Properties

Label 49.6.g
Level $49$
Weight $6$
Character orbit 49.g
Rep. character $\chi_{49}(2,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $264$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 49.g (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(49, [\chi])\).

Total New Old
Modular forms 288 288 0
Cusp forms 264 264 0
Eisenstein series 24 24 0

Trace form

\( 264 q - 13 q^{2} - 22 q^{3} + 307 q^{4} - 52 q^{5} - 130 q^{6} + 154 q^{7} - 320 q^{8} + 6 q^{9} - 792 q^{10} - 635 q^{11} + 3605 q^{12} + 1834 q^{13} - 875 q^{14} - 2572 q^{15} + 3735 q^{16} - 1023 q^{17}+ \cdots + 1090736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(49, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
49.6.g.a 49.g 49.g $264$ $7.859$ None 49.6.g.a \(-13\) \(-22\) \(-52\) \(154\) $\mathrm{SU}(2)[C_{21}]$