0.495173i $$-0.835105\pi$$
0.567909 0.823091i $$-0.307752\pi$$
$$14$$ −1025.32 + 160.826i −1.39810 + 0.219299i
$$15$$ −0.674884 + 2.95686i −0.000774464 + 0.00339315i
$$16$$ −373.067 950.560i −0.364324 0.928281i
$$17$$ −114.447 1527.19i −0.0960470 1.28166i −0.812061 0.583572i $$-0.801655\pi$$
0.716014 0.698085i $$-0.245964\pi$$
$$18$$ −807.976 1399.46i −0.587784 1.01807i
$$19$$ 206.763 358.124i 0.131398 0.227588i −0.792818 0.609459i $$-0.791387\pi$$
0.924216 + 0.381871i $$0.124720\pi$$
$$20$$ −13.6697 6.58298i −0.00764160 0.00368000i
$$21$$ −67.1087 828.877i −0.0332071 0.410149i
$$22$$ 1058.67 509.831i 0.466343 0.224579i
$$23$$ 2.84174 37.9204i 0.00112012 0.0149470i −0.996616 0.0822015i $$-0.973805\pi$$
0.997736 + 0.0672545i $$0.0214239\pi$$
$$24$$ −4.36084 + 1.34514i −0.00154541 + 0.000476695i
$$25$$ −2985.95 + 921.044i −0.955504 + 0.294734i
$$26$$ −492.919 + 6577.54i −0.143002 + 1.90823i
$$27$$ 2570.93 1238.10i 0.678706 0.326848i
$$28$$ 4117.23 + 595.384i 0.992454 + 0.143517i
$$29$$ 4637.96 + 2233.52i 1.02408 + 0.493169i 0.869041 0.494740i $$-0.164737\pi$$
0.155035 + 0.987909i $$0.450451\pi$$
$$30$$ 12.1400 21.0272i 0.00246273 0.00426557i
$$31$$ −4722.32 8179.30i −0.882574 1.52866i −0.848469 0.529245i $$-0.822475\pi$$
−0.0341049 0.999418i $$-0.510858\pi$$
$$32$$ 612.609 + 8174.70i 0.105757 + 1.41123i
$$33$$ 343.972 + 876.427i 0.0549843 + 0.140098i
$$34$$ −2728.18 + 11952.9i −0.404739 + 1.77328i
$$35$$ −50.4384 + 34.8325i −0.00695971 + 0.00480634i
$$36$$ 1441.33 + 6314.87i 0.185356 + 0.812097i
$$37$$ 9595.14 6541.85i 1.15225 0.785591i 0.172342 0.985037i $$-0.444867\pi$$
0.979909 + 0.199446i $$0.0639143\pi$$
$$38$$ −2426.77 + 2251.71i −0.272627 + 0.252961i
$$39$$ −5226.06 787.701i −0.550190 0.0829278i
$$40$$ 0.246588 + 0.228801i 2.43682e−5 + 2.26103e-5i
$$41$$ 4901.03 + 6145.70i 0.455332 + 0.570968i 0.955512 0.294954i $$-0.0953042\pi$$
−0.500180 + 0.865922i $$0.666733\pi$$
$$42$$ −1442.51 + 6499.17i −0.126181 + 0.568506i
$$43$$ 4931.44 6183.83i 0.406727 0.510019i −0.535711 0.844402i $$-0.679956\pi$$
0.942438 + 0.334382i $$0.108528\pi$$
$$44$$ −4657.34 + 701.980i −0.362665 + 0.0546630i
$$45$$ −78.8566 53.7635i −0.00580506 0.00395782i
$$46$$ −111.219 + 283.381i −0.00774969 + 0.0197459i
$$47$$ −7182.38 2215.47i −0.474268 0.146292i 0.0484012 0.998828i $$-0.484587\pi$$
−0.522669 + 0.852536i $$0.675064\pi$$
$$48$$ −6550.17 −0.410345
$$49$$ 10320.9 13264.8i 0.614083 0.789241i
$$50$$ 25015.6 1.41509
$$51$$ −9387.24 2895.58i −0.505373 0.155887i
$$52$$ 9659.20 24611.2i 0.495374 1.26219i
$$53$$ −19010.2 12961.0i −0.929603 0.633793i 0.000930142 1.00000i $$-0.499704\pi$$
−0.930534 + 0.366207i $$0.880656\pi$$
$$54$$ −22588.9 + 3404.72i −1.05417 + 0.158890i
$$55$$ 43.2698 54.2587i 0.00192876 0.00241859i
$$56$$ −83.3375 39.5203i −0.00355116 0.00168403i
$$57$$ −1653.85 2073.86i −0.0674230 0.0845458i
$$58$$ −30209.5 28030.3i −1.17916 1.09410i
$$59$$ −12087.9 1821.95i −0.452084 0.0681407i −0.0809462 0.996718i $$-0.525794\pi$$
−0.371138 + 0.928578i $$0.621032\pi$$
$$60$$ −71.3424 + 66.1961i −0.00255841 + 0.00237385i
$$61$$ −13558.8 + 9244.20i −0.466547 + 0.318086i −0.773676 0.633582i $$-0.781584\pi$$
0.307129 + 0.951668i $$0.400632\pi$$
$$62$$ 16824.7 + 73713.9i 0.555864 + 2.43540i
$$63$$ 25051.9 + 7563.51i 0.795222 + 0.240089i
$$64$$ 7332.01 32123.6i 0.223755 0.980335i
$$65$$ 142.325 + 362.639i 0.00417829 + 0.0106461i
$$66$$ −563.264 7516.23i −0.0159167 0.212393i
$$67$$ 4850.44 + 8401.22i 0.132006 + 0.228642i 0.924450 0.381304i $$-0.124525\pi$$
−0.792444 + 0.609945i $$0.791191\pi$$
$$68$$ 24571.7 42559.4i 0.644410 1.11615i
$$69$$ −219.767 105.834i −0.00555699 0.00267611i
$$70$$ 468.042 147.446i 0.0114167 0.00359657i
$$71$$ 36752.6 17699.1i 0.865250 0.416683i 0.0520349 0.998645i $$-0.483429\pi$$
0.813216 + 0.581963i $$0.197715\pi$$
$$72$$ 10.7319 143.207i 0.000243975 0.00325562i
$$73$$ 40736.9 12565.7i 0.894708 0.275981i 0.186894 0.982380i $$-0.440158\pi$$
0.707814 + 0.706399i $$0.249682\pi$$
$$74$$ −88838.4 + 27403.0i −1.88591 + 0.581727i
$$75$$ −1497.88 + 19987.9i −0.0307486 + 0.410311i
$$76$$ 11955.5 5757.45i 0.237428 0.114339i
$$77$$ −6845.74 + 17754.5i −0.131581 + 0.341257i
$$78$$ 38120.0 + 18357.6i 0.709442 + 0.341649i
$$79$$ 17586.1 30460.0i 0.317031 0.549113i −0.662836 0.748764i $$-0.730648\pi$$
0.979867 + 0.199651i $$0.0639808\pi$$
$$80$$ 241.409 + 418.133i 0.00421724 + 0.00730448i
$$81$$ 2297.69 + 30660.6i 0.0389117 + 0.519240i
$$82$$ −22990.5 58578.8i −0.377584 0.962068i
$$83$$ −15197.4 + 66584.2i −0.242145 + 1.06090i 0.696916 + 0.717153i $$0.254555\pi$$
−0.939061 + 0.343752i $$0.888302\pi$$
$$84$$ 13203.8 23189.1i 0.204174 0.358580i
$$85$$ 161.130 + 705.956i 0.00241896 + 0.0105982i
$$86$$ −52316.8 + 35669.0i −0.762773 + 0.520050i
$$87$$ 24205.6 22459.5i 0.342861 0.318128i
$$88$$ 103.259 + 15.5637i 0.00142141 + 0.000214243i
$$89$$ −43286.7 40164.2i −0.579268 0.537482i 0.335197 0.942148i $$-0.391197\pi$$
−0.914464 + 0.404666i $$0.867388\pi$$
$$90$$ 476.379 + 597.361i 0.00619936 + 0.00777375i
$$91$$ −67097.1 83111.3i −0.849376 1.05210i
$$92$$ 760.804 954.018i 0.00937137 0.0117513i
$$93$$ −59906.1 + 9029.39i −0.718230 + 0.108256i
$$94$$ 49716.6 + 33896.2i 0.580339 + 0.395668i
$$95$$ −71.4325 + 182.007i −0.000812057 + 0.00206909i
$$96$$ 50247.6 + 15499.3i 0.556464 + 0.171647i
$$97$$ 86398.0 0.932340 0.466170 0.884695i $$-0.345633\pi$$
0.466170 + 0.884695i $$0.345633\pi$$
$$98$$ −110254. + 77120.1i −1.15966 + 0.811152i
$$99$$ −29627.7 −0.303816
$$100$$ −95815.8 29555.3i −0.958158 0.295553i
$$101$$ 2945.29 7504.48i 0.0287293 0.0732010i −0.915789 0.401659i $$-0.868434\pi$$
0.944519 + 0.328458i $$0.106529\pi$$
$$102$$ 64978.7 + 44301.7i 0.618401 + 0.421619i
$$103$$ 131786. 19863.5i 1.22399 0.184486i 0.494925 0.868936i $$-0.335196\pi$$
