Properties

Label 49.4.c.b
Level $49$
Weight $4$
Character orbit 49.c
Analytic conductor $2.891$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [49,4,Mod(18,49)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(49, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("49.18");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 49.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89109359028\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} + (2 \zeta_{6} - 2) q^{3} + ( - 7 \zeta_{6} + 7) q^{4} + 16 \zeta_{6} q^{5} - 2 q^{6} + 15 q^{8} + 23 \zeta_{6} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{6} q^{2} + (2 \zeta_{6} - 2) q^{3} + ( - 7 \zeta_{6} + 7) q^{4} + 16 \zeta_{6} q^{5} - 2 q^{6} + 15 q^{8} + 23 \zeta_{6} q^{9} + (16 \zeta_{6} - 16) q^{10} + ( - 8 \zeta_{6} + 8) q^{11} + 14 \zeta_{6} q^{12} - 28 q^{13} - 32 q^{15} - 41 \zeta_{6} q^{16} + ( - 54 \zeta_{6} + 54) q^{17} + (23 \zeta_{6} - 23) q^{18} - 110 \zeta_{6} q^{19} + 112 q^{20} + 8 q^{22} - 48 \zeta_{6} q^{23} + (30 \zeta_{6} - 30) q^{24} + (131 \zeta_{6} - 131) q^{25} - 28 \zeta_{6} q^{26} - 100 q^{27} - 110 q^{29} - 32 \zeta_{6} q^{30} + ( - 12 \zeta_{6} + 12) q^{31} + ( - 161 \zeta_{6} + 161) q^{32} + 16 \zeta_{6} q^{33} + 54 q^{34} + 161 q^{36} + 246 \zeta_{6} q^{37} + ( - 110 \zeta_{6} + 110) q^{38} + ( - 56 \zeta_{6} + 56) q^{39} + 240 \zeta_{6} q^{40} - 182 q^{41} + 128 q^{43} - 56 \zeta_{6} q^{44} + (368 \zeta_{6} - 368) q^{45} + ( - 48 \zeta_{6} + 48) q^{46} + 324 \zeta_{6} q^{47} + 82 q^{48} - 131 q^{50} + 108 \zeta_{6} q^{51} + (196 \zeta_{6} - 196) q^{52} + ( - 162 \zeta_{6} + 162) q^{53} - 100 \zeta_{6} q^{54} + 128 q^{55} + 220 q^{57} - 110 \zeta_{6} q^{58} + ( - 810 \zeta_{6} + 810) q^{59} + (224 \zeta_{6} - 224) q^{60} - 488 \zeta_{6} q^{61} + 12 q^{62} - 167 q^{64} - 448 \zeta_{6} q^{65} + (16 \zeta_{6} - 16) q^{66} + (244 \zeta_{6} - 244) q^{67} - 378 \zeta_{6} q^{68} + 96 q^{69} - 768 q^{71} + 345 \zeta_{6} q^{72} + (702 \zeta_{6} - 702) q^{73} + (246 \zeta_{6} - 246) q^{74} - 262 \zeta_{6} q^{75} - 770 q^{76} + 56 q^{78} - 440 \zeta_{6} q^{79} + ( - 656 \zeta_{6} + 656) q^{80} + (421 \zeta_{6} - 421) q^{81} - 182 \zeta_{6} q^{82} + 1302 q^{83} + 864 q^{85} + 128 \zeta_{6} q^{86} + ( - 220 \zeta_{6} + 220) q^{87} + ( - 120 \zeta_{6} + 120) q^{88} + 730 \zeta_{6} q^{89} - 368 q^{90} - 336 q^{92} + 24 \zeta_{6} q^{93} + (324 \zeta_{6} - 324) q^{94} + ( - 1760 \zeta_{6} + 1760) q^{95} + 322 \zeta_{6} q^{96} - 294 q^{97} + 184 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 2 q^{3} + 7 q^{4} + 16 q^{5} - 4 q^{6} + 30 q^{8} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - 2 q^{3} + 7 q^{4} + 16 q^{5} - 4 q^{6} + 30 q^{8} + 23 q^{9} - 16 q^{10} + 8 q^{11} + 14 q^{12} - 56 q^{13} - 64 q^{15} - 41 q^{16} + 54 q^{17} - 23 q^{18} - 110 q^{19} + 224 q^{20} + 16 q^{22} - 48 q^{23} - 30 q^{24} - 131 q^{25} - 28 q^{26} - 200 q^{27} - 220 q^{29} - 32 q^{30} + 12 q^{31} + 161 q^{32} + 16 q^{33} + 108 q^{34} + 322 q^{36} + 246 q^{37} + 110 q^{38} + 56 q^{39} + 240 q^{40} - 364 q^{41} + 256 q^{43} - 56 q^{44} - 368 q^{45} + 48 q^{46} + 324 q^{47} + 164 q^{48} - 262 q^{50} + 108 q^{51} - 196 q^{52} + 162 q^{53} - 100 q^{54} + 256 q^{55} + 440 q^{57} - 110 q^{58} + 810 q^{59} - 224 q^{60} - 488 q^{61} + 24 q^{62} - 334 q^{64} - 448 q^{65} - 16 q^{66} - 244 q^{67} - 378 q^{68} + 192 q^{69} - 1536 q^{71} + 345 q^{72} - 702 q^{73} - 246 q^{74} - 262 q^{75} - 1540 q^{76} + 112 q^{78} - 440 q^{79} + 656 q^{80} - 421 q^{81} - 182 q^{82} + 2604 q^{83} + 1728 q^{85} + 128 q^{86} + 220 q^{87} + 120 q^{88} + 730 q^{89} - 736 q^{90} - 672 q^{92} + 24 q^{93} - 324 q^{94} + 1760 q^{95} + 322 q^{96} - 588 q^{97} + 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
