Properties

Label 49.4.c.a.18.1
Level $49$
Weight $4$
Character 49.18
Analytic conductor $2.891$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [49,4,Mod(18,49)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(49, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("49.18");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 49.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89109359028\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 18.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 49.18
Dual form 49.4.c.a.30.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(3.50000 - 6.06218i) q^{3} +(2.00000 - 3.46410i) q^{4} +(3.50000 + 6.06218i) q^{5} -14.0000 q^{6} -24.0000 q^{8} +(-11.0000 - 19.0526i) q^{9} +(7.00000 - 12.1244i) q^{10} +(2.50000 - 4.33013i) q^{11} +(-14.0000 - 24.2487i) q^{12} +14.0000 q^{13} +49.0000 q^{15} +(8.00000 + 13.8564i) q^{16} +(-10.5000 + 18.1865i) q^{17} +(-22.0000 + 38.1051i) q^{18} +(24.5000 + 42.4352i) q^{19} +28.0000 q^{20} -10.0000 q^{22} +(79.5000 + 137.698i) q^{23} +(-84.0000 + 145.492i) q^{24} +(38.0000 - 65.8179i) q^{25} +(-14.0000 - 24.2487i) q^{26} +35.0000 q^{27} +58.0000 q^{29} +(-49.0000 - 84.8705i) q^{30} +(73.5000 - 127.306i) q^{31} +(-80.0000 + 138.564i) q^{32} +(-17.5000 - 30.3109i) q^{33} +42.0000 q^{34} -88.0000 q^{36} +(-109.500 - 189.660i) q^{37} +(49.0000 - 84.8705i) q^{38} +(49.0000 - 84.8705i) q^{39} +(-84.0000 - 145.492i) q^{40} -350.000 q^{41} -124.000 q^{43} +(-10.0000 - 17.3205i) q^{44} +(77.0000 - 133.368i) q^{45} +(159.000 - 275.396i) q^{46} +(262.500 + 454.663i) q^{47} +112.000 q^{48} -152.000 q^{50} +(73.5000 + 127.306i) q^{51} +(28.0000 - 48.4974i) q^{52} +(-151.500 + 262.406i) q^{53} +(-35.0000 - 60.6218i) q^{54} +35.0000 q^{55} +343.000 q^{57} +(-58.0000 - 100.459i) q^{58} +(-52.5000 + 90.9327i) q^{59} +(98.0000 - 169.741i) q^{60} +(-206.500 - 357.668i) q^{61} -294.000 q^{62} +448.000 q^{64} +(49.0000 + 84.8705i) q^{65} +(-35.0000 + 60.6218i) q^{66} +(-207.500 + 359.401i) q^{67} +(42.0000 + 72.7461i) q^{68} +1113.00 q^{69} -432.000 q^{71} +(264.000 + 457.261i) q^{72} +(-556.500 + 963.886i) q^{73} +(-219.000 + 379.319i) q^{74} +(-266.000 - 460.726i) q^{75} +196.000 q^{76} -196.000 q^{78} +(51.5000 + 89.2006i) q^{79} +(-56.0000 + 96.9948i) q^{80} +(419.500 - 726.595i) q^{81} +(350.000 + 606.218i) q^{82} -1092.00 q^{83} -147.000 q^{85} +(124.000 + 214.774i) q^{86} +(203.000 - 351.606i) q^{87} +(-60.0000 + 103.923i) q^{88} +(-164.500 - 284.922i) q^{89} -308.000 q^{90} +636.000 q^{92} +(-514.500 - 891.140i) q^{93} +(525.000 - 909.327i) q^{94} +(-171.500 + 297.047i) q^{95} +(560.000 + 969.948i) q^{96} +882.000 q^{97} -110.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 7 q^{3} + 4 q^{4} + 7 q^{5} - 28 q^{6} - 48 q^{8} - 22 q^{9} + 14 q^{10} + 5 q^{11} - 28 q^{12} + 28 q^{13} + 98 q^{15} + 16 q^{16} - 21 q^{17} - 44 q^{18} + 49 q^{19} + 56 q^{20} - 20 q^{22}+ \cdots - 220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i 0.633316 0.773893i \(-0.281693\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) 3.50000 6.06218i 0.673575 1.16667i −0.303308 0.952893i \(-0.598091\pi\)
0.976883 0.213774i \(-0.0685756\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 3.50000 + 6.06218i 0.313050 + 0.542218i 0.979021 0.203760i \(-0.0653161\pi\)