0.729060 + 0.684450i $$0.239957\pi$$
$$104$$ −365.478 + 458.294i −0.00331343 + 0.00415491i
$$105$$ 89.7868 + 382.802i 0.000794766 + 0.00338845i
$$106$$ 114842. + 144008.i 0.992745 + 1.24486i
$$107$$ 112880. + 104737.i 0.953138 + 0.884383i 0.993388 0.114807i $$-0.0366250\pi$$
−0.0402501 + 0.999190i $$0.512815\pi$$
$$108$$ 90543.6 + 13647.2i 0.746962 + 0.112586i
$$109$$ −118276. + 109744.i −0.953523 + 0.884740i −0.993427 0.114464i $$-0.963485\pi$$
0.0399046 + 0.999203i $$0.487295\pi$$
$$110$$ −459.042 + 312.970i −0.00361719 + 0.00246616i
$$111$$ −16576.0 72624.3i −0.127695 0.559467i
$$112$$ −97581.4 89461.0i −0.735058 0.673890i
$$113$$ −50842.9 + 222757.i −0.374571 + 1.64110i 0.339192 + 0.940717i $$0.389846\pi$$
−0.713764 + 0.700387i $$0.753011\pi$$
$$114$$ 7758.11 + 19767.3i 0.0559105 + 0.142458i
$$115$$ 1.34363 + 17.9295i 9.47403e−6 + 0.000126422i
$$116$$ 82592.7 + 143055.i 0.569897 + 0.987091i
$$117$$ 83156.4 144031.i 0.561605 0.972729i
$$118$$ 88171.5 + 42461.2i 0.582939 + 0.280729i
$$119$$ −100299. 171346.i −0.649278 1.10919i
$$120$$ 1.94407 0.936214i 1.23242e−5 5.93502e-6i
$$121$$ −10425.4 + 139117.i −0.0647334 + 0.863808i
$$122$$ 125536. 38722.8i 0.763607 0.235541i
$$123$$ 48182.1 14862.2i 0.287159 0.0885769i
$$124$$ 22648.3 302220.i 0.132276 1.76510i
$$125$$ 2662.37 1282.13i 0.0152403 0.00733935i
$$126$$ −173796. 116974.i −0.975247 0.656393i
$$127$$ −170368. 82044.9i −0.937300 0.451380i −0.0980838 0.995178i $$-0.531271\pi$$
−0.839216 + 0.543798i $$0.816986\pi$$
$$128$$ −728.520 + 1261.83i −0.00393022 + 0.00680733i
$$129$$ −25367.5 43937.9i −0.134216 0.232469i
$$130$$ −233.061 3109.99i −0.00120952 0.0161399i
$$131$$ 5346.16 + 13621.8i 0.0272185 + 0.0693515i 0.943837 0.330412i $$-0.107188\pi$$
−0.916618 + 0.399763i $$0.869092\pi$$
$$132$$ −6722.80 + 29454.5i −0.0335827 + 0.147135i
$$133$$ 3686.14 53483.3i 0.0180693 0.262174i
$$134$$ −17281.2 75713.9i −0.0831403 0.364262i
$$135$$ −1114.76 + 760.031i −0.00526438 + 0.00358919i
$$136$$ −798.708 + 741.093i −0.00370289 + 0.00343578i
$$137$$ 74127.0 + 11172.8i 0.337423 + 0.0508584i 0.315568 0.948903i $$-0.397805\pi$$
0.0218546 + 0.999761i $$0.493043\pi$$
$$138$$ 1431.46 + 1328.20i 0.00639854 + 0.00593698i
$$139$$ −107355. 134619.i −0.471286 0.590974i 0.488199 0.872732i $$-0.337654\pi$$
−0.959486 + 0.281758i $$0.909083\pi$$
$$140$$ −1966.92 + 11.7769i −0.00848138 + 5.07822e-5i
$$141$$ −30060.6 + 37694.8i −0.127336 + 0.159674i
$$142$$ −322917. + 48671.9i −1.34391 + 0.202562i
$$143$$ 99920.6 + 68124.7i 0.408616 + 0.278589i
$$144$$ 75305.1 191874.i 0.302634 0.771100i
$$145$$ −2325.82 717.420i −0.00918662 0.00283370i
$$146$$ −341284. −1.32505
$$147$$ −55018.5 92712.9i −0.209998 0.353873i
$$148$$ 372649. 1.39845
$$149$$ −372794. 114992.i −1.37563 0.424327i −0.483203 0.875509i $$-0.660527\pi$$
−0.892432 + 0.451181i $$0.851003\pi$$
$$150$$ 58623.6 149370.i 0.212738 0.542047i
$$151$$ 68443.3 + 46663.9i 0.244280 + 0.166548i 0.679271 0.733887i $$-0.262296\pi$$
−0.434991 + 0.900435i $$0.643248\pi$$
$$152$$ −290.916 + 43.8485i −0.00102131 + 0.000153938i
$$153$$ 192742. 241691.i 0.665654 0.834704i
$$154$$ 94264.0 119666.i 0.320291 0.406602i
$$155$$ 2784.26 + 3491.35i 0.00930851 + 0.0116725i
$$156$$ −124320. 115352.i −0.409006 0.379502i
$$157$$ 37782.2 + 5694.75i 0.122331 + 0.0184385i 0.209923 0.977718i $$-0.432679\pi$$
−0.0875912 + 0.996157i $$0.527917\pi$$
$$158$$ −206407. + 191518.i −0.657782 + 0.610333i
$$159$$ −121941. + 83138.2i −0.382524 + 0.260800i
$$160$$ −862.489 3778.81i −0.00266351 0.0116696i
$$161$$ −1828.52 4578.21i −0.00555950 0.0139197i
$$162$$ 54772.0 239972.i 0.163973 0.718411i
$$163$$ 200110. + 509873.i 0.589930 + 1.50312i 0.844225 + 0.535990i $$0.180061\pi$$
−0.254295 + 0.967127i $$0.581843\pi$$
$$164$$ 18849.9 + 251534.i 0.0547266 + 0.730276i
$$165$$ −222.582 385.523i −0.000636473 0.00110240i
$$166$$ 273376. 473501.i 0.769999 1.33368i
$$167$$ 421652. + 203057.i 1.16994 + 0.563412i 0.914964 0.403536i $$-0.132219\pi$$
0.254973 + 0.966948i $$0.417933\pi$$
$$168$$ −431.280 + 405.002i −0.00117892 + 0.00110709i
$$169$$ −277103. + 133446.i −0.746320 + 0.359409i
$$170$$ 433.204 5780.70i 0.00114966 0.0153412i
$$171$$ 79763.4 24603.7i 0.208600 0.0643444i
$$172$$ 242529. 74810.1i 0.625089 0.192814i
$$173$$ −37541.4 + 500956.i −0.0953665 + 1.27258i 0.720140 + 0.693829i $$0.244078\pi$$
−0.815506 + 0.578748i $$0.803541\pi$$
$$174$$ −238167. + 114695.i −0.596361 + 0.287192i
$$175$$ −295305. + 277312.i −0.728914 + 0.684501i
$$176$$ 135039. + 65031.4i 0.328608 + 0.158249i
$$177$$ −39206.8 + 67908.1i −0.0940649 + 0.162925i
$$178$$ 236364. + 409394.i 0.559153 + 0.968482i
$$179$$ −38558.3 514525.i −0.0899467 1.20026i −0.841379 0.540445i $$-0.818256\pi$$
0.751433 0.659810i $$-0.229363\pi$$
$$180$$ −1118.88 2850.87i −0.00257397 0.00655837i
$$181$$ −144290. + 632178.i −0.327372 + 1.43431i 0.496749 + 0.867894i $$0.334527\pi$$
−0.824120 + 0.566415i $$0.808330\pi$$
$$182$$ 317169. + 794120.i 0.709762 + 1.77708i
$$183$$ 23423.3 + 102624.i 0.0517036 + 0.226528i
$$184$$ −22.3531 + 15.2401i −4.86736e−5 + 3.31851e-5i
$$185$$ −4025.09 + 3734.73i −0.00864661 + 0.00802288i
$$186$$ 479581. + 72285.3i 1.01644 + 0.153203i
$$187$$ 164781. + 152894.i 0.344590 + 0.319732i
$$188$$ −150379. 188570.i −0.310308 0.389114i
$$189$$ 228915. 290603.i 0.466144 0.591760i
$$190$$ 975.928 1223.78i 0.00196125 0.00245934i
$$191$$ 558320. 84153.2i 1.10739 0.166912i 0.430208 0.902730i $$-0.358440\pi$$
0.677180 + 0.735818i $$0.263202\pi$$
$$192$$ −174631. 119061.i −0.341876 0.233087i
$$193$$ −247291. + 630088.i −0.477877 + 1.21761i 0.465251 + 0.885179i $$0.345964\pi$$
−0.943128 + 0.332431i $$0.892131\pi$$
$$194$$ −660935. 203872.i −1.26082 0.388913i
$$195$$ 2498.89 0.00470609
$$196$$ 513417. 165126.i 0.954619 0.307027i
