Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [49,6,Mod(2,49)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(49, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([26]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("49.2");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 49.g (of order \(21\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.85880717084\) |
Analytic rank: | \(0\) |
Dimension: | \(264\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{21})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{21}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −10.4274 | − | 3.21642i | −3.43400 | + | 8.74968i | 71.9454 | + | 49.0516i | 12.8738 | − | 1.94041i | 63.9503 | − | 80.1911i | −82.8526 | − | 99.7118i | −374.716 | − | 469.879i | 113.367 | + | 105.189i | −140.481 | − | 21.1741i |
2.2 | −10.0399 | − | 3.09691i | 9.56163 | − | 24.3626i | 64.7699 | + | 44.1593i | −25.7914 | + | 3.88743i | −171.447 | + | 214.988i | 24.4890 | + | 127.308i | −303.901 | − | 381.080i | −323.981 | − | 300.611i | 270.983 | + | 40.8441i |
2.3 | −7.64989 | − | 2.35968i | 2.34348 | − | 5.97110i | 26.5131 | + | 18.0763i | −0.467538 | + | 0.0704700i | −32.0173 | + | 40.1484i | 116.464 | − | 56.9478i | −0.443581 | − | 0.556232i | 147.969 | + | 137.296i | 3.74290 | + | 0.564151i |
2.4 | −7.58622 | − | 2.34004i | −8.77900 | + | 22.3685i | 25.6353 | + | 17.4778i | 44.1683 | − | 6.65731i | 118.943 | − | 149.149i | 109.919 | + | 68.7371i | 4.81872 | + | 6.04248i | −245.149 | − | 227.465i | −350.649 | − | 52.8518i |
2.5 | −7.56205 | − | 2.33258i | −5.53040 | + | 14.0912i | 25.3041 | + | 17.2520i | −100.121 | + | 15.0908i | 74.6902 | − | 93.6586i | −91.8316 | + | 91.5093i | 6.78132 | + | 8.50350i | 10.1540 | + | 9.42155i | 792.323 | + | 119.423i |
2.6 | −6.81543 | − | 2.10228i | 3.52552 | − | 8.98289i | 15.5909 | + | 10.6297i | 80.2537 | − | 12.0963i | −42.9125 | + | 53.8106i | −85.3330 | + | 97.5975i | 58.3893 | + | 73.2178i | 109.869 | + | 101.943i | −572.393 | − | 86.2744i |
2.7 | −5.24707 | − | 1.61851i | 7.63255 | − | 19.4474i | −1.52748 | − | 1.04142i | −57.8178 | + | 8.71463i | −71.5243 | + | 89.6886i | −83.4438 | − | 99.2176i | 115.884 | + | 145.314i | −141.815 | − | 131.585i | 317.479 | + | 47.8522i |
2.8 | −3.14587 | − | 0.970373i | −3.81108 | + | 9.71048i | −17.4847 | − | 11.9209i | 67.5754 | − | 10.1854i | 21.4120 | − | 26.8498i | −81.7407 | − | 100.625i | 109.121 | + | 136.833i | 98.3625 | + | 91.2671i | −222.467 | − | 33.5315i |
2.9 | −2.66606 | − | 0.822370i | −6.33899 | + | 16.1515i | −20.0081 | − | 13.6413i | −58.2851 | + | 8.78507i | 30.1826 | − | 37.8478i | 54.7544 | − | 117.511i | 97.7899 | + | 122.625i | −42.5557 | − | 39.4859i | 162.616 | + | 24.5104i |
2.10 | −1.52973 | − | 0.471861i | 10.3277 | − | 26.3145i | −24.3222 | − | 16.5826i | 90.2851 | − | 13.6083i | −28.2154 | + | 35.3810i | 124.488 | − | 36.1916i | 61.3216 | + | 76.8948i | −407.661 | − | 378.255i | −144.533 | − | 21.7849i |