−0.665971 + 0.745977i \(0.731983\pi\)
\(6\) −14.0000 −0.952579
\(7\) 0 0
\(8\) −24.0000 −1.06066
\(9\) −11.0000 19.0526i −0.407407 0.705650i
\(10\) 7.00000 12.1244i 0.221359 0.383406i
\(11\) 2.50000 4.33013i 0.0685253 0.118689i −0.829727 0.558169i \(-0.811504\pi\)
0.898252 + 0.439480i \(0.144837\pi\)
\(12\) −14.0000 24.2487i −0.336788 0.583333i
\(13\) 14.0000 0.298685 0.149342 0.988786i \(-0.452284\pi\)
0.149342 + 0.988786i \(0.452284\pi\)
\(14\) 0 0
\(15\) 49.0000 0.843450
\(16\) 8.00000 + 13.8564i 0.125000 + 0.216506i
\(17\) −10.5000 + 18.1865i −0.149801 + 0.259464i −0.931154 0.364626i \(-0.881197\pi\)
0.781353 + 0.624090i \(0.214530\pi\)
\(18\) −22.0000 + 38.1051i −0.288081 + 0.498970i
\(19\) 24.5000 + 42.4352i 0.295826 + 0.512385i 0.975177 0.221429i \(-0.0710720\pi\)
−0.679351 + 0.733813i \(0.737739\pi\)
\(20\) 28.0000 0.313050
\(21\) 0 0
\(22\) −10.0000 −0.0969094
\(23\) 79.5000 + 137.698i 0.720735 + 1.24835i 0.960706 + 0.277569i \(0.0895287\pi\)
−0.239971 + 0.970780i \(0.577138\pi\)
\(24\) −84.0000 + 145.492i −0.714435 + 1.23744i
\(25\) 38.0000 65.8179i 0.304000 0.526543i
\(26\) −14.0000 24.2487i −0.105601 0.182906i
\(27\) 35.0000 0.249472
\(28\) 0 0
\(29\) 58.0000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) −49.0000 84.8705i −0.298205 0.516505i
\(31\) 73.5000 127.306i 0.425838 0.737574i −0.570660 0.821186i \(-0.693313\pi\)
0.996498 + 0.0836128i \(0.0266459\pi\)
\(32\) −80.0000 + 138.564i −0.441942 + 0.765466i
\(33\) −17.5000 30.3109i −0.0923139 0.159892i
\(34\) 42.0000 0.211851
\(35\) 0 0
\(36\) −88.0000 −0.407407
\(37\) −109.500 189.660i −0.486532 0.842698i 0.513348 0.858181i \(-0.328405\pi\)
−0.999880 + 0.0154821i \(0.995072\pi\)
\(38\) 49.0000 84.8705i 0.209180 0.362311i
\(39\) 49.0000 84.8705i 0.201187 0.348466i
\(40\) −84.0000 145.492i −0.332039 0.575109i
\(41\) −350.000 −1.33319 −0.666595 0.745420i \(-0.732249\pi\)
−0.666595 + 0.745420i \(0.732249\pi\)
\(42\) 0 0
\(43\) −124.000 −0.439763 −0.219882 0.975527i \(-0.570567\pi\)
−0.219882 + 0.975527i \(0.570567\pi\)
\(44\) −10.0000 17.3205i −0.0342627 0.0593447i
\(45\) 77.0000 133.368i 0.255077 0.441807i
\(46\) 159.000 275.396i 0.509636 0.882716i
\(47\) 262.500 + 454.663i 0.814671 + 1.41105i 0.909564 + 0.415565i \(0.136416\pi\)
−0.0948921 + 0.995488i \(0.530251\pi\)
\(48\) 112.000 0.336788
\(49\) 0 0
\(50\) −152.000 −0.429921
\(51\) 73.5000 + 127.306i 0.201805 + 0.349537i
\(52\) 28.0000 48.4974i 0.0746712 0.129334i
\(53\) −151.500 + 262.406i −0.392644 + 0.680079i −0.992797 0.119806i \(-0.961773\pi\)
0.600153 + 0.799885i \(0.295106\pi\)
\(54\) −35.0000 60.6218i −0.0882018 0.152770i
\(55\) 35.0000 0.0858073
\(56\) 0 0
\(57\) 343.000 0.797043
\(58\) −58.0000 100.459i −0.131306 0.227429i
\(59\) −52.5000 + 90.9327i −0.115846 + 0.200651i −0.918118 0.396308i \(-0.870291\pi\)
0.802272 + 0.596959i \(0.203625\pi\)
\(60\) 98.0000 169.741i 0.210862 0.365224i
\(61\) −206.500 357.668i −0.433436 0.750734i 0.563730 0.825959i \(-0.309366\pi\)
−0.997167 + 0.0752252i \(0.976032\pi\)
\(62\) −294.000 −0.602226
\(63\) 0 0
\(64\) 448.000 0.875000
\(65\) 49.0000 + 84.8705i 0.0935031 + 0.161952i
\(66\) −35.0000 + 60.6218i −0.0652758 + 0.113061i