$$197$$ −249629. −0.458279 −0.229140 0.973394i $$-0.573591\pi$$
−0.229140 + 0.973394i $$0.573591\pi$$
$$198$$ 226649. + 69911.9i 0.410857 + 0.126733i
$$199$$ 51703.9 131739.i 0.0925531 0.235821i −0.877099 0.480309i $$-0.840525\pi$$
0.969652 + 0.244488i $$0.0786197\pi$$
$$200$$ 1836.82 + 1252.33i 0.00324708 + 0.00221382i
$$201$$ 61531.5 9274.38i 0.107425 0.0161918i
$$202$$ −40239.3 + 50458.5i −0.0693860 + 0.0870073i
$$203$$ 667351. 3995.77i 1.13662 0.00680550i
$$204$$ −196543. 246457.i −0.330661 0.414635i
$$205$$ −2724.51 2527.97i −0.00452796 0.00420134i
$$206$$ −1.05502e6 159019.i −1.73218 0.261084i
$$207$$ 5626.80 5220.90i 0.00912715 0.00846876i
$$208$$ −695157. + 473950.i −1.11410 + 0.759581i
$$209$$ 13506.2 + 59174.7i 0.0213879 + 0.0937066i
$$210$$ 216.431 3140.26i 0.000338665 0.00491380i
$$211$$ 3653.41 16006.6i 0.00564927 0.0247511i −0.972025 0.234879i $$-0.924531\pi$$
0.977674 + 0.210127i $$0.0673879\pi$$
$$212$$ −269733. 687269.i −0.412188 1.05024i
$$213$$ −19554.1 260931.i −0.0295317 0.394073i
$$214$$ −616370. 1.06758e6i −0.920041 1.59356i
$$215$$ −1869.86 + 3238.70i −0.00275876 + 0.00477831i
$$216$$ −1829.09 880.841i −0.00266747 0.00128459i
$$217$$ −1.01578e6 683671.i −1.46436 0.985593i
$$218$$ 1.16376e6 560438.i 1.65853 0.798704i
$$219$$ 20435.4 272692.i 0.0287921 0.384204i
$$220$$ 2128.01 656.405i 0.00296427 0.000914356i
$$221$$ −1.20576e6 + 371929.i −1.66066 + 0.512247i
$$222$$ −44565.2 + 594682.i −0.0606895 + 0.809845i
$$223$$ 886855. 427087.i 1.19424 0.575114i 0.272209 0.962238i $$-0.412246\pi$$
0.922028 + 0.387124i $$0.126531\pi$$
$$224$$ 536878. + 917174.i 0.714917 + 1.22133i
$$225$$ −568285. 273672.i −0.748359 0.360391i
$$226$$ 914578. 1.58410e6i 1.19110 2.06305i
$$227$$ −739820. 1.28141e6i −0.952931 1.65053i −0.739033 0.673669i $$-0.764717\pi$$
−0.213898 0.976856i $$-0.568616\pi$$
$$228$$ −6360.86 84879.8i −0.00810362 0.108135i
$$229$$ 395262. + 1.00711e6i 0.498077 + 1.26908i 0.930130 + 0.367230i $$0.119694\pi$$
−0.432053 + 0.901848i $$0.642211\pi$$
$$230$$ 32.0292 140.329i 3.99233e−5 0.000174915i
$$231$$ 89971.1 + 82484.0i 0.110936 + 0.101704i
$$232$$ −814.951 3570.53i −0.000994057 0.00435525i
$$233$$ 991254. 675826.i 1.19618 0.815539i 0.209433 0.977823i $$-0.432838\pi$$
0.986744 + 0.162284i $$0.0518860\pi$$
$$234$$ −976004. + 905600.i −1.16523 + 1.08118i
$$235$$ 3514.16 + 529.674i 0.00415099 + 0.000625661i
$$236$$ −287552. 266809.i −0.336075 0.311832i
$$237$$ −140667. 176391.i −0.162675 0.203988i
$$238$$ 362958. + 1.54745e6i 0.415349 + 1.77082i
$$239$$ −72630.7 + 91076.0i −0.0822480 + 0.103136i −0.821253 0.570564i $$-0.806725\pi$$
0.739005 + 0.673700i $$0.235296\pi$$
$$240$$ 3062.45 461.590i 0.00343195 0.000517284i
$$241$$ 119294. + 81333.1i 0.132305 + 0.0902038i 0.627664 0.778484i $$-0.284011\pi$$
−0.495359 + 0.868688i $$0.664964\pi$$
$$242$$ 408025. 1.03963e6i 0.447866 1.14114i
$$243$$ 851062. + 262518.i 0.924582 + 0.285196i
$$244$$ −526585. −0.566232
$$245$$ −3890.64 + 6929.10i −0.00414101 + 0.00737499i
$$246$$ −403658. −0.425280
$$247$$ −325578. 100427.i −0.339557 0.104739i
$$248$$ −2454.86 + 6254.88i −0.00253453 + 0.00645788i
$$249$$ 361966. + 246785.i 0.369973 + 0.252243i
$$250$$ −23392.3 + 3525.82i −0.0236713 + 0.00356788i
$$251$$ 624055. 782541.i 0.625229 0.784012i −0.363841 0.931461i $$-0.618535\pi$$
0.989070 + 0.147449i $$0.0471063\pi$$
$$252$$ 527481. + 653377.i 0.523246 + 0.648130i
$$253$$ 3480.00 + 4363.79i 0.00341805 + 0.00428610i
$$254$$ 1.10970e6 + 1.02965e6i 1.07924 + 1.00139i
$$255$$ 4592.94 + 692.275i 0.00442324 + 0.000666696i
$$256$$ −764373. + 709235.i −0.728963 + 0.676379i
$$257$$ −1.30385e6 + 888952.i −1.23139 + 0.839548i −0.991354 0.131216i $$-0.958112\pi$$
−0.240037 + 0.970764i $$0.577159\pi$$
$$258$$ 90379.6 + 395979.i 0.0845320 + 0.370359i
$$259$$ 744947. 1.30831e6i 0.690043 1.21189i
$$260$$ −2781.69 + 12187.4i −0.00255197 + 0.0111809i
$$261$$ 379624. + 967265.i 0.344947 + 0.878910i
$$262$$ −8754.47 116820.i −0.00787910 0.105139i
$$263$$ −95789.4 165912.i −0.0853942 0.147907i 0.820165 0.572127i $$-0.193882\pi$$
−0.905559 + 0.424220i $$0.860548\pi$$
$$264$$ 334.918 580.094i 0.000295752 0.000512258i
$$265$$ 9801.36 + 4720.09i 0.00857377 + 0.00412891i
$$266$$ −154402. + 400443.i −0.133798 + 0.347006i
$$267$$ −341266. + 164345.i −0.292965 + 0.141084i
$$268$$ −23262.8 + 310420.i −0.0197845 + 0.264005i
$$269$$ 418337. 129040.i 0.352489 0.108729i −0.113454 0.993543i $$-0.536191\pi$$
0.465943 + 0.884815i $$0.345715\pi$$
$$270$$ 10321.2 3183.68i 0.00861632 0.00265778i
$$271$$ 44995.5 600423.i 0.0372174 0.496631i −0.947184 0.320692i $$-0.896085\pi$$
0.984401 0.175940i $$-0.0562963\pi$$
$$272$$ −1.40899e6 + 678535.i −1.15475 + 0.556097i
$$273$$ −653507. + 205873.i −0.530693 + 0.167184i
$$274$$ −540699. 260387.i −0.435090 0.209528i
$$275$$ 229324. 397201.i 0.182860 0.316723i
$$276$$ −3913.61 6778.57i −0.00309246 0.00535630i
$$277$$ −147670. 1.97053e6i −0.115636 1.54306i −0.689607 0.724184i $$-0.742217\pi$$
0.573971 0.818876i $$-0.305402\pi$$
$$278$$ 503596. + 1.28314e6i 0.390814 + 0.995778i
$$279$$ 424222. 1.85864e6i 0.326275 1.42950i
$$280$$ 41.7485 + 12.6044i 3.18233e−5 + 9.60790e-6i
$$281$$ −127197. 557288.i −0.0960975 0.421030i 0.903880 0.427787i $$-0.140707\pi$$
−0.999977 + 0.00675621i $$0.997849\pi$$
$$282$$ 318908. 217428.i 0.238804 0.162814i
$$283$$ −813654. + 754961.i −0.603912 + 0.560349i −0.921744 0.387798i $$-0.873236\pi$$
0.317832 + 0.948147i $$0.397045\pi$$
$$284$$ 1.29436e6 + 195093.i 0.952266 + 0.143531i
$$285$$ 919.381 + 853.061i 0.000670476 + 0.000622111i
$$286$$ −603629. 756927.i −0.436370 0.547191i
$$287$$ 920780. + 436652.i 0.659859 + 0.312918i
$$288$$ −1.03170e6 + 1.29371e6i −0.732948 + 0.919088i
$$289$$ −915226. + 137948.i −0.644590 + 0.0971563i
