Properties

Label 49.6.a.c
Level $49$
Weight $6$
Character orbit 49.a
Self dual yes
Analytic conductor $7.859$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [49,6,Mod(1,49)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(49, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("49.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.85880717084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{39}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{39}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + \beta q^{3} - 28 q^{4} + 3 \beta q^{5} - 2 \beta q^{6} + 120 q^{8} + 381 q^{9} - 6 \beta q^{10} - 284 q^{11} - 28 \beta q^{12} + 21 \beta q^{13} + 1872 q^{15} + 656 q^{16} - 6 \beta q^{17} + \cdots - 108204 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 56 q^{4} + 240 q^{8} + 762 q^{9} - 568 q^{11} + 3744 q^{15} + 1312 q^{16} - 1524 q^{18} + 1136 q^{22} + 2992 q^{23} + 4982 q^{25} - 8732 q^{29} - 7488 q^{30} - 10304 q^{32} - 21336 q^{36}+ \cdots - 216408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.24500
6.24500
−2.00000 −24.9800 −28.0000 −74.9400 49.9600 0 120.000 381.000 149.880
1.2 −2.00000 24.9800 −28.0000 74.9400 −49.9600 0 120.000 381.000 −149.880
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 49.6.a.c 2
3.b odd 2 1 441.6.a.u 2
4.b odd 2 1 784.6.a.z 2
7.b odd 2 1 inner 49.6.a.c 2
7.c even 3 2 49.6.c.g 4
7.d odd 6 2 49.6.c.g 4
21.c even 2 1 441.6.a.u 2
28.d even 2 1 784.6.a.z 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
49.6.a.c 2 1.a even 1 1 trivial
49.6.a.c 2 7.b odd 2 1 inner
49.6.c.g 4 7.c even 3 2
49.6.c.g 4 7.d odd 6 2
441.6.a.u 2 3.b odd 2 1
441.6.a.u 2 21.c even 2 1
784.6.a.z 2 4.b odd 2 1
784.6.a.z 2 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(49))\):

\( T_{2} + 2 \) Copy content Toggle raw display
\( T_{3}^{2} - 624 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 624 \) Copy content Toggle raw display
$5$ \( T^{2} - 5616 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 284)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 275184 \) Copy content Toggle raw display
$17$ \( T^{2} - 22464 \) Copy content Toggle raw display
$19$ \( T^{2} - 4723056 \) Copy content Toggle raw display
$23$ \( (T - 1496)^{2} \) Copy content Toggle raw display
$29$ \( (T + 4366)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 41535936 \) Copy content Toggle raw display
$37$ \( (T + 12630)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 89159616 \) Copy content Toggle raw display
$43$ \( (T + 1356)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 100840896 \) Copy content Toggle raw display
$53$ \( (T - 14150)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 1398389616 \) Copy content Toggle raw display
$61$ \( T^{2} - 1267110000 \) Copy content Toggle raw display
$67$ \( (T + 3644)^{2} \) Copy content Toggle raw display
$71$ \( (T - 35632)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 1661976576 \) Copy content Toggle raw display
$79$ \( (T + 54616)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 275184 \) Copy content Toggle raw display
$89$ \( T^{2} - 415494144 \) Copy content Toggle raw display
$97$ \( T^{2} - 33710040000 \) Copy content Toggle raw display
show more
show less