\(67\) −207.500 + 359.401i −0.378361 + 0.655340i −0.990824 0.135159i \(-0.956845\pi\)
0.612463 + 0.790499i \(0.290179\pi\)
\(68\) 42.0000 + 72.7461i 0.0749007 + 0.129732i
\(69\) 1113.00 1.94188
\(70\) 0 0
\(71\) −432.000 −0.722098 −0.361049 0.932547i \(-0.617581\pi\)
−0.361049 + 0.932547i \(0.617581\pi\)
\(72\) 264.000 + 457.261i 0.432121 + 0.748455i
\(73\) −556.500 + 963.886i −0.892238 + 1.54540i −0.0550526 + 0.998483i \(0.517533\pi\)
−0.837186 + 0.546919i \(0.815801\pi\)
\(74\) −219.000 + 379.319i −0.344030 + 0.595878i
\(75\) −266.000 460.726i −0.409534 0.709333i
\(76\) 196.000 0.295826
\(77\) 0 0
\(78\) −196.000 −0.284521
\(79\) 51.5000 + 89.2006i 0.0733443 + 0.127036i 0.900365 0.435135i \(-0.143299\pi\)
−0.827021 + 0.562171i \(0.809966\pi\)
\(80\) −56.0000 + 96.9948i −0.0782624 + 0.135554i
\(81\) 419.500 726.595i 0.575446 0.996701i
\(82\) 350.000 + 606.218i 0.471354 + 0.816409i
\(83\) −1092.00 −1.44413 −0.722064 0.691827i \(-0.756806\pi\)
−0.722064 + 0.691827i \(0.756806\pi\)
\(84\) 0 0
\(85\) −147.000 −0.187581
\(86\) 124.000 + 214.774i 0.155480 + 0.269299i
\(87\) 203.000 351.606i 0.250160 0.433289i
\(88\) −60.0000 + 103.923i −0.0726821 + 0.125889i
\(89\) −164.500 284.922i −0.195921 0.339345i 0.751281 0.659982i \(-0.229436\pi\)
−0.947202 + 0.320637i \(0.896103\pi\)
\(90\) −308.000 −0.360734
\(91\) 0 0
\(92\) 636.000 0.720735
\(93\) −514.500 891.140i −0.573668 0.993623i
\(94\) 525.000 909.327i 0.576060 0.997765i
\(95\) −171.500 + 297.047i −0.185216 + 0.320804i
\(96\) 560.000 + 969.948i 0.595362 + 1.03120i
\(97\) 882.000 0.923232 0.461616 0.887080i \(-0.347270\pi\)
0.461616 + 0.887080i \(0.347270\pi\)
\(98\) 0 0
\(99\) −110.000 −0.111671
\(100\) −152.000 263.272i −0.152000 0.263272i
\(101\) 689.500 1194.25i 0.679285 1.17656i −0.295911 0.955215i \(-0.595623\pi\)
0.975196 0.221341i \(-0.0710434\pi\)
\(102\) 147.000 254.611i 0.142698 0.247160i
\(103\) −339.500 588.031i −0.324776 0.562529i 0.656691 0.754160i \(-0.271956\pi\)
−0.981467 + 0.191631i \(0.938622\pi\)
\(104\) −336.000 −0.316803
\(105\) 0 0
\(106\) 606.000 0.555282
\(107\) −228.500 395.774i −0.206448 0.357578i 0.744145 0.668018i \(-0.232857\pi\)
−0.950593 + 0.310440i \(0.899524\pi\)
\(108\) 70.0000 121.244i 0.0623681 0.108025i
\(109\) 562.500 974.279i 0.494291 0.856137i −0.505687 0.862717i \(-0.668761\pi\)
0.999978 + 0.00657959i \(0.00209436\pi\)
\(110\) −35.0000 60.6218i −0.0303374 0.0525460i
\(111\) −1533.00 −1.31086
\(112\) 0 0
\(113\) −1538.00 −1.28038 −0.640190 0.768217i \(-0.721144\pi\)
−0.640190 + 0.768217i \(0.721144\pi\)
\(114\) −343.000 594.093i −0.281797 0.488087i
\(115\) −556.500 + 963.886i −0.451251 + 0.781590i
\(116\) 116.000 200.918i 0.0928477 0.160817i
\(117\) −154.000 266.736i −0.121686 0.210767i
\(118\) 210.000 0.163831
\(119\) 0 0
\(120\) −1176.00 −0.894614
\(121\) 653.000 + 1131.03i 0.490609 + 0.849759i
\(122\) −413.000 + 715.337i −0.306486 + 0.530849i
\(123\) −1225.00 + 2121.76i −0.898004 + 1.55539i
\(124\) −294.000 509.223i −0.212919 0.368787i
\(125\) 1407.00 1.00677
\(126\) 0 0
\(127\) 72.0000 0.0503068 0.0251534 0.999684i \(-0.491993\pi\)
0.0251534 + 0.999684i \(0.491993\pi\)
\(128\) 192.000 + 332.554i 0.132583 + 0.229640i
\(129\) −434.000 + 751.710i −0.296214 + 0.513057i