$$290$$ 16099.4 + 10976.4i 0.0112412 + 0.00766414i
$$291$$ 202472. 515891.i 0.140163 0.357130i
$$292$$ 1.30720e6 + 403218.i 0.897193 + 0.276747i
$$293$$ −27032.4 −0.0183956 −0.00919782 0.999958i $$-0.502928\pi$$
−0.00919782 + 0.999958i $$0.502928\pi$$
$$294$$ 202113. + 839069.i 0.136372 + 0.566147i
$$295$$ 5779.92 0.00386694
$$296$$ −7895.01 2435.29i −0.00523749 0.00161555i
$$297$$ −153017. + 389882.i −0.100658 + 0.256473i
$$298$$ 2.58049e6 + 1.75935e6i 1.68330 + 1.14765i
$$299$$ −30981.3 + 4669.68i −0.0200411 + 0.00302071i
$$300$$ −401020. + 502864.i −0.257255 + 0.322587i
$$301$$ 222182. 1.00103e6i 0.141349 0.636841i
$$302$$ −413472. 518478.i −0.260873 0.327124i
$$303$$ −37907.7 35173.2i −0.0237204 0.0220093i
$$304$$ −417555. 62936.2i −0.259137 0.0390586i
$$305$$ 5687.79 5277.50i 0.00350102 0.00324847i
$$306$$ −2.04477e6 + 1.39410e6i −1.24836 + 0.851120i
$$307$$ −174266. 763508.i −0.105528 0.462347i −0.999888 0.0149985i $$-0.995226\pi$$
0.894360 0.447348i $$-0.147632\pi$$
$$308$$ −502437. + 346981.i −0.301790 + 0.208415i
$$309$$ 190231. 833457.i 0.113341 0.496578i
$$310$$ −13060.8 33278.4i −0.00771908 0.0196679i
$$311$$ 174289. + 2.32573e6i 0.102181 + 1.36351i 0.778844 + 0.627218i $$0.215806\pi$$
−0.676663 + 0.736293i $$0.736575\pi$$
$$312$$ 1880.03 + 3256.31i 0.00109340 + 0.00189382i
$$313$$ 1.40665e6 2.43640e6i 0.811571 1.40568i −0.100193 0.994968i $$-0.531946\pi$$
0.911764 0.410714i $$-0.134721\pi$$
$$314$$ −275592. 132718.i −0.157740 0.0759636i
$$315$$ −12245.7 1770.82i −0.00695356 0.00100554i
$$316$$ 1.01686e6 489696.i 0.572856 0.275873i
$$317$$ −120690. + 1.61050e6i −0.0674565 + 0.900144i 0.856132 + 0.516758i $$0.172861\pi$$
−0.923588 + 0.383386i $$0.874758\pi$$
$$318$$ 1.12902e6 348256.i 0.626084 0.193121i
$$319$$ −722008. + 222710.i −0.397251 + 0.122536i
$$320$$ −1164.24 + 15535.7i −0.000635576 + 0.00848117i
$$321$$ 889926. 428566.i 0.482049 0.232143i
$$322$$ 3184.90 + 39337.5i 0.00171181 + 0.0211430i
$$323$$ −570588. 274781.i −0.304310 0.146548i
$$324$$ −493311. + 854440.i −0.261071 + 0.452188i
$$325$$ 1.28729e6 + 2.22966e6i 0.676035 + 1.17093i
$$326$$ −327686. 4.37266e6i −0.170771 2.27878i
$$327$$ 378116. + 963423.i 0.195549 + 0.498251i
$$328$$ 1244.43 5452.22i 0.000638686 0.00279827i
$$329$$ −962657. + 150997.i −0.490323 + 0.0769095i
$$330$$ 793.016 + 3474.43i 0.000400864 + 0.00175630i
$$331$$ −2.63217e6 + 1.79458e6i −1.32052 + 0.900312i −0.998915 0.0465632i $$-0.985173\pi$$
−0.321600 + 0.946876i $$0.604221\pi$$
$$332$$ −1.60653e6 + 1.49064e6i −0.799913 + 0.742211i
$$333$$ 2.31795e6 + 349375.i 1.14550 + 0.172656i
$$334$$ −2.74644e6 2.54832e6i −1.34711 1.24994i
$$335$$ −2859.80 3586.08i −0.00139227 0.00174585i
$$336$$ −762861. + 373018.i −0.368636 + 0.180253i
$$337$$ −1.58866e6 + 1.99211e6i −0.762000 + 0.955518i −0.999876 0.0157779i $$-0.994978\pi$$
0.237876 + 0.971296i $$0.423549\pi$$
$$338$$ 2.43470e6 366972.i 1.15919 0.174719i
$$339$$ 1.21096e6 + 825617.i 0.572308 + 0.390193i
$$340$$ −8489.03 + 21629.7i −0.00398255 + 0.0101474i
$$341$$ 1.32468e6 + 408609.i 0.616914 + 0.190293i
$$342$$ −668238. −0.308934
$$343$$ 446616. 2.13263e6i 0.204974 0.978767i
$$344$$ −5627.14 −0.00256384
$$345$$ 110.208 + 33.9945i 4.98498e−5 + 1.53766e-5i
$$346$$ 1.46928e6 3.74367e6i 0.659804 1.68115i
$$347$$ 3.16014e6 + 2.15455e6i 1.40891 + 0.960576i 0.998822 + 0.0485292i $$0.0154534\pi$$
0.410085 + 0.912047i $$0.365499\pi$$
$$348$$ 1.04775e6 157923.i 0.463777 0.0699031i
$$349$$ −1.34970e6 + 1.69247e6i −0.593163 + 0.743803i −0.984295 0.176532i $$-0.943512\pi$$
0.391132 + 0.920335i $$0.372084\pi$$
$$350$$ 2.91342e6 1.42458e6i 1.27126 0.621609i
$$351$$ −1.46588e6 1.83816e6i −0.635084 0.796370i
$$352$$ −882031. 818405.i −0.379426 0.352056i
$$353$$ −3.34545e6 504246.i −1.42895 0.215380i −0.611441 0.791290i $$-0.709410\pi$$
−0.817513 + 0.575910i $$0.804648\pi$$
$$354$$ 460169. 426974.i 0.195168 0.181090i
$$355$$ −15936.0 + 10865.0i −0.00671131 + 0.00457569i
$$356$$ −421643. 1.84734e6i −0.176327 0.772541i
$$357$$ −1.25818e6 + 197351.i −0.522481 + 0.0819537i
$$358$$ −919146. + 4.02704e6i −0.379033 + 1.66065i
$$359$$ −387080. 986264.i −0.158513 0.403884i 0.829449 0.558583i $$-0.188655\pi$$
−0.987962 + 0.154698i $$0.950559\pi$$
$$360$$ 5.07424 + 67.7110i 2.06355e−6 + 2.75361e-5i
$$361$$ 1.15255e6 + 1.99627e6i 0.465469 + 0.806216i
$$362$$ 2.59554e6 4.49561e6i 1.04101 1.80309i
$$363$$ 806251. + 388270.i 0.321147 + 0.154656i
$$364$$ −276604. 3.41640e6i −0.109422 1.35150i
$$365$$ −18160.6 + 8745.66i −0.00713505 + 0.00343606i
$$366$$ 62974.5 840336.i 0.0245732 0.327907i
$$367$$ 3.28568e6 1.01350e6i 1.27338 0.392787i 0.416897 0.908954i $$-0.363118\pi$$
0.856488 + 0.516167i $$0.172642\pi$$
$$368$$ −37105.8 + 11445.6i −0.0142831 + 0.00440575i
$$369$$ −118574. + 1.58227e6i −0.0453341 + 0.604942i
$$370$$ 39604.2 19072.4i 0.0150396 0.00724270i
$$371$$ −2.95211e6 426898.i −1.11352 0.161024i
$$372$$ −1.75151e6 843484.i −0.656230 0.316024i
$$373$$ −2.14614e6 + 3.71722e6i −0.798704 + 1.38340i 0.121757 + 0.992560i $$0.461147\pi$$
−0.920460 + 0.390836i $$0.872186\pi$$
$$374$$ −899773. 1.55845e6i −0.332624 0.576122i
$$375$$ −1416.51 18902.0i −0.000520164 0.00694111i
$$376$$ 1953.65 + 4977.81i 0.000712650 + 0.00181580i
$$377$$ 943792. 4.13502e6i 0.341998 1.49839i
$$378$$ −2.43691e6 + 1.68292e6i −0.877222 + 0.605805i
$$379$$ 207558. + 909372.i 0.0742236 + 0.325195i 0.998385 0.0568069i $$-0.0180920\pi$$
−0.924162 + 0.382002i $$0.875235\pi$$
$$380$$ −5183.91 + 3534.33i −0.00184161 + 0.00125559i
$$381$$ −889153. + 825013.i −0.313808 + 0.291171i
$$382$$ −4.46966e6 673693.i −1.56717 0.236213i
$$383$$ −2.11546e6 1.96286e6i −0.736900 0.683743i 0.219563 0.975598i $$-0.429537\pi$$
−0.956462 + 0.291855i $$0.905727\pi$$