18.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i −1.00000 + 1.73205i 3.50000 6.06218i 8.00000 + 13.8564i −2.00000 0 15.0000 11.5000 + 19.9186i −8.00000 + 13.8564i
30.1 0.500000 0.866025i −1.00000 1.73205i 3.50000 + 6.06218i 8.00000 13.8564i −2.00000 0 15.0000 11.5000 19.9186i −8.00000 13.8564i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 49.4.c.b 2
3.b odd 2 1 441.4.e.e 2
7.b odd 2 1 49.4.c.c 2
7.c even 3 1 49.4.a.b 1
7.c even 3 1 inner 49.4.c.b 2
7.d odd 6 1 7.4.a.a 1
7.d odd 6 1 49.4.c.c 2
21.c even 2 1 441.4.e.h 2
21.g even 6 1 63.4.a.b 1
21.g even 6 1 441.4.e.h 2
21.h odd 6 1 441.4.a.i 1
21.h odd 6 1 441.4.e.e 2
28.f even 6 1 112.4.a.f 1
28.g odd 6 1 784.4.a.g 1
35.i odd 6 1 175.4.a.b 1
35.j even 6 1 1225.4.a.j 1
35.k even 12 2 175.4.b.b 2
56.j odd 6 1 448.4.a.i 1
56.m even 6 1 448.4.a.e 1
77.i even 6 1 847.4.a.b 1
84.j odd 6 1 1008.4.a.c 1
91.s odd 6 1 1183.4.a.b 1
105.p even 6 1 1575.4.a.e 1
119.h odd 6 1 2023.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.a.a 1 7.d odd 6 1
49.4.a.b 1 7.c even 3 1
49.4.c.b 2 1.a even 1 1 trivial
49.4.c.b 2 7.c even 3 1 inner
49.4.c.c 2 7.b odd 2 1
49.4.c.c 2 7.d odd 6 1
63.4.a.b 1 21.g even 6 1
112.4.a.f 1 28.f even 6 1
175.4.a.b 1 35.i odd 6 1
175.4.b.b 2 35.k even 12 2
441.4.a.i 1 21.h odd 6 1
441.4.e.e 2 3.b odd 2 1
441.4.e.e 2 21.h odd 6 1
441.4.e.h 2 21.c even 2 1
441.4.e.h 2 21.g even 6 1
448.4.a.e 1 56.m even 6 1
448.4.a.i 1 56.j odd 6 1
784.4.a.g 1 28.g odd 6 1
847.4.a.b 1 77.i even 6 1
1008.4.a.c 1 84.j odd 6 1
1183.4.a.b 1 91.s odd 6 1
1225.4.a.j 1 35.j even 6 1
1575.4.a.e 1 105.p even 6 1
2023.4.a.a 1 119.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(49, [\chi])\):

\( T_{2}^{2} - T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{2} + 2T_{3} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$5$ \( T^{2} - 16T + 256 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$13$ \( (T + 28)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 54T + 2916 \) Copy content Toggle raw display
$19$ \( T^{2} + 110T + 12100 \) Copy content Toggle raw display
$23$ \( T^{2} + 48T + 2304 \) Copy content Toggle raw display
$29$ \( (T + 110)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$37$ \( T^{2} - 246T + 60516 \) Copy content Toggle raw display
$41$ \( (T + 182)^{2} \) Copy content Toggle raw display
$43$ \( (T - 128)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 324T + 104976 \) Copy content Toggle raw display
$53$ \( T^{2} - 162T + 26244 \) Copy content Toggle raw display
$59$ \( T^{2} - 810T + 656100 \) Copy content Toggle raw display
$61$ \( T^{2} + 488T + 238144 \) Copy content Toggle raw display
$67$ \( T^{2} + 244T + 59536 \) Copy content Toggle raw display
$71$ \( (T + 768)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 702T + 492804 \) Copy content Toggle raw display
$79$ \( T^{2} + 440T + 193600 \) Copy content Toggle raw display
$83$ \( (T - 1302)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 730T + 532900 \) Copy content Toggle raw display
$97$ \( (T + 294)^{2} \) Copy content Toggle raw display
show more
show less