Properties

Label 49.6
Level 49
Weight 6
Dimension 446
Nonzero newspaces 4
Newform subspaces 17
Sturm bound 1176
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 49 = 7^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 17 \)
Sturm bound: \(1176\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(49))\).

Total New Old
Modular forms 520 495 25
Cusp forms 460 446 14
Eisenstein series 60 49 11

Trace form

\( 446 q - 15 q^{2} + 3 q^{3} - 143 q^{4} + 51 q^{5} + 423 q^{6} + 98 q^{7} + 315 q^{8} - 1803 q^{9} - 3105 q^{10} - 429 q^{11} + 4599 q^{12} + 4655 q^{13} + 1722 q^{14} - 1863 q^{15} - 7223 q^{16} - 4869 q^{17}+ \cdots - 1126668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(49))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
49.6.a \(\chi_{49}(1, \cdot)\) 49.6.a.a 1 1
49.6.a.b 1
49.6.a.c 2
49.6.a.d 2
49.6.a.e 2
49.6.a.f 2
49.6.a.g 4
49.6.c \(\chi_{49}(18, \cdot)\) 49.6.c.a 2 2
49.6.c.b 2
49.6.c.c 2
49.6.c.d 4
49.6.c.e 4
49.6.c.f 4
49.6.c.g 4
49.6.c.h 8
49.6.e \(\chi_{49}(8, \cdot)\) 49.6.e.a 138 6
49.6.g \(\chi_{49}(2, \cdot)\) 49.6.g.a 264 12

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(49))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(49)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)