Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [49,4,Mod(8,49)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(49, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([12]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("49.8");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 49.e (of order \(7\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.89109359028\) |
Analytic rank: | \(0\) |
Dimension: | \(78\) |
Relative dimension: | \(13\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.1 | −3.44244 | − | 4.31668i | 3.65176 | − | 1.75859i | −5.00318 | + | 21.9203i | −12.6967 | + | 6.11441i | −20.1622 | − | 9.70961i | −15.1671 | + | 10.6282i | 72.0505 | − | 34.6977i | −6.59154 | + | 8.26553i | 70.1015 | + | 33.7591i |
8.2 | −2.77071 | − | 3.47436i | −6.15987 | + | 2.96643i | −2.61419 | + | 11.4535i | 1.98451 | − | 0.955692i | 27.3737 | + | 13.1825i | 18.5202 | − | 0.0393741i | 15.0065 | − | 7.22673i | 12.3100 | − | 15.4362i | −8.81894 | − | 4.24698i |
8.3 | −2.45388 | − | 3.07706i | 2.79026 | − | 1.34372i | −1.66664 | + | 7.30203i | 16.4856 | − | 7.93907i | −10.9817 | − | 5.28849i | −6.70370 | − | 17.2644i | −1.80909 | + | 0.871210i | −10.8543 | + | 13.6108i | −64.8827 | − | 31.2459i |
8.4 | −1.61233 | − | 2.02180i | −3.25484 | + | 1.56745i | 0.292112 | − | 1.27982i | −3.53374 | + | 1.70176i | 8.41693 | + | 4.05338i | −10.4442 | + | 15.2944i | −21.6976 | + | 10.4490i | −8.69714 | + | 10.9059i | 9.13817 | + | 4.40071i |
8.5 | −1.46127 | − | 1.83238i | 7.38411 | − | 3.55600i | 0.557879 | − | 2.44423i | −0.458224 | + | 0.220669i | −17.3061 | − | 8.33419i | 12.0280 | + | 14.0828i | −22.1867 | + | 10.6846i | 25.0457 | − | 31.4064i | 1.07394 | + | 0.517181i |
8.6 | −0.802750 | − | 1.00662i | −1.70862 | + | 0.822828i | 1.41130 | − | 6.18330i | −15.9369 | + | 7.67483i | 2.19987 | + | 1.05940i | 0.116992 | − | 18.5199i | −16.6372 | + | 8.01205i | −14.5919 | + | 18.2976i | 20.5190 | + | 9.88143i |
8.7 | 0.153998 | + | 0.193108i | −8.98937 | + | 4.32905i | 1.76659 | − | 7.73995i | 14.2902 | − | 6.88179i | −2.22032 | − | 1.06925i | −13.6848 | − | 12.4791i | 3.54697 | − | 1.70813i | 45.2339 | − | 56.7215i | 3.52959 | + | 1.69976i |
8.8 | 0.521845 | + | 0.654373i | 5.78023 | − | 2.78361i | 1.62429 | − | 7.11646i | −1.28950 | + | 0.620991i | 4.83790 | + | 2.32981i | −17.3557 | − | 6.46381i | 11.5371 | − | 5.55599i | 8.82835 | − | 11.0704i | −1.07928 | − | 0.519753i |
8.9 | 0.777062 | + | 0.974405i | −0.189548 | + | 0.0912813i | 1.43453 | − | 6.28508i | 7.66912 | − | 3.69325i | −0.236235 | − | 0.113765i | 18.3768 | + | 2.30053i | 16.2220 | − | 7.81211i | −16.8066 | + | 21.0748i | 9.55811 | + | 4.60294i |
8.10 | 1.88794 | + | 2.36740i | −5.83533 | + | 2.81015i | −0.260101 | + | 1.13958i | −12.6471 | + | 6.09051i | −17.6695 | − | 8.50917i | −3.94107 | + | 18.0961i | 18.6363 | − | 8.97477i | 9.31994 | − | 11.6868i | −38.2955 | − | 18.4422i |