\(130\) 98.0000 169.741i 0.0661167 0.114517i
\(131\) 1074.50 + 1861.09i 0.716637 + 1.24125i 0.962325 + 0.271903i \(0.0876531\pi\)
−0.245687 + 0.969349i \(0.579014\pi\)
\(132\) −140.000 −0.0923139
\(133\) 0 0
\(134\) 830.000 0.535083
\(135\) 122.500 + 212.176i 0.0780972 + 0.135268i
\(136\) 252.000 436.477i 0.158888 0.275203i
\(137\) 562.500 974.279i 0.350786 0.607578i −0.635602 0.772017i \(-0.719248\pi\)
0.986387 + 0.164439i \(0.0525813\pi\)
\(138\) −1113.00 1927.77i −0.686557 1.18915i
\(139\) −252.000 −0.153772 −0.0768862 0.997040i \(-0.524498\pi\)
−0.0768862 + 0.997040i \(0.524498\pi\)
\(140\) 0 0
\(141\) 3675.00 2.19497
\(142\) 432.000 + 748.246i 0.255300 + 0.442193i
\(143\) 35.0000 60.6218i 0.0204675 0.0354507i
\(144\) 176.000 304.841i 0.101852 0.176413i
\(145\) 203.000 + 351.606i 0.116264 + 0.201375i
\(146\) 2226.00 1.26182
\(147\) 0 0
\(148\) −876.000 −0.486532
\(149\) 100.500 + 174.071i 0.0552569 + 0.0957078i 0.892331 0.451382i \(-0.149069\pi\)
−0.837074 + 0.547090i \(0.815736\pi\)
\(150\) −532.000 + 921.451i −0.289584 + 0.501574i
\(151\) −809.500 + 1402.10i −0.436266 + 0.755635i −0.997398 0.0720914i \(-0.977033\pi\)
0.561132 + 0.827726i \(0.310366\pi\)
\(152\) −588.000 1018.45i −0.313770 0.543466i
\(153\) 462.000 0.244121
\(154\) 0 0
\(155\) 1029.00 0.533234
\(156\) −196.000 339.482i −0.100593 0.174233i
\(157\) 339.500 588.031i 0.172580 0.298917i −0.766741 0.641956i \(-0.778123\pi\)
0.939321 + 0.343039i \(0.111456\pi\)
\(158\) 103.000 178.401i 0.0518623 0.0898281i
\(159\) 1060.50 + 1836.84i 0.528950 + 0.916169i
\(160\) −1120.00 −0.553399
\(161\) 0 0
\(162\) −1678.00 −0.813803
\(163\) 233.500 + 404.434i 0.112203 + 0.194342i 0.916658 0.399672i \(-0.130876\pi\)
−0.804455 + 0.594014i \(0.797543\pi\)
\(164\) −700.000 + 1212.44i −0.333298 + 0.577288i
\(165\) 122.500 212.176i 0.0577976 0.100108i
\(166\) 1092.00 + 1891.40i 0.510576 + 0.884344i
\(167\) −1204.00 −0.557894 −0.278947 0.960306i \(-0.589985\pi\)
−0.278947 + 0.960306i \(0.589985\pi\)
\(168\) 0 0
\(169\) −2001.00 −0.910787
\(170\) 147.000 + 254.611i 0.0663199 + 0.114869i
\(171\) 539.000 933.575i 0.241043 0.417499i
\(172\) −248.000 + 429.549i −0.109941 + 0.190423i
\(173\) −1410.50 2443.06i −0.619875 1.07365i −0.989508 0.144477i \(-0.953850\pi\)
0.369633 0.929178i \(-0.379483\pi\)
\(174\) −812.000 −0.353779
\(175\) 0 0
\(176\) 80.0000 0.0342627
\(177\) 367.500 + 636.529i 0.156062 + 0.270307i
\(178\) −329.000 + 569.845i −0.138537 + 0.239953i
\(179\) 1626.50 2817.18i 0.679164 1.17635i −0.296069 0.955166i \(-0.595676\pi\)
0.975233 0.221180i \(-0.0709907\pi\)
\(180\) −308.000 533.472i −0.127539 0.220903i
\(181\) −1582.00 −0.649664 −0.324832 0.945772i \(-0.605308\pi\)
−0.324832 + 0.945772i \(0.605308\pi\)
\(182\) 0 0
\(183\) −2891.00 −1.16781
\(184\) −1908.00 3304.75i −0.764454 1.32407i
\(185\) 766.500 1327.62i 0.304617 0.527613i
\(186\) −1029.00 + 1782.28i −0.405645 + 0.702597i
\(187\) 52.5000 + 90.9327i 0.0205304 + 0.0355597i
\(188\) 2100.00 0.814671
\(189\) 0 0
\(190\) 686.000 0.261935
\(191\) −1278.50 2214.43i −0.484340 0.838902i 0.515498 0.856891i \(-0.327607\pi\)
−0.999838 + 0.0179887i \(0.994274\pi\)
\(192\) 1568.00 2715.86i 0.589378 1.02083i
\(193\) 198.500 343.812i 0.0740329 0.128229i −0.826632 0.562742i \(-0.809746\pi\)
