Properties

Label 49.6.a
Level $49$
Weight $6$
Character orbit 49.a
Rep. character $\chi_{49}(1,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $7$
Sturm bound $28$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(28\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(49))\).

Total New Old
Modular forms 28 19 9
Cusp forms 20 14 6
Eisenstein series 8 5 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)Dim
\(+\)\(6\)
\(-\)\(8\)

Trace form

\( 14 q + 20 q^{3} + 140 q^{4} + 74 q^{5} + 58 q^{6} + 420 q^{8} + 490 q^{9} - 764 q^{10} - 1120 q^{11} + 2506 q^{12} + 490 q^{13} + 560 q^{15} + 1204 q^{16} - 78 q^{17} - 5740 q^{18} + 3364 q^{19} + 1288 q^{20}+ \cdots - 401744 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(49))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7
49.6.a.a 49.a 1.a $1$ $7.859$ \(\Q\) None 7.6.a.a \(-10\) \(14\) \(56\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-10q^{2}+14q^{3}+68q^{4}+56q^{5}+\cdots\)
49.6.a.b 49.a 1.a $1$ $7.859$ \(\Q\) \(\Q(\sqrt{-7}) \) 49.6.a.b \(11\) \(0\) \(0\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q+11q^{2}+89q^{4}+627q^{8}-3^{5}q^{9}+\cdots\)
49.6.a.c 49.a 1.a $2$ $7.859$ \(\Q(\sqrt{39}) \) None 49.6.a.c \(-4\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta q^{3}-28q^{4}+3\beta q^{5}-2\beta q^{6}+\cdots\)
49.6.a.d 49.a 1.a $2$ $7.859$ \(\Q(\sqrt{37}) \) None 7.6.c.a \(2\) \(-8\) \(-38\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(-4-\beta )q^{3}+(6+2\beta )q^{4}+\cdots\)
49.6.a.e 49.a 1.a $2$ $7.859$ \(\Q(\sqrt{37}) \) None 7.6.c.a \(2\) \(8\) \(38\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(4+\beta )q^{3}+(6+2\beta )q^{4}+\cdots\)
49.6.a.f 49.a 1.a $2$ $7.859$ \(\Q(\sqrt{57}) \) None 7.6.a.b \(9\) \(6\) \(18\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(5-\beta )q^{2}+(6-6\beta )q^{3}+(7-9\beta )q^{4}+\cdots\)
49.6.a.g 49.a 1.a $4$ $7.859$ \(\Q(\sqrt{2}, \sqrt{113})\) None 49.6.a.g \(-10\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(2\beta _{2}-\beta _{3})q^{3}-5\beta _{1}q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(49))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(49)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)