Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [49,6,Mod(8,49)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(49, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([12]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("49.8");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 49.e (of order \(7\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.85880717084\) |
Analytic rank: | \(0\) |
Dimension: | \(138\) |
Relative dimension: | \(23\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.1 | −6.65295 | − | 8.34253i | −18.5736 | + | 8.94459i | −18.2155 | + | 79.8071i | 81.4863 | − | 39.2418i | 198.190 | + | 95.4433i | −120.860 | + | 46.9014i | 479.339 | − | 230.837i | 113.466 | − | 142.282i | −869.500 | − | 418.729i |
8.2 | −6.59749 | − | 8.27300i | 25.4427 | − | 12.2525i | −17.7949 | + | 77.9644i | 45.4620 | − | 21.8934i | −269.223 | − | 129.651i | 124.236 | − | 37.0458i | 457.324 | − | 220.236i | 345.696 | − | 433.489i | −481.059 | − | 231.666i |
8.3 | −6.16552 | − | 7.73132i | −10.0578 | + | 4.84359i | −14.6390 | + | 64.1376i | −72.0665 | + | 34.7054i | 99.4591 | + | 47.8970i | 83.2368 | − | 99.3913i | 301.024 | − | 144.965i | −73.8086 | + | 92.5531i | 712.646 | + | 343.192i |
8.4 | −4.98029 | − | 6.24508i | 6.83688 | − | 3.29247i | −7.07712 | + | 31.0069i | 10.7661 | − | 5.18467i | −54.6114 | − | 26.2994i | −98.9047 | − | 83.8145i | −1.40854 | + | 0.678317i | −115.605 | + | 144.965i | −85.9969 | − | 41.4139i |
8.5 | −4.94829 | − | 6.20496i | 4.98390 | − | 2.40012i | −6.89529 | + | 30.2102i | −5.69000 | + | 2.74016i | −39.5545 | − | 19.0484i | 19.6454 | + | 128.145i | −7.24231 | + | 3.48771i | −132.429 | + | 166.061i | 45.1584 | + | 21.7471i |
8.6 | −3.57517 | − | 4.48312i | −26.8141 | + | 12.9130i | −0.195868 | + | 0.858155i | −65.6815 | + | 31.6305i | 153.756 | + | 74.0448i | −61.0537 | + | 114.365i | −160.773 | + | 77.4243i | 400.744 | − | 502.517i | 376.626 | + | 181.373i |
8.7 | −3.42301 | − | 4.29231i | 25.2791 | − | 12.1737i | 0.413685 | − | 1.81247i | −87.2410 | + | 42.0130i | −138.784 | − | 66.8348i | −126.240 | − | 29.5041i | −167.480 | + | 80.6542i | 339.322 | − | 425.497i | 478.959 | + | 230.655i |
8.8 | −3.16704 | − | 3.97134i | −14.8323 | + | 7.14284i | 1.37924 | − | 6.04286i | 68.5349 | − | 33.0046i | 75.3410 | + | 36.2823i | 129.221 | − | 10.4405i | −174.815 | + | 84.1863i | 17.4677 | − | 21.9038i | −348.126 | − | 167.648i |
8.9 | −2.27658 | − | 2.85474i | −14.5247 | + | 6.99475i | 4.15395 | − | 18.1996i | 0.00127143 | 0.000612289i | 53.0349 | + | 25.5402i | −61.2225 | − | 114.275i | −166.684 | + | 80.2708i | 10.5335 | − | 13.2086i | −0.00464244 | − | 0.00223568i | |
8.10 | −1.52548 | − | 1.91289i | 14.5313 | − | 6.99791i | 5.78861 | − | 25.3616i | 13.8983 | − | 6.69309i | −35.5534 | − | 17.1216i | 106.641 | − | 73.7197i | −127.884 | + | 61.5859i | 10.6801 | − | 13.3924i | −34.0047 | − | 16.3758i |
