Defining parameters
Level: | \( N \) | = | \( 49 = 7^{2} \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(1176\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(49))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 520 | 495 | 25 |
Cusp forms | 460 | 446 | 14 |
Eisenstein series | 60 | 49 | 11 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(49))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
49.6.a | \(\chi_{49}(1, \cdot)\) | 49.6.a.a | 1 | 1 |
49.6.a.b | 1 | |||
49.6.a.c | 2 | |||
49.6.a.d | 2 | |||
49.6.a.e | 2 | |||
49.6.a.f | 2 | |||
49.6.a.g | 4 | |||
49.6.c | \(\chi_{49}(18, \cdot)\) | 49.6.c.a | 2 | 2 |
49.6.c.b | 2 | |||
49.6.c.c | 2 | |||
49.6.c.d | 4 | |||
49.6.c.e | 4 | |||
49.6.c.f | 4 | |||
49.6.c.g | 4 | |||
49.6.c.h | 8 | |||
49.6.e | \(\chi_{49}(8, \cdot)\) | 49.6.e.a | 138 | 6 |
49.6.g | \(\chi_{49}(2, \cdot)\) | 49.6.g.a | 264 | 12 |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(49))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(49)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)