$$384$$ 5827.26 + 7307.15i 0.00201668 + 0.00252883i
$$385$$ 1949.48 8783.32i 0.000670297 0.00302000i
$$386$$ 3.37856e6 4.23658e6i 1.15415 1.44726i
$$387$$ 1.57872e6 237953.i 0.535830 0.0807633i
$$388$$ 2.29068e6 + 1.56176e6i 0.772475 + 0.526665i
$$389$$ 235252. 599412.i 0.0788241 0.200841i −0.886029 0.463629i $$-0.846547\pi$$
0.964853 + 0.262789i $$0.0846422\pi$$
$$390$$ −19116.2 5896.57i −0.00636415 0.00196308i
$$391$$ −58237.1 −0.0192645
$$392$$ −11956.4 + 143.184i −0.00392995 + 4.70628e-5i
$$393$$ 93865.7 0.0306567
$$394$$ 1.90964e6 + 589045.i 0.619741 + 0.191165i
$$395$$ −6075.64 + 15480.5i −0.00195929 + 0.00499220i
$$396$$ −785522. 535560.i −0.251722 0.171621i
$$397$$ 2.61566e6 394247.i 0.832924 0.125543i 0.281283 0.959625i $$-0.409240\pi$$
0.551641 + 0.834082i $$0.314002\pi$$
$$398$$ −706392. + 885788.i −0.223531 + 0.280299i
$$399$$ −310716. 147348.i −0.0977083 0.0463352i
$$400$$ 1.98947e6 + 2.49471e6i 0.621709 + 0.779598i
$$401$$ −1.85348e6 1.71978e6i −0.575609 0.534087i 0.337754 0.941235i $$-0.390333\pi$$
−0.913362 + 0.407148i $$0.866523\pi$$
$$402$$ −492593. 74246.5i −0.152028 0.0229145i
$$403$$ −5.70438e6 + 5.29289e6i −1.74963 + 1.62342i
$$404$$ 213742. 145727.i 0.0651533 0.0444207i
$$405$$ −3234.91 14173.1i −0.000979997 0.00429365i
$$406$$ −5.11459e6 1.54417e6i −1.53991 0.464921i
$$407$$ −379295. + 1.66180e6i −0.113499 + 0.497271i
$$408$$ 2553.38 + 6505.91i 0.000759391 + 0.00193490i
$$409$$ 177784. + 2.37237e6i 0.0525515 + 0.701251i 0.959805 + 0.280667i $$0.0905557\pi$$
−0.907254 + 0.420584i $$0.861825\pi$$
$$410$$ 14877.0 + 25767.7i 0.00437074 + 0.00757034i
$$411$$ 240430. 416436.i 0.0702075 0.121603i
$$412$$ 3.85311e6 + 1.85556e6i 1.11833 + 0.538557i
$$413$$ −1.51156e6 + 476185.i −0.436064 + 0.137373i
$$414$$ −55364.0 + 26661.9i −0.0158755 + 0.00764523i
$$415$$ 2413.18 32201.6i 0.000687811 0.00917820i
$$416$$ 6.45416e6 1.99085e6i 1.82855 0.564033i
$$417$$ −1.05541e6 + 325550.i −0.297221 + 0.0916806i
$$418$$ 36312.0 484550.i 0.0101651 0.135643i
$$419$$ 714174. 343928.i 0.198733 0.0957046i −0.331871 0.943325i $$-0.607680\pi$$
0.530603 + 0.847620i $$0.321965\pi$$
$$420$$ −4539.12 + 11772.3i −0.00125559 + 0.00325640i
$$421$$ 883529. + 425485.i 0.242949 + 0.116998i 0.551397 0.834243i $$-0.314095\pi$$
−0.308447 + 0.951241i $$0.599809\pi$$
$$422$$ −65718.7 + 113828.i −0.0179642 + 0.0311149i
$$423$$ −758598. 1.31393e6i −0.206139 0.357044i
$$424$$ 1223.26 + 16323.3i 0.000330450 + 0.00440955i
$$425$$ 1.74835e6 + 4.45472e6i 0.469521 + 1.19632i
$$426$$ −466126. + 2.04223e6i −0.124446 + 0.545232i
$$427$$ −1.05267e6 + 1.84876e6i −0.279399 + 0.490694i
$$428$$ 1.09953e6 + 4.81734e6i 0.290132 + 1.27115i
$$429$$ 640942. 436987.i 0.168142 0.114637i
$$430$$ 21946.5 20363.4i 0.00572393 0.00531103i
$$431$$ 5.09668e6 + 768200.i 1.32158 + 0.199196i 0.771668 0.636026i $$-0.219423\pi$$
0.549913 + 0.835222i $$0.314661\pi$$
$$432$$ −2.13602e6 1.98193e6i −0.550675 0.510952i
$$433$$ 2.84986e6 + 3.57361e6i 0.730472 + 0.915983i 0.998880 0.0473226i $$-0.0150689\pi$$
−0.268408 + 0.963305i $$0.586497\pi$$
$$434$$ 6.15732e6 + 7.62691e6i 1.56916 + 1.94368i
$$435$$ −9734.31 + 12206.4i −0.00246651 + 0.00309290i
$$436$$ −5.11964e6 + 771661.i −1.28980 + 0.194406i
$$437$$ −12992.6 8858.22i −0.00325457 0.00221893i
$$438$$ −799794. + 2.03784e6i −0.199202 + 0.507557i
$$439$$ 6.38980e6 + 1.97099e6i 1.58243 + 0.488116i 0.956493 0.291754i $$-0.0942389\pi$$
0.625941 + 0.779871i $$0.284715\pi$$
$$440$$ −49.3741 −1.21581e−5
$$441$$ 3.34837e6 545769.i 0.819856 0.133633i
$$442$$ 1.01016e7 2.45943
$$443$$ −1.12324e6 346473.i −0.271933 0.0838803i 0.155790 0.987790i $$-0.450208\pi$$
−0.427723 + 0.903910i $$0.640684\pi$$
$$444$$ 873297. 2.22513e6i 0.210235 0.535670i
$$445$$ 23068.5 + 15727.9i 0.00552230 + 0.00376504i
$$446$$ −7.79213e6 + 1.17447e6i −1.85489 + 0.279580i
$$447$$ −1.56026e6 + 1.95651e6i −0.369342 + 0.463141i
$$448$$ −975453. 4.15880e6i −0.229621 0.978978i
$$449$$ −2.26759e6 2.84347e6i −0.530822 0.665630i 0.442046 0.896993i $$-0.354253\pi$$
−0.972868 + 0.231363i $$0.925682\pi$$
$$450$$ 3.70154e6 + 3.43453e6i 0.861690 + 0.799532i
$$451$$ −1.14088e6 171961.i −0.264119 0.0398096i
$$452$$ −5.37463e6 + 4.98693e6i −1.23738 + 1.14812i
$$453$$ 439031. 299326.i 0.100519 0.0685329i
$$454$$ 2.63584e6 + 1.15484e7i 0.600176 + 2.62954i
$$455$$ 37227.3 + 34129.4i 0.00843010 + 0.00772858i
$$456$$ −419.933 + 1839.85i −9.45732e−5 + 0.000414352i
$$457$$ −2.56107e6 6.52551e6i −0.573629 1.46158i −0.863416 0.504493i $$-0.831680\pi$$
0.289786 0.957091i $$-0.406416\pi$$
$$458$$ −647252. 8.63697e6i −0.144182 1.92397i
$$459$$ −2.18505e6 3.78462e6i −0.484094 0.838476i
$$460$$ −288.475 + 499.654i −6.35644e−5 + 0.000110097i
$$461$$ −4.17217e6 2.00921e6i −0.914344 0.440325i −0.0832958 0.996525i $$-0.526545\pi$$
−0.831049 + 0.556200i $$0.812259\pi$$
$$462$$ −493633. 843296.i −0.107597 0.183813i
$$463$$ 6.19346e6 2.98262e6i 1.34271 0.646613i 0.381996 0.924164i $$-0.375237\pi$$
0.960711 + 0.277551i $$0.0895226\pi$$
$$464$$ 392827. 5.24192e6i 0.0847045 1.13030i
$$465$$ 27372.1 8443.17i 0.00587050 0.00181081i
$$466$$ −9.17772e6 + 2.83095e6i −1.95781 + 0.603903i
$$467$$ 398430. 5.31668e6i 0.0845395 1.12810i −0.780082 0.625678i $$-0.784823\pi$$
0.864621 0.502424i $$-0.167558\pi$$
$$468$$ 4.80828e6 2.31555e6i 1.01479 0.488696i
$$469$$ 1.04333e6 + 702220.i 0.219024 + 0.147415i
$$470$$ −25633.1 12344.2i −0.00535249 0.00257762i
$$471$$ 122546. 212256.i 0.0254534 0.0440866i
$$472$$ 4348.51 + 7531.84i 0.000898432 + 0.00155613i
$$473$$ 86756.4 + 1.15768e6i 0.0178299 + 0.237923i
$$474$$ 659861. + 1.68130e6i 0.134898 + 0.343715i
$$475$$ −287536. + 1.25978e6i −0.0584734 + 0.256189i
$$476$$ 438060. 6.35596e6i 0.0886169 1.28577i
$$477$$ −1.03345e6 4.52785e6i −0.207967 0.911162i
$$478$$ 770527. 525336.i 0.154247 0.105164i