8.11 | −1.16235 | − | 1.45754i | 17.4856 | − | 8.42061i | 6.34730 | − | 27.8093i | 97.8327 | − | 47.1137i | −32.5978 | − | 15.6983i | −91.6882 | + | 91.6530i | −101.660 | + | 48.9568i | 83.3305 | − | 104.493i | −182.386 | − | 87.8326i |
8.12 | −0.469190 | − | 0.588346i | 2.32193 | − | 1.11818i | 6.99466 | − | 30.6456i | −89.5344 | + | 43.1175i | −1.74731 | − | 0.841459i | 102.032 | + | 79.9786i | −43.0080 | + | 20.7116i | −147.367 | + | 184.792i | 67.3767 | + | 32.4469i |
8.13 | 0.700150 | + | 0.877961i | −3.63552 | + | 1.75077i | 6.84007 | − | 29.9683i | −6.35053 | + | 3.05825i | −4.08252 | − | 1.96604i | −127.348 | + | 24.2804i | 63.4759 | − | 30.5684i | −141.356 | + | 177.255i | −7.13135 | − | 3.43428i |
8.14 | 1.63882 | + | 2.05502i | −16.7655 | + | 8.07386i | 5.58330 | − | 24.4621i | 39.0863 | − | 18.8230i | −44.0677 | − | 21.2219i | 49.2203 | + | 119.935i | 135.202 | − | 65.1096i | 64.3879 | − | 80.7399i | 102.737 | + | 49.4756i |
8.15 | 2.68695 | + | 3.36932i | 16.1005 | − | 7.75358i | 2.98801 | − | 13.0913i | −9.63295 | + | 4.63899i | 69.3854 | + | 33.4142i | 31.3108 | − | 125.804i | 176.385 | − | 84.9428i | 47.5990 | − | 59.6873i | −41.5135 | − | 19.9918i |
8.16 | 2.96579 | + | 3.71898i | −21.3031 | + | 10.2591i | 2.08576 | − | 9.13830i | −47.1674 | + | 22.7146i | −101.334 | − | 48.7998i | 76.1422 | − | 104.925i | 177.313 | − | 85.3894i | 197.068 | − | 247.115i | −224.364 | − | 108.048i |
8.17 | 3.11301 | + | 3.90359i | 24.6500 | − | 11.8708i | 1.57347 | − | 6.89382i | −13.5648 | + | 6.53245i | 123.075 | + | 59.2697i | −7.10586 | + | 129.447i | 175.759 | − | 84.6410i | 315.200 | − | 395.248i | −67.7273 | − | 32.6157i |
8.18 | 3.97480 | + | 4.98424i | −2.41848 | + | 1.16468i | −1.92294 | + | 8.42495i | 98.2899 | − | 47.3339i | −15.4180 | − | 7.42491i | −15.6636 | − | 128.692i | 134.165 | − | 64.6103i | −147.015 | + | 184.352i | 626.606 | + | 301.757i |
8.19 | 4.98133 | + | 6.24639i | 2.75495 | − | 1.32671i | −7.08306 | + | 31.0329i | −79.8726 | + | 38.4646i | 22.0105 | + | 10.5997i | −129.023 | − | 12.6496i | 1.21670 | − | 0.585929i | −145.678 | + | 182.675i | −638.137 | − | 307.310i |
8.20 | 4.98712 | + | 6.25365i | 7.50846 | − | 3.61589i | −7.11609 | + | 31.1776i | 29.9404 | − | 14.4185i | 60.0580 | + | 28.9224i | 75.7713 | + | 105.194i | 0.148300 | − | 0.0714174i | −108.206 | + | 135.686i | 239.485 | + | 115.330i |
See next 80 embeddings (of 138 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.e | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 49.6.e.a | ✓ | 138 |
49.e | even | 7 | 1 | inner | 49.6.e.a | ✓ | 138 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
49.6.e.a | ✓ | 138 | 1.a | even | 1 | 1 | trivial |
49.6.e.a | ✓ | 138 | 49.e | even | 7 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(49, [\chi])\).