8.11 | 2.59695 | + | 3.25648i | 2.96773 | − | 1.42918i | −2.08030 | + | 9.11440i | 9.52410 | − | 4.58657i | 12.3612 | + | 5.95282i | −16.3066 | + | 8.78031i | −5.06162 | + | 2.43755i | −10.0694 | + | 12.6266i | 39.6697 | + | 19.1039i |
8.12 | 2.64790 | + | 3.32037i | 6.62695 | − | 3.19137i | −2.23327 | + | 9.78459i | −17.1881 | + | 8.27737i | 28.1441 | + | 13.5535i | 16.3388 | − | 8.72030i | −7.79127 | + | 3.75208i | 16.8974 | − | 21.1887i | −72.9964 | − | 35.1532i |
8.13 | 3.18020 | + | 3.98784i | −4.68696 | + | 2.25712i | −4.00905 | + | 17.5648i | 4.76744 | − | 2.29588i | −23.9065 | − | 11.5128i | 7.38357 | − | 16.9848i | −46.0311 | + | 22.1674i | 0.0387732 | − | 0.0486201i | 24.3170 | + | 11.7104i |
15.1 | −1.16701 | + | 5.11301i | −1.24065 | + | 1.55573i | −17.5732 | − | 8.46282i | 0.849213 | − | 1.06488i | −6.50660 | − | 8.15902i | −18.2375 | + | 3.22369i | 37.6195 | − | 47.1733i | 5.12699 | + | 22.4628i | 4.45370 | + | 5.58476i |
15.2 | −0.892344 | + | 3.90961i | 5.02886 | − | 6.30599i | −7.28105 | − | 3.50637i | 8.76329 | − | 10.9888i | 20.1665 | + | 25.2880i | 3.97541 | − | 18.0886i | 0.203423 | − | 0.255085i | −8.46803 | − | 37.1008i | 35.1422 | + | 44.0669i |
15.3 | −0.846844 | + | 3.71026i | 3.04811 | − | 3.82222i | −5.84116 | − | 2.81296i | −12.1071 | + | 15.1818i | 11.6002 | + | 14.5461i | 13.1709 | + | 13.0203i | −3.59906 | + | 4.51308i | 0.689741 | + | 3.02195i | −46.0758 | − | 57.7772i |
15.4 | −0.764068 | + | 3.34760i | −5.99643 | + | 7.51929i | −3.41489 | − | 1.64452i | 0.968529 | − | 1.21450i | −20.5899 | − | 25.8189i | 18.5012 | + | 0.839908i | −9.01256 | + | 11.3014i | −14.5744 | − | 63.8547i | 3.32563 | + | 4.17021i |
15.5 | −0.424669 | + | 1.86059i | 0.113640 | − | 0.142500i | 3.92628 | + | 1.89080i | 11.1399 | − | 13.9690i | 0.216876 | + | 0.271954i | 1.18252 | + | 18.4825i | −14.7045 | + | 18.4389i | 6.00067 | + | 26.2907i | 21.2598 | + | 26.6590i |
15.6 | −0.379589 | + | 1.66309i | −2.24247 | + | 2.81197i | 4.58597 | + | 2.20849i | −4.66393 | + | 5.84838i | −3.82533 | − | 4.79682i | −14.0409 | − | 12.0769i | −13.9224 | + | 17.4581i | 3.12958 | + | 13.7116i | −7.95600 | − | 9.97651i |
15.7 | 0.0613960 | − | 0.268993i | 2.25069 | − | 2.82228i | 7.13916 | + | 3.43804i | −2.36861 | + | 2.97014i | −0.620990 | − | 0.778697i | 9.47466 | − | 15.9132i | 2.73935 | − | 3.43503i | 3.10843 | + | 13.6189i | 0.653525 | + | 0.819495i |
See all 78 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.e | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 49.4.e.a | ✓ | 78 |
49.e | even | 7 | 1 | inner | 49.4.e.a | ✓ | 78 |
49.e | even | 7 | 1 | 2401.4.a.d | 39 | ||
49.f | odd | 14 | 1 | 2401.4.a.c | 39 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
49.4.e.a | ✓ | 78 | 1.a | even | 1 | 1 | trivial |
49.4.e.a | ✓ | 78 | 49.e | even | 7 | 1 | inner |
2401.4.a.c | 39 | 49.f | odd | 14 | 1 | ||
2401.4.a.d | 39 | 49.e | even | 7 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(49, [\chi])\).