$$479$$ −6.28305e6 + 5.82981e6i −1.25121 + 1.16096i −0.271093 + 0.962553i $$0.587385\pi$$
−0.980120 + 0.198403i $$0.936424\pi$$
$$480$$ −24584.9 3705.58i −0.00487041 0.000734096i
$$481$$ −7.01405e6 6.50808e6i −1.38231 1.28260i
$$482$$ −720664. 903684.i −0.141291 0.177174i
$$483$$ −31622.1 + 189.337i −0.00616769 + 3.69290e-5i
$$484$$ −2.79113e6 + 3.49997e6i −0.541585 + 0.679127i
$$485$$ −40394.4 + 6088.47i −0.00779770 + 0.00117531i
$$486$$ −5.89107e6 4.01646e6i −1.13137 0.771353i
$$487$$ 128116. 326434.i 0.0244782 0.0623695i −0.918112 0.396321i $$-0.870287\pi$$
0.942590 + 0.333951i $$0.108382\pi$$
$$488$$ 11156.3 + 3441.27i 0.00212066 + 0.000654138i
$$489$$ 3.51346e6 0.664450
$$490$$ 46113.4 43826.2i 0.00867635 0.00824600i
$$491$$ 501987. 0.0939698 0.0469849 0.998896i $$-0.485039\pi$$
0.0469849 + 0.998896i $$0.485039\pi$$
$$492$$ 1.54611e6 + 476911.i 0.287957 + 0.0888229i
$$493$$ 2.88022e6 7.33869e6i 0.533714 1.35988i
$$494$$ 2.25366e6 + 1.53652e6i 0.415499 + 0.283283i
$$495$$ 13852.1 2087.87i 0.00254099 0.000382992i
$$496$$ −6.01317e6 + 7.54028e6i −1.09749 + 1.37621i
$$497$$ 3.27244e6 4.15429e6i 0.594266 0.754408i
$$498$$ −2.18667e6 2.74200e6i −0.395103 0.495443i
$$499$$ −6.58601e6 6.11092e6i −1.18405 1.09864i −0.993128 0.117035i $$-0.962661\pi$$
−0.190924 0.981605i $$-0.561148\pi$$
$$500$$ 93763.9 + 14132.6i 0.0167730 + 0.00252812i
$$501$$ 2.20061e6 2.04186e6i 0.391695 0.363440i
$$502$$ −6.62050e6 + 4.51378e6i −1.17255 + 0.799431i
$$503$$ 1.15431e6 + 5.05736e6i 0.203424 + 0.891259i 0.968833 + 0.247715i $$0.0796795\pi$$
−0.765409 + 0.643544i $$0.777463\pi$$
$$504$$ −6905.45 17289.7i −0.00121092 0.00303187i
$$505$$ −848.194 + 3716.18i −0.000148002 + 0.000648438i
$$506$$ −16324.5 41594.2i −0.00283442 0.00722198i
$$507$$ 147432. + 1.96734e6i 0.0254725 + 0.339907i
$$508$$ −3.03391e6 5.25488e6i −0.521607 0.903449i
$$509$$ 111278. 192740.i 0.0190378 0.0329744i −0.856350 0.516397i $$-0.827273\pi$$
0.875387 + 0.483422i $$0.160606\pi$$
$$510$$ −33501.9 16133.7i −0.00570354 0.00274668i
$$511$$ 4.02881e6 3.78333e6i 0.682535 0.640947i
$$512$$ 7.56295e6 3.64212e6i 1.27502 0.614016i
$$513$$ 88181.8 1.17670e6i 0.0147940 0.197412i
$$514$$ 1.20720e7 3.72371e6i 2.01544 0.621681i
$$515$$ −60215.2 + 18573.9i −0.0100043 + 0.00308593i
$$516$$ 121663. 1.62348e6i 0.0201156 0.268425i
$$517$$ 993975. 478673.i 0.163549 0.0787613i
$$518$$ −8.78596e6 + 8.25063e6i −1.43868 + 1.35102i
$$519$$ 2.90328e6 + 1.39815e6i 0.473119 + 0.227842i
$$520$$ 138.579 240.025i 2.24744e−5 3.89268e-5i
$$521$$ 4.72524e6 + 8.18436e6i 0.762658 + 1.32096i 0.941476 + 0.337080i $$0.109439\pi$$
−0.178818 + 0.983882i $$0.557227\pi$$
$$522$$ −621644. 8.29526e6i −0.0998540 1.33246i
$$523$$ −1.27623e6 3.25179e6i −0.204021 0.519838i 0.791839 0.610729i $$-0.209124\pi$$
−0.995861 + 0.0908912i $$0.971028\pi$$
$$524$$ −104489. + 457794.i −0.0166242 + 0.0728353i
$$525$$ 963816. + 2.41318e6i 0.152614 + 0.382112i
$$526$$ 341279. + 1.49524e6i 0.0537830 + 0.235639i
$$527$$ −1.19509e7 + 8.14800e6i −1.87445 + 1.27798i
$$528$$ 704772. 653932.i 0.110018 0.102082i
$$529$$ 6.36302e6 + 959072.i 0.988609 + 0.149009i
$$530$$ −63841.4 59236.2i −0.00987218 0.00916004i
$$531$$ −1.53849e6 1.92920e6i −0.236787 0.296921i
$$532$$ 1.06451e6 1.35138e6i 0.163069 0.207013i
$$533$$ 4.03809e6 5.06360e6i 0.615684 0.772043i
$$534$$ 2.99845e6 451944.i 0.455034 0.0685853i
$$535$$ −60156.3 41013.8i −0.00908649 0.00619507i
$$536$$ 2521.47 6424.59i 0.000379089 0.000965903i
$$537$$ −3.16264e6 975545.i −0.473276 0.145986i
$$538$$ −3.50473e6 −0.522034
$$539$$ 213796. + 2.45762e6i 0.0316977 + 0.364370i
$$540$$ −43294.3 −0.00638919
$$541$$ 1.98260e6 + 611553.i 0.291235 + 0.0898340i 0.436930 0.899496i $$-0.356066\pi$$
−0.145695 + 0.989330i $$0.546542\pi$$
$$542$$ −1.76102e6 + 4.48699e6i −0.257493 + 0.656081i
$$543$$ 3.43666e6 + 2.34307e6i 0.500192 + 0.341025i
$$544$$ 1.24142e7 1.87115e6i 1.79855 0.271088i
$$545$$ 47564.9 59644.5i 0.00685955 0.00860160i
$$546$$ 5.48505e6 32841.7i 0.787407 0.00471460i
$$547$$ −826815. 1.03679e6i −0.118152 0.148158i 0.719238 0.694764i $$-0.244491\pi$$
−0.837390 + 0.546606i $$0.815920\pi$$
$$548$$ 1.76337e6 + 1.63617e6i 0.250837 + 0.232743i
$$549$$ −3.27547e6 493698.i −0.463813 0.0699085i
$$550$$ −2.69157e6 + 2.49741e6i −0.379402 + 0.352033i
$$551$$ 1.75884e6 1.19915e6i 0.246801 0.168266i
$$552$$ 38.6160 + 169.188i 5.39410e−6 + 2.36331e-5i
$$553$$ 313522. 4.54899e6i 0.0435969 0.632561i
$$554$$ −3.52014e6 + 1.54228e7i −0.487288 + 2.13495i
$$555$$ 12867.7 + 32786.5i 0.00177325 + 0.00451817i
$$556$$ −412898. 5.50974e6i −0.0566442 0.755864i
$$557$$ 3.36154e6 + 5.82235e6i 0.459092 + 0.795171i 0.998913 0.0466088i $$-0.0148414\pi$$
−0.539821 + 0.841780i $$0.681508\pi$$
$$558$$ −7.63105e6 + 1.32174e7i −1.03753 + 1.79705i
$$559$$ −5.87141e6 2.82752e6i −0.794718 0.382716i
$$560$$ 51927.3 + 34949.9i 0.00699722 + 0.00470951i
$$561$$ 1.29911e6 625617.i 0.174276 0.0839269i
$$562$$ −341974. + 4.56333e6i −0.0456723 + 0.609455i
$$563$$ −1.16153e7 + 3.58285e6i −1.54440 + 0.476385i −0.945824 0.324679i $$-0.894744\pi$$
−0.598579 + 0.801064i $$0.704268\pi$$
$$564$$ −1.47838e6 + 456020.i −0.195699 + 0.0603651i
$$565$$ 8073.28 107730.i 0.00106397 0.0141977i
$$566$$ 8.00583e6 3.85540e6i 1.05043 0.505858i
$$567$$ 2.01365e6 + 3.44002e6i 0.263043 + 0.449369i
$$568$$ −26147.5 12592.0i −0.00340063 0.00163766i
$$569$$ −664667. + 1.15124e6i −0.0860643 + 0.149068i −0.905844 0.423611i $$-0.860762\pi$$
0.819780 + 0.572679i $$0.194096\pi$$
$$570$$ −5020.21 8695.27i −0.000647195 0.00112097i
$$571$$ 293588. + 3.91766e6i 0.0376832 + 0.502847i 0.983829 + 0.179108i $$0.0573211\pi$$
−0.946146 + 0.323740i $$0.895060\pi$$
$$572$$ 1.41776e6 + 3.61239e6i 0.181181 + 0.461641i
$$573$$ 805927. 3.53100e6i 0.102544 0.449274i