0.900665 + 0.434514i \(0.143080\pi\)
\(194\) −882.000 1527.67i −0.326412 0.565362i
\(195\) 686.000 0.251926
\(196\) 0 0
\(197\) 2914.00 1.05388 0.526939 0.849903i \(-0.323340\pi\)
0.526939 + 0.849903i \(0.323340\pi\)
\(198\) 110.000 + 190.526i 0.0394816 + 0.0683842i
\(199\) 1669.50 2891.66i 0.594712 1.03007i −0.398875 0.917005i \(-0.630599\pi\)
0.993587 0.113066i \(-0.0360673\pi\)
\(200\) −912.000 + 1579.63i −0.322441 + 0.558484i
\(201\) 1452.50 + 2515.80i 0.509709 + 0.882841i
\(202\) −2758.00 −0.960654
\(203\) 0 0
\(204\) 588.000 0.201805
\(205\) −1225.00 2121.76i −0.417355 0.722880i
\(206\) −679.000 + 1176.06i −0.229651 + 0.397768i
\(207\) 1749.00 3029.36i 0.587265 1.01717i
\(208\) 112.000 + 193.990i 0.0373356 + 0.0646671i
\(209\) 245.000 0.0810861
\(210\) 0 0
\(211\) 1780.00 0.580759 0.290380 0.956911i \(-0.406218\pi\)
0.290380 + 0.956911i \(0.406218\pi\)
\(212\) 606.000 + 1049.62i 0.196322 + 0.340040i
\(213\) −1512.00 + 2618.86i −0.486387 + 0.842448i
\(214\) −457.000 + 791.547i −0.145981 + 0.252846i
\(215\) −434.000 751.710i −0.137668 0.238447i
\(216\) −840.000 −0.264605
\(217\) 0 0
\(218\) −2250.00 −0.699033
\(219\) 3895.50 + 6747.20i 1.20198 + 2.08189i
\(220\) 70.0000 121.244i 0.0214518 0.0371556i
\(221\) −147.000 + 254.611i −0.0447434 + 0.0774978i
\(222\) 1533.00 + 2655.23i 0.463460 + 0.802737i
\(223\) 1400.00 0.420408 0.210204 0.977658i \(-0.432587\pi\)
0.210204 + 0.977658i \(0.432587\pi\)
\(224\) 0 0
\(225\) −1672.00 −0.495407
\(226\) 1538.00 + 2663.89i 0.452682 + 0.784069i
\(227\) −1102.50 + 1909.59i −0.322359 + 0.558342i −0.980974 0.194138i \(-0.937809\pi\)
0.658615 + 0.752480i \(0.271142\pi\)
\(228\) 686.000 1188.19i 0.199261 0.345130i
\(229\) 143.500 + 248.549i 0.0414094 + 0.0717231i 0.885987 0.463710i \(-0.153482\pi\)
−0.844578 + 0.535433i \(0.820149\pi\)
\(230\) 2226.00 0.638166
\(231\) 0 0
\(232\) −1392.00 −0.393919
\(233\) −2293.50 3972.46i −0.644859 1.11693i −0.984334 0.176314i \(-0.943583\pi\)
0.339475 0.940615i \(-0.389751\pi\)
\(234\) −308.000 + 533.472i −0.0860453 + 0.149035i
\(235\) −1837.50 + 3182.64i −0.510065 + 0.883459i
\(236\) 210.000 + 363.731i 0.0579230 + 0.100326i
\(237\) 721.000 0.197612
\(238\) 0 0
\(239\) 1668.00 0.451439 0.225720 0.974192i \(-0.427527\pi\)
0.225720 + 0.974192i \(0.427527\pi\)
\(240\) 392.000 + 678.964i 0.105431 + 0.182612i
\(241\) −1704.50 + 2952.28i −0.455587 + 0.789100i −0.998722 0.0505456i \(-0.983904\pi\)
0.543135 + 0.839646i \(0.317237\pi\)
\(242\) 1306.00 2262.06i 0.346913 0.600870i
\(243\) −2464.00 4267.77i −0.650476 1.12666i
\(244\) −1652.00 −0.433436
\(245\) 0 0
\(246\) 4900.00 1.26997
\(247\) 343.000 + 594.093i 0.0883586 + 0.153042i
\(248\) −1764.00 + 3055.34i −0.451670 + 0.782315i
\(249\) −3822.00 + 6619.90i −0.972729 + 1.68482i
\(250\) −1407.00 2437.00i −0.355946 0.616517i
\(251\) 4760.00 1.19701 0.598503 0.801121i \(-0.295762\pi\)
0.598503 + 0.801121i \(0.295762\pi\)
\(252\) 0 0
\(253\) 795.000 0.197554
\(254\) −72.0000 124.708i −0.0177861 0.0308065i
\(255\) −514.500 + 891.140i −0.126350 + 0.218845i
\(256\) 2176.00 3768.94i 0.531250 0.920152i
\(257\) −402.500 697.150i −0.0976936 0.169210i 0.813036 0.582213i \(-0.197813\pi\)
−0.910730 + 0.413003i \(0.864480\pi\)
\(258\) 1736.00 0.418909
\(259\) 0 0
