Defining parameters
Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 49.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(28\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(49))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 19 | 9 |
Cusp forms | 20 | 14 | 6 |
Eisenstein series | 8 | 5 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | Dim |
---|---|
\(+\) | \(6\) |
\(-\) | \(8\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(49))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(49))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(49)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)