$$574$$ −6.01350e6 5.51308e6i −0.761812 0.698417i
$$575$$ 26441.1 + 115846.i 0.00333510 + 0.0146120i
$$576$$ 5.49535e6 3.74666e6i 0.690143 0.470531i
$$577$$ 3.50411e6 3.25134e6i 0.438166 0.406559i −0.430003 0.902828i $$-0.641487\pi$$
0.868169 + 0.496269i $$0.165297\pi$$
$$578$$ 7.32689e6 + 1.10435e6i 0.912221 + 0.137495i
$$579$$ 3.18280e6 + 2.95320e6i 0.394560 + 0.366098i
$$580$$ −48696.3 61063.2i −0.00601071 0.00753719i
$$581$$ 2.02187e6 + 8.62015e6i 0.248492 + 1.05944i
$$582$$ −2.76623e6 + 3.46874e6i −0.338517 + 0.424487i
$$583$$ 3.33937e6 503329.i 0.406905 0.0613311i
$$584$$ −25059.6 17085.3i −0.00304047 0.00207296i
$$585$$ −28728.9 + 73200.0i −0.00347080 + 0.00884345i
$$586$$ 206795. + 63787.7i 0.0248768 + 0.00767349i
$$587$$ −5.71909e6 −0.685065 −0.342533 0.939506i $$-0.611285\pi$$
−0.342533 + 0.939506i $$0.611285\pi$$
$$588$$ 217198. 3.45264e6i 0.0259067 0.411820i
$$589$$ −3.90560e6 −0.463873
$$590$$ −44215.8 13638.8i −0.00522934 0.00161304i
$$591$$ −585003. + 1.49056e6i −0.0688952 + 0.175542i
$$592$$ −9.79806e6 6.68020e6i −1.14904 0.783403i
$$593$$ 9.15996e6 1.38064e6i 1.06969 0.161229i 0.409484 0.912317i $$-0.365709\pi$$
0.660202 + 0.751088i $$0.270470\pi$$
$$594$$ 2.09056e6 2.62148e6i 0.243107 0.304846i
$$595$$ 58968.5 + 73042.7i 0.00682854 + 0.00845833i
$$596$$ −7.80529e6 9.78752e6i −0.900063 1.12864i
$$597$$ −665463. 617459.i −0.0764166 0.0709043i
$$598$$ 248022. + 37383.3i 0.0283621 + 0.00427489i
$$599$$ 1.43542e6 1.33188e6i 0.163460 0.151669i −0.594202 0.804316i $$-0.702532\pi$$
0.757662 + 0.652647i $$0.226342\pi$$
$$600$$ 11782.3 8033.06i 0.00133614 0.000910967i
$$601$$ 1.40914e6 + 6.17383e6i 0.159136 + 0.697218i 0.990038 + 0.140800i $$0.0449675\pi$$
−0.830903 + 0.556418i $$0.812175\pi$$
$$602$$ −4.06177e6 + 7.13350e6i −0.456798 + 0.802253i
$$603$$ −435732. + 1.90907e6i −0.0488008 + 0.213810i
$$604$$ 971132. + 2.47440e6i 0.108314 + 0.275980i
$$605$$ −4929.32 65777.2i −0.000547518 0.00730612i
$$606$$ 206992. + 358522.i 0.0228967 + 0.0396583i
$$607$$ 5.31841e6 9.21176e6i 0.585882 1.01478i −0.408883 0.912587i $$-0.634082\pi$$
0.994765 0.102190i $$-0.0325851\pi$$
$$608$$ 3.05422e6 + 1.47083e6i 0.335074 + 0.161363i
$$609$$ 1.54007e6 3.99419e6i 0.168266 0.436400i
$$610$$ −55964.2 + 26950.9i −0.00608955 + 0.00293258i
$$611$$ −462795. + 6.17557e6i −0.0501517 + 0.669227i
$$612$$ 9.47908e6 2.92391e6i 1.02303 0.315562i
$$613$$ 96283.7 29699.6i 0.0103491 0.00319227i −0.289576 0.957155i $$-0.593514\pi$$
0.299925 + 0.953963i $$0.403038\pi$$
$$614$$ −468520. + 6.25196e6i −0.0501542 + 0.669261i
$$615$$ −21479.6 + 10344.0i −0.00229002 + 0.00110281i
$$616$$ 12912.3 4067.73i 0.00137104 0.000431917i
$$617$$ −1.57184e7 7.56959e6i −1.66225 0.800496i −0.998625 0.0524282i $$-0.983304\pi$$
−0.663622 0.748068i $$-0.730982\pi$$
$$618$$ −3.42194e6 + 5.92697e6i −0.360413 + 0.624254i
$$619$$ 5.77850e6 + 1.00086e7i 0.606161 + 1.04990i 0.991867 + 0.127280i $$0.0406247\pi$$
−0.385706 + 0.922622i $$0.626042\pi$$
$$620$$ 10708.5 + 142895.i 0.00111880 + 0.0149293i
$$621$$ −39643.2 101009.i −0.00412515 0.0105107i
$$622$$ 4.15468e6 1.82028e7i 0.430588 1.88653i
$$623$$ −7.32862e6 2.21261e6i −0.756488 0.228394i
$$624$$ 1.20091e6 + 5.26155e6i 0.123467 + 0.540943i
$$625$$ 8.06701e6 5.49999e6i 0.826061 0.563199i
$$626$$ −1.65099e7 + 1.53189e7i −1.68387 + 1.56240i
$$627$$ 384990. + 58027.9i 0.0391093 + 0.00589478i
$$628$$ 898781. + 833947.i 0.0909400 + 0.0843800i
$$629$$ −1.10888e7 1.39049e7i −1.11753 1.40134i
$$630$$ 89499.6 + 42442.5i 0.00898400 + 0.00426039i
$$631$$ −28754.1 + 36056.5i −0.00287493 + 0.00360505i −0.783267 0.621686i $$-0.786448\pi$$
0.780392 + 0.625291i $$0.215020\pi$$
$$632$$ −24743.7 + 3729.51i −0.00246417 + 0.000371415i
$$633$$ −87015.6 59326.2i −0.00863153 0.00588488i
$$634$$ 4.72352e6 1.20353e7i 0.466705 1.18915i
$$635$$ 85435.2 + 26353.3i 0.00840819 + 0.00259358i
$$636$$ −4.73587e6 −0.464256
$$637$$ −1.25474e7 5.85847e6i −1.22520 0.572053i
$$638$$ 6.04881e6 0.588326
$$639$$ 7.86827e6 + 2.42704e6i 0.762302 + 0.235139i
$$640$$ 251.689 641.294i 2.42893e−5 6.18881e-5i
$$641$$ 9.73337e6 + 6.63610e6i 0.935660 + 0.637922i 0.932150 0.362072i $$-0.117930\pi$$
0.00350983 + 0.999994i $$0.498883\pi$$
$$642$$ −7.81911e6 + 1.17854e6i −0.748721 + 0.112851i
$$643$$ 5.62263e6 7.05055e6i 0.536305 0.672506i −0.437676 0.899133i $$-0.644198\pi$$
0.973982 + 0.226627i $$0.0727699\pi$$
$$644$$ 34277.3 154435.i 0.00325681 0.0146734i
$$645$$ 14956.6 + 18755.0i 0.00141558 + 0.00177508i
$$646$$ 3.71654e6 + 3.44845e6i 0.350395 + 0.325119i
$$647$$ −3.78360e6 570286.i −0.355340 0.0535589i −0.0310534 0.999518i $$-0.509886\pi$$
−0.324287 + 0.945959i $$0.605124\pi$$
$$648$$ 16035.2 14878.5i 0.00150016 0.00139194i
$$649$$ 1.48250e6 1.01075e6i 0.138160 0.0941959i
$$650$$ −4.58637e6 2.00942e7i −0.425781 1.86547i
$$651$$ −6.46272e6 + 4.46312e6i −0.597672 + 0.412749i
$$652$$ −3.91107e6 + 1.71355e7i −0.360311 + 1.57862i
$$653$$ 2.41281e6 + 6.14775e6i 0.221432 + 0.564200i 0.997816 0.0660610i $$-0.0210432\pi$$
−0.776383 + 0.630261i $$0.782948\pi$$
$$654$$ −619175. 8.26231e6i −0.0566068 0.755366i
$$655$$ −3459.46 5991.96i −0.000315068 0.000545714i
$$656$$ 4.01344e6 6.95148e6i 0.364131 0.630693i
$$657$$ 7.75304e6 + 3.73367e6i 0.700742 + 0.337460i
$$658$$ 7.72053e6 + 1.11645e6i 0.695156 + 0.100525i
$$659$$ −1.13017e7 + 5.44259e6i −1.01374 + 0.488194i −0.865581 0.500769i $$-0.833051\pi$$
−0.148164 + 0.988963i $$0.547336\pi$$
$$660$$ 1067.50 14244.9i 9.53915e−5 0.00127291i
$$661$$ 1.26774e7 3.91045e6i 1.12856 0.348116i 0.326407 0.945229i $$-0.394162\pi$$
0.802156 + 0.597114i $$0.203686\pi$$
$$662$$ 2.43704e7 7.51728e6i 2.16132 0.666677i
$$663$$ −604864. + 8.07135e6i −0.0534409 + 0.713120i
$$664$$ 43777.6 21082.2i 0.00385329 0.00185565i