\(260\) 392.000 0.0935031
\(261\) −638.000 1105.05i −0.151307 0.262072i
\(262\) 2149.00 3722.18i 0.506739 0.877698i
\(263\) 128.500 222.569i 0.0301279 0.0521831i −0.850568 0.525865i \(-0.823742\pi\)
0.880696 + 0.473681i \(0.157075\pi\)
\(264\) 420.000 + 727.461i 0.0979137 + 0.169591i
\(265\) −2121.00 −0.491668
\(266\) 0 0
\(267\) −2303.00 −0.527870
\(268\) 830.000 + 1437.60i 0.189180 + 0.327670i
\(269\) 1795.50 3109.90i 0.406965 0.704884i −0.587583 0.809164i \(-0.699920\pi\)
0.994548 + 0.104280i \(0.0332538\pi\)
\(270\) 245.000 424.352i 0.0552231 0.0956491i
\(271\) 696.500 + 1206.37i 0.156123 + 0.270413i 0.933467 0.358662i \(-0.116767\pi\)
−0.777344 + 0.629075i \(0.783434\pi\)
\(272\) −336.000 −0.0749007
\(273\) 0 0
\(274\) −2250.00 −0.496086
\(275\) −190.000 329.090i −0.0416634 0.0721631i
\(276\) 2226.00 3855.55i 0.485469 0.840857i
\(277\) −207.500 + 359.401i −0.0450089 + 0.0779577i −0.887652 0.460514i \(-0.847665\pi\)
0.842643 + 0.538472i \(0.180998\pi\)
\(278\) 252.000 + 436.477i 0.0543667 + 0.0941660i
\(279\) −3234.00 −0.693959
\(280\) 0 0
\(281\) −4954.00 −1.05171 −0.525856 0.850574i \(-0.676255\pi\)
−0.525856 + 0.850574i \(0.676255\pi\)
\(282\) −3675.00 6365.29i −0.776039 1.34414i
\(283\) −2138.50 + 3703.99i −0.449190 + 0.778019i −0.998333 0.0577087i \(-0.981621\pi\)
0.549144 + 0.835728i \(0.314954\pi\)
\(284\) −864.000 + 1496.49i −0.180525 + 0.312678i
\(285\) 1200.50 + 2079.33i 0.249514 + 0.432171i
\(286\) −140.000 −0.0289454
\(287\) 0 0
\(288\) 3520.00 0.720201
\(289\) 2236.00 + 3872.87i 0.455119 + 0.788289i
\(290\) 406.000 703.213i 0.0822108 0.142393i
\(291\) 3087.00 5346.84i 0.621866 1.07710i
\(292\) 2226.00 + 3855.55i 0.446119 + 0.772701i
\(293\) −7742.00 −1.54366 −0.771830 0.635829i \(-0.780658\pi\)
−0.771830 + 0.635829i \(0.780658\pi\)
\(294\) 0 0
\(295\) −735.000 −0.145062
\(296\) 2628.00 + 4551.83i 0.516045 + 0.893817i
\(297\) 87.5000 151.554i 0.0170952 0.0296097i
\(298\) 201.000 348.142i 0.0390725 0.0676756i
\(299\) 1113.00 + 1927.77i 0.215272 + 0.372863i
\(300\) −2128.00 −0.409534
\(301\) 0 0
\(302\) 3238.00 0.616973
\(303\) −4826.50 8359.74i −0.915100 1.58500i
\(304\) −392.000 + 678.964i −0.0739564 + 0.128096i
\(305\) 1445.50 2503.68i 0.271374 0.470034i
\(306\) −462.000 800.207i −0.0863097 0.149493i
\(307\) 7364.00 1.36901 0.684504 0.729009i \(-0.260019\pi\)
0.684504 + 0.729009i \(0.260019\pi\)
\(308\) 0 0
\(309\) −4753.00 −0.875044
\(310\) −1029.00 1782.28i −0.188527 0.326538i
\(311\) 4987.50 8638.60i 0.909374 1.57508i 0.0944372 0.995531i \(-0.469895\pi\)
0.814936 0.579550i \(-0.196772\pi\)
\(312\) −1176.00 + 2036.89i −0.213391 + 0.369603i
\(313\) −2376.50 4116.22i −0.429162 0.743330i 0.567637 0.823279i \(-0.307858\pi\)
−0.996799 + 0.0799485i \(0.974524\pi\)
\(314\) −1358.00 −0.244065
\(315\) 0 0
\(316\) 412.000 0.0733443
\(317\) 1738.50 + 3011.17i 0.308025 + 0.533515i 0.977930 0.208932i \(-0.0669987\pi\)
−0.669905 + 0.742447i \(0.733665\pi\)
\(318\) 2121.00 3673.68i 0.374024 0.647829i
\(319\) 145.000 251.147i 0.0254497 0.0440801i
\(320\) 1568.00 + 2715.86i 0.273918 + 0.474440i
\(321\) −3199.00 −0.556233
\(322\) 0 0
\(323\) −1029.00 −0.177260
\(324\) −1678.00 2906.38i −0.287723 0.498351i
\(325\) 532.000 921.451i 0.0908002 0.157270i
