Properties

Label 49.6.c.c
Level $49$
Weight $6$
Character orbit 49.c
Analytic conductor $7.859$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [49,6,Mod(18,49)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(49, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("49.18");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 49.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.85880717084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 10 \zeta_{6} q^{2} + ( - 14 \zeta_{6} + 14) q^{3} + (68 \zeta_{6} - 68) q^{4} + 56 \zeta_{6} q^{5} + 140 q^{6} - 360 q^{8} + 47 \zeta_{6} q^{9} + (560 \zeta_{6} - 560) q^{10} + (232 \zeta_{6} - 232) q^{11}+ \cdots - 10904 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{2} + 14 q^{3} - 68 q^{4} + 56 q^{5} + 280 q^{6} - 720 q^{8} + 47 q^{9} - 560 q^{10} - 232 q^{11} + 952 q^{12} - 280 q^{13} + 1568 q^{15} - 1424 q^{16} + 1722 q^{17} - 470 q^{18} + 98 q^{19}+ \cdots - 21808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
18.1
0.500000 + 0.866025i
0.500000 0.866025i
5.00000 + 8.66025i 7.00000 12.1244i −34.0000 + 58.8897i 28.0000 + 48.4974i 140.000 0 −360.000 23.5000 + 40.7032i −280.000 + 484.974i
30.1 5.00000 8.66025i 7.00000 + 12.1244i −34.0000 58.8897i 28.0000 48.4974i 140.000 0 −360.000 23.5000 40.7032i −280.000 484.974i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 49.6.c.c 2
7.b odd 2 1 49.6.c.b 2
7.c even 3 1 7.6.a.a 1
7.c even 3 1 inner 49.6.c.c 2
7.d odd 6 1 49.6.a.a 1
7.d odd 6 1 49.6.c.b 2
21.g even 6 1 441.6.a.k 1
21.h odd 6 1 63.6.a.e 1
28.f even 6 1 784.6.a.c 1
28.g odd 6 1 112.6.a.g 1
35.j even 6 1 175.6.a.b 1
35.l odd 12 2 175.6.b.a 2
56.k odd 6 1 448.6.a.c 1
56.p even 6 1 448.6.a.m 1
77.h odd 6 1 847.6.a.b 1
84.n even 6 1 1008.6.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.6.a.a 1 7.c even 3 1
49.6.a.a 1 7.d odd 6 1
49.6.c.b 2 7.b odd 2 1
49.6.c.b 2 7.d odd 6 1
49.6.c.c 2 1.a even 1 1 trivial
49.6.c.c 2 7.c even 3 1 inner
63.6.a.e 1 21.h odd 6 1
112.6.a.g 1 28.g odd 6 1
175.6.a.b 1 35.j even 6 1
175.6.b.a 2 35.l odd 12 2
441.6.a.k 1 21.g even 6 1
448.6.a.c 1 56.k odd 6 1
448.6.a.m 1 56.p even 6 1
784.6.a.c 1 28.f even 6 1
847.6.a.b 1 77.h odd 6 1
1008.6.a.y 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(49, [\chi])\):

\( T_{2}^{2} - 10T_{2} + 100 \) Copy content Toggle raw display
\( T_{3}^{2} - 14T_{3} + 196 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$3$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$5$ \( T^{2} - 56T + 3136 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 232T + 53824 \) Copy content Toggle raw display
$13$ \( (T + 140)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 1722 T + 2965284 \) Copy content Toggle raw display
$19$ \( T^{2} - 98T + 9604 \) Copy content Toggle raw display
$23$ \( T^{2} + 1824 T + 3326976 \) Copy content Toggle raw display
$29$ \( (T - 3418)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 7644 T + 58430736 \) Copy content Toggle raw display
$37$ \( T^{2} - 10398 T + 108118404 \) Copy content Toggle raw display
$41$ \( (T + 17962)^{2} \) Copy content Toggle raw display
$43$ \( (T - 10880)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 9324 T + 86936976 \) Copy content Toggle raw display
$53$ \( T^{2} + 2262 T + 5116644 \) Copy content Toggle raw display
$59$ \( T^{2} - 2730 T + 7452900 \) Copy content Toggle raw display
$61$ \( T^{2} + 25648 T + 657819904 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 2342947216 \) Copy content Toggle raw display
$71$ \( (T + 58560)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 4635158724 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 1010222656 \) Copy content Toggle raw display
$83$ \( (T + 20538)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 2558538724 \) Copy content Toggle raw display
$97$ \( (T + 58506)^{2} \) Copy content Toggle raw display
show more
show less