$$665$$ 2045.56 + 25265.2i 0.000179374 + 0.00221549i
$$666$$ −1.69077e7 8.14231e6i −1.47706 0.711315i
$$667$$ 97876.0 169526.i 0.00851847 0.0147544i
$$668$$ 7.50876e6 + 1.30056e7i 0.651069 + 1.12768i
$$669$$ −471848. 6.29637e6i −0.0407603 0.543908i
$$670$$ 13415.2 + 34181.3i 0.00115454 + 0.00294172i
$$671$$ 535977. 2.34827e6i 0.0459558 0.201345i
$$672$$ 6.73471e6 1.05637e6i 0.575302 0.0902388i
$$673$$ 2.04957e6 + 8.97976e6i 0.174432 + 0.764235i 0.984139 + 0.177401i $$0.0567689\pi$$
−0.809707 + 0.586834i $$0.800374\pi$$
$$674$$ 1.68538e7 1.14907e7i 1.42905 0.974310i
$$675$$ −6.53634e6 + 6.06484e6i −0.552173 + 0.512342i
$$676$$ −9.75907e6 1.47094e6i −0.821375 0.123802i
$$677$$ 6.79079e6 + 6.30093e6i 0.569441 + 0.528364i 0.911492 0.411318i $$-0.134931\pi$$
−0.342052 + 0.939681i $$0.611122\pi$$
$$678$$ −7.31550e6 9.17335e6i −0.611181 0.766397i
$$679$$ 1.00623e7 4.92018e6i 0.837573 0.409550i
$$680$$ 321.202 402.774i 2.66382e−5 3.34033e-5i
$$681$$ −9.38516e6 + 1.41459e6i −0.775486 + 0.116886i
$$682$$ −9.16945e6 6.25163e6i −0.754888 0.514674i
$$683$$ −1.33278e6 + 3.39588e6i −0.109322 + 0.278548i −0.975057 0.221955i $$-0.928756\pi$$
0.865735 + 0.500503i $$0.166852\pi$$
$$684$$ 2.55952e6 + 789506.i 0.209179 + 0.0645231i
$$685$$ −35444.5 −0.00288617
$$686$$ −8.44887e6 + 1.52605e7i −0.685470 + 1.23811i
$$687$$ 6.93985e6 0.560994
$$688$$ −7.71787e6 2.38065e6i −0.621622 0.191745i
$$689$$ −6.92578e6 + 1.76466e7i −0.555803 + 1.41616i
$$690$$ −762.859 520.109i −6.09989e−5 4.15883e-5i
$$691$$ −8.50170e6 + 1.28143e6i −0.677346 + 0.102094i −0.478701 0.877978i $$-0.658892\pi$$
−0.198645 + 0.980071i $$0.563654\pi$$
$$692$$ −1.00508e7 + 1.26033e7i −0.797873 + 1.00050i
$$693$$ −3.45058e6 + 1.68724e6i −0.272935 + 0.133457i
$$694$$ −1.90907e7 2.39389e7i −1.50460 1.88671i
$$695$$ 59679.1 + 55374.1i 0.00468662 + 0.00434855i
$$696$$ −23229.8 3501.33i −0.00181770 0.000273975i
$$697$$ 8.82477e6 8.18819e6i 0.688052 0.638419i
$$698$$ 1.43188e7 9.76236e6i 1.11241 0.758432i
$$699$$ −1.71244e6 7.50267e6i −0.132563 0.580795i
$$700$$ −1.28422e7 + 2.01437e6i −0.990593 + 0.155379i
$$701$$ −71570.0 + 313569.i −0.00550093 + 0.0241011i −0.977604 0.210453i $$-0.932506\pi$$
0.972103 + 0.234555i $$0.0753631\pi$$
$$702$$ 6.87637e6 + 1.75207e7i 0.526643 + 1.34187i
$$703$$ −358875. 4.78886e6i −0.0273877 0.365463i
$$704$$ 2.41815e6 + 4.18836e6i 0.183887 + 0.318502i
$$705$$ 11398.1 19742.1i 0.000863695 0.00149596i
$$706$$ 2.44025e7 + 1.17516e7i 1.84256 + 0.887332i
$$707$$ −84342.2 1.04173e6i −0.00634595 0.0783804i
$$708$$ −2.26702e6 + 1.09174e6i −0.169970 + 0.0818532i
$$709$$ 553863. 7.39079e6i 0.0413796 0.552173i −0.937533 0.347895i $$-0.886896\pi$$
0.978913 0.204277i $$-0.0654845\pi$$
$$710$$ 147546. 45512.0i 0.0109845 0.00338828i
$$711$$ 6.78422e6 2.09266e6i 0.503299 0.155247i
$$712$$ −3139.48 + 41893.5i −0.000232091 + 0.00309704i
$$713$$ −323582. + 155829.i −0.0238375 + 0.0114795i
$$714$$ 1.00906e7 + 1.45918e6i 0.740749 + 0.107118i
$$715$$ −51517.4 24809.5i −0.00376868 0.00181490i
$$716$$ 8.27841e6 1.43386e7i 0.603482 1.04526i
$$717$$ 373615. + 647120.i 0.0271410 + 0.0470097i
$$718$$ 633854. + 8.45819e6i 0.0458858 + 0.612303i
$$719$$ −8.28634e6 2.11133e7i −0.597779 1.52312i −0.834198 0.551465i $$-0.814069\pi$$
0.236419 0.971651i $$-0.424026\pi$$
$$720$$ −21686.6 + 95015.3i −0.00155905 + 0.00683065i
$$721$$ 1.42172e7 9.81832e6i 1.01853 0.703394i
$$722$$ −4.10630e6 1.79909e7i −0.293162 1.28443i
$$723$$ 765211. 521712.i 0.0544422 0.0371181i
$$724$$ −1.52530e7 + 1.41527e7i −1.08146 + 1.00345i
$$725$$ −1.59059e7 2.39743e6i −1.12386 0.169395i
$$726$$ −5.25154e6 4.87271e6i −0.369781 0.343107i
$$727$$ −1.12977e6 1.41668e6i −0.0792780 0.0994115i 0.740611 0.671934i $$-0.234536\pi$$
−0.819889 + 0.572523i $$0.805965\pi$$
$$728$$ −16466.3 + 74188.1i −0.00115151 + 0.00518807i
$$729$$ −1.09638e6 + 1.37482e6i −0.0764087 + 0.0958134i
$$730$$ 159563. 24050.3i 0.0110822 0.00167037i
$$731$$ −1.00083e7 6.82355e6i −0.692735 0.472299i
$$732$$ −1.23404e6 + 3.14429e6i −0.0851242 + 0.216893i
$$733$$ −1.09498e7 3.37757e6i −0.752742 0.232190i −0.105442 0.994425i $$-0.533626\pi$$
−0.647300 + 0.762235i $$0.724102\pi$$
$$734$$ −2.75266e7 −1.88587
$$735$$ 32256.7 + 39469.6i 0.00220243 + 0.00269491i
$$736$$ 311729. 0.0212120
$$737$$ −1.36062e6 419695.i −0.0922715 0.0284620i
$$738$$ 4.64072e6 1.18244e7i 0.313649 0.799165i
$$739$$ −1.32534e7 9.03602e6i −0.892723 0.608648i 0.0276811 0.999617i $$-0.491188\pi$$
−0.920404 + 0.390969i $$0.872140\pi$$
$$740$$ −174228. + 26260.6i −0.0116960 + 0.00176289i
$$741$$ −1.36265e6 + 1.70871e6i −0.0911671 + 0.114320i
$$742$$ 2.15760e7 + 1.02318e7i 1.43867 + 0.682245i
$$743$$ −7.04940e6 8.83967e6i −0.468468 0.587441i 0.490327 0.871539i $$-0.336877\pi$$
−0.958795 + 0.284098i $$0.908306\pi$$
$$744$$ 31595.6 + 29316.5i 0.00209264 + 0.00194169i
$$745$$ 182399. + 27492.2i 0.0120401 + 0.00181476i
$$746$$ 2.51892e7 2.33721e7i 1.65717 1.53763i
$$747$$ −1.13905e7 + 7.76590e6i −0.746862 + 0.509202i
$$748$$ 1.60508e6 + 7.03232e6i 0.104892 + 0.459562i
$$749$$ 1.91110e7 + 5.76987e6i 1.24474 + 0.375804i
$$750$$ −33766.4 + 147940.i −0.00219196 + 0.00960359i
$$751$$ 1.91258e6 + 4.87318e6i 0.123743 + 0.315292i 0.979299 0.202418i $$-0.0648799\pi$$
−0.855556 + 0.517710i $$0.826785\pi$$
$$752$$ 573573. + 7.65380e6i 0.0369866 + 0.493552i
$$753$$ −3.21017e6 5.56017e6i −0.206319 0.357356i
$$754$$ −1.69772e7 + 2.94054e7i −1.08752 + 1.88365i
$$755$$ −35288.2 16993.9i −0.00225301 0.00108499i
$$756$$ 1.13223e7 3.56684e6i 0.720492 0.226976i
$$757$$ 1.54019e7 7.41716e6i 0.976864 0.470433i 0.123839 0.992302i $$-0.460479\pi$$
0.853025 + 0.521869i $$0.174765\pi$$
$$758$$ 558028. 7.44637e6i 0.0352763 0.470729i
$$759$$ 34211.9 10553.0i 0.00215563 0.000664922i
$$760$$ 132.924 41.0017i 8.34776e−6 2.57494e-6i