\(326\) 467.000 808.868i 0.0793397 0.137420i
\(327\) −3937.50 6819.95i −0.665885 1.15335i
\(328\) 8400.00 1.41406
\(329\) 0 0
\(330\) −490.000 −0.0817382
\(331\) −1670.50 2893.39i −0.277399 0.480469i 0.693339 0.720612i \(-0.256139\pi\)
−0.970738 + 0.240143i \(0.922806\pi\)
\(332\) −2184.00 + 3782.80i −0.361032 + 0.625325i
\(333\) −2409.00 + 4172.51i −0.396434 + 0.686643i
\(334\) 1204.00 + 2085.39i 0.197245 + 0.341639i
\(335\) −2905.00 −0.473782
\(336\) 0 0
\(337\) 7366.00 1.19066 0.595329 0.803482i \(-0.297022\pi\)
0.595329 + 0.803482i \(0.297022\pi\)
\(338\) 2001.00 + 3465.83i 0.322012 + 0.557741i
\(339\) −5383.00 + 9323.63i −0.862432 + 1.49378i
\(340\) −294.000 + 509.223i −0.0468953 + 0.0812250i
\(341\) −367.500 636.529i −0.0583614 0.101085i
\(342\) −2156.00 −0.340886
\(343\) 0 0
\(344\) 2976.00 0.466439
\(345\) 3895.50 + 6747.20i 0.607903 + 1.05292i
\(346\) −2821.00 + 4886.12i −0.438318 + 0.759188i
\(347\) −3707.50 + 6421.58i −0.573571 + 0.993454i 0.422625 + 0.906305i \(0.361109\pi\)
−0.996195 + 0.0871487i \(0.972224\pi\)
\(348\) −812.000 1406.43i −0.125080 0.216645i
\(349\) 3878.00 0.594798 0.297399 0.954753i \(-0.403881\pi\)
0.297399 + 0.954753i \(0.403881\pi\)
\(350\) 0 0
\(351\) 490.000 0.0745136
\(352\) 400.000 + 692.820i 0.0605684 + 0.104908i
\(353\) 633.500 1097.25i 0.0955179 0.165442i −0.814307 0.580435i \(-0.802883\pi\)
0.909825 + 0.414993i \(0.136216\pi\)
\(354\) 735.000 1273.06i 0.110353 0.191136i
\(355\) −1512.00 2618.86i −0.226052 0.391534i
\(356\) −1316.00 −0.195921
\(357\) 0 0
\(358\) −6506.00 −0.960483
\(359\) −2342.50 4057.33i −0.344380 0.596484i 0.640861 0.767657i \(-0.278578\pi\)
−0.985241 + 0.171173i \(0.945244\pi\)
\(360\) −1848.00 + 3200.83i −0.270550 + 0.468607i
\(361\) 2229.00 3860.74i 0.324974 0.562872i
\(362\) 1582.00 + 2740.10i 0.229691 + 0.397836i
\(363\) 9142.00 1.32185
\(364\) 0 0
\(365\) −7791.00 −1.11726
\(366\) 2891.00 + 5007.36i 0.412882 + 0.715133i
\(367\) −2320.50 + 4019.22i −0.330052 + 0.571667i −0.982522 0.186148i \(-0.940400\pi\)
0.652470 + 0.757815i \(0.273733\pi\)
\(368\) −1272.00 + 2203.17i −0.180184 + 0.312087i
\(369\) 3850.00 + 6668.40i 0.543152 + 0.940766i
\(370\) −3066.00 −0.430794
\(371\) 0 0
\(372\) −4116.00 −0.573668
\(373\) 4398.50 + 7618.43i 0.610578 + 1.05755i 0.991143 + 0.132798i \(0.0423963\pi\)
−0.380565 + 0.924754i \(0.624270\pi\)
\(374\) 105.000 181.865i 0.0145172 0.0251445i
\(375\) 4924.50 8529.48i 0.678134 1.17456i
\(376\) −6300.00 10911.9i −0.864090 1.49665i
\(377\) 812.000 0.110929
\(378\) 0 0
\(379\) 13680.0 1.85407 0.927037 0.374969i \(-0.122347\pi\)
0.927037 + 0.374969i \(0.122347\pi\)
\(380\) 686.000 + 1188.19i 0.0926080 + 0.160402i
\(381\) 252.000 436.477i 0.0338854 0.0586913i
\(382\) −2557.00 + 4428.85i −0.342480 + 0.593193i
\(383\) 4882.50 + 8456.74i 0.651395 + 1.12825i 0.982785 + 0.184755i \(0.0591490\pi\)
−0.331390 + 0.943494i \(0.607518\pi\)
\(384\) 2688.00 0.357217
\(385\) 0 0
\(386\) −794.000 −0.104698
\(387\) 1364.00 + 2362.52i 0.179163 + 0.310319i
\(388\) 1764.00 3055.34i 0.230808 0.399771i
\(389\) −865.500 + 1499.09i −0.112809 + 0.195390i −0.916902 0.399113i \(-0.869318\pi\)
0.804093 + 0.594504i \(0.202651\pi\)
\(390\) −686.000 1188.19i −0.0890691 0.154272i
\(391\) −3339.00 −0.431868
\(392\) 0 0