2.11 | −1.11459 | − | 0.343805i | 1.70006 | − | 4.33168i | −25.3155 | − | 17.2598i | −34.5506 | + | 5.20767i | −3.38412 | + | 4.24356i | 61.0553 | + | 114.365i | 45.5542 | + | 57.1232i | 162.258 | + | 150.554i | 40.3001 | + | 6.07427i |
2.12 | −0.768968 | − | 0.237195i | −8.72763 | + | 22.2376i | −25.9046 | − | 17.6615i | 28.5592 | − | 4.30461i | 11.9859 | − | 15.0299i | −107.947 | + | 71.7951i | 31.7861 | + | 39.8585i | −240.209 | − | 222.882i | −22.9821 | − | 3.46400i |
2.13 | 2.16057 | + | 0.666447i | 6.26230 | − | 15.9561i | −22.2157 | − | 15.1464i | 0.666814 | − | 0.100506i | 24.1640 | − | 30.3007i | −129.491 | + | 6.24655i | −83.0154 | − | 104.098i | −37.2488 | − | 34.5618i | 1.50768 | + | 0.227246i |
2.14 | 3.73931 | + | 1.15342i | 0.0993195 | − | 0.253062i | −13.7876 | − | 9.40021i | 41.9031 | − | 6.31588i | 0.663274 | − | 0.831720i | 64.1502 | − | 112.658i | −118.788 | − | 148.955i | 178.077 | + | 165.232i | 163.974 | + | 24.7151i |
2.15 | 4.24738 | + | 1.31014i | −9.79667 | + | 24.9615i | −10.1159 | − | 6.89687i | −27.7351 | + | 4.18039i | −74.3134 | + | 93.1860i | 129.357 | − | 8.58801i | −122.612 | − | 153.751i | −348.971 | − | 323.797i | −123.279 | − | 18.5812i |
2.16 | 5.22133 | + | 1.61057i | 8.72914 | − | 22.2415i | −1.77125 | − | 1.20762i | −104.732 | + | 15.7858i | 81.3992 | − | 102.071i | 122.487 | − | 42.4725i | −116.321 | − | 145.862i | −240.355 | − | 223.016i | −572.263 | − | 86.2548i |
2.17 | 5.34627 | + | 1.64911i | −3.67157 | + | 9.35501i | −0.576558 | − | 0.393090i | 96.5461 | − | 14.5520i | −35.0566 | + | 43.9596i | 41.8489 | + | 122.702i | −114.061 | − | 143.027i | 104.096 | + | 96.5868i | 540.160 | + | 81.4160i |
2.18 | 5.87515 | + | 1.81224i | −3.88671 | + | 9.90318i | 4.79349 | + | 3.26815i | −68.8177 | + | 10.3726i | −40.7820 | + | 51.1390i | −128.506 | − | 17.1261i | −100.429 | − | 125.934i | 95.1652 | + | 88.3004i | −423.112 | − | 63.7738i |
2.19 | 7.81307 | + | 2.41001i | 8.62663 | − | 21.9803i | 28.7962 | + | 19.6329i | 40.7138 | − | 6.13662i | 120.373 | − | 150.943i | −56.8046 | + | 116.534i | 14.5399 | + | 18.2325i | −230.583 | − | 213.950i | 332.889 | + | 50.1749i |
2.20 | 9.25626 | + | 2.85518i | 4.05332 | − | 10.3277i | 51.0867 | + | 34.8304i | 20.5483 | − | 3.09715i | 67.0061 | − | 84.0230i | 13.7032 | − | 128.916i | 180.161 | + | 225.915i | 87.8996 | + | 81.5589i | 199.043 | + | 30.0009i |
See next 80 embeddings (of 264 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.g | even | 21 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 49.6.g.a | ✓ | 264 |
49.g | even | 21 | 1 | inner | 49.6.g.a | ✓ | 264 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
49.6.g.a | ✓ | 264 | 1.a | even | 1 | 1 | trivial |
49.6.g.a | ✓ | 264 | 49.g | even | 21 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(49, [\chi])\).