\(393\) 15043.0 1.93084
\(394\) −2914.00 5047.20i −0.372602 0.645366i
\(395\) −360.500 + 624.404i −0.0459208 + 0.0795372i
\(396\) −220.000 + 381.051i −0.0279177 + 0.0483549i
\(397\) 5491.50 + 9511.56i 0.694233 + 1.20245i 0.970439 + 0.241348i \(0.0775896\pi\)
−0.276206 + 0.961099i \(0.589077\pi\)
\(398\) −6678.00 −0.841050
\(399\) 0 0
\(400\) 1216.00 0.152000
\(401\) −3301.50 5718.37i −0.411145 0.712124i 0.583870 0.811847i \(-0.301538\pi\)
−0.995015 + 0.0997232i \(0.968204\pi\)
\(402\) 2905.00 5031.61i 0.360418 0.624263i
\(403\) 1029.00 1782.28i 0.127191 0.220302i
\(404\) −2758.00 4777.00i −0.339643 0.588278i
\(405\) 5873.00 0.720572
\(406\) 0 0
\(407\) −1095.00 −0.133359
\(408\) −1764.00 3055.34i −0.214047 0.370740i
\(409\) 5477.50 9487.31i 0.662213 1.14699i −0.317820 0.948151i \(-0.602951\pi\)
0.980033 0.198835i \(-0.0637158\pi\)
\(410\) −2450.00 + 4243.52i −0.295114 + 0.511153i
\(411\) −3937.50 6819.95i −0.472561 0.818500i
\(412\) −2716.00 −0.324776
\(413\) 0 0
\(414\) −6996.00 −0.830518
\(415\) −3822.00 6619.90i −0.452083 0.783031i
\(416\) −1120.00 + 1939.90i −0.132001 + 0.228633i
\(417\) −882.000 + 1527.67i −0.103577 + 0.179401i
\(418\) −245.000 424.352i −0.0286683 0.0496549i
\(419\) −6636.00 −0.773723 −0.386861 0.922138i \(-0.626441\pi\)
−0.386861 + 0.922138i \(0.626441\pi\)
\(420\) 0 0
\(421\) −16630.0 −1.92517 −0.962585 0.270980i \(-0.912652\pi\)
−0.962585 + 0.270980i \(0.912652\pi\)
\(422\) −1780.00 3083.05i −0.205329 0.355641i
\(423\) 5775.00 10002.6i 0.663806 1.14975i
\(424\) 3636.00 6297.74i 0.416462 0.721333i
\(425\) 798.000 + 1382.18i 0.0910793 + 0.157754i
\(426\) 6048.00 0.687856
\(427\) 0 0
\(428\) −1828.00 −0.206448
\(429\) −245.000 424.352i −0.0275728 0.0477574i
\(430\) −868.000 + 1503.42i −0.0973458 + 0.168608i
\(431\) −2461.50 + 4263.44i −0.275096 + 0.476480i −0.970159 0.242468i \(-0.922043\pi\)
0.695064 + 0.718948i \(0.255376\pi\)
\(432\) 280.000 + 484.974i 0.0311840 + 0.0540123i
\(433\) −8974.00 −0.995988 −0.497994 0.867180i \(-0.665930\pi\)
−0.497994 + 0.867180i \(0.665930\pi\)
\(434\) 0 0
\(435\) 2842.00 0.313249
\(436\) −2250.00 3897.11i −0.247146 0.428069i
\(437\) −3895.50 + 6747.20i −0.426423 + 0.738587i
\(438\) 7791.00 13494.4i 0.849928 1.47212i
\(439\) −2089.50 3619.12i −0.227167 0.393465i 0.729800 0.683660i \(-0.239613\pi\)
−0.956967 + 0.290195i \(0.906280\pi\)
\(440\) −840.000 −0.0910123
\(441\) 0 0
\(442\) 588.000 0.0632767
\(443\) 6463.50 + 11195.1i 0.693206 + 1.20067i 0.970782 + 0.239964i \(0.0771356\pi\)
−0.277576 + 0.960704i \(0.589531\pi\)
\(444\) −3066.00 + 5310.47i −0.327716 + 0.567621i
\(445\) 1151.50 1994.46i 0.122666 0.212464i
\(446\) −1400.00 2424.87i −0.148637 0.257446i
\(447\) 1407.00 0.148879
\(448\) 0 0
\(449\) −2826.00 −0.297032 −0.148516 0.988910i \(-0.547450\pi\)
−0.148516 + 0.988910i \(0.547450\pi\)
\(450\) 1672.00 + 2895.99i 0.175153 + 0.303374i
\(451\) −875.000 + 1515.54i −0.0913573 + 0.158235i
\(452\) −3076.00 + 5327.79i −0.320095 + 0.554421i
\(453\) 5666.50 + 9814.67i 0.587716 + 1.01795i
\(454\) 4410.00 0.455884
\(455\) 0 0
\(456\) −8232.00 −0.845392
\(457\) −4239.50 7343.03i −0.433951 0.751625i 0.563259 0.826281i \(-0.309547\pi\)
−0.997209 + 0.0746560i \(0.976214\pi\)
\(458\) 287.000 497.099i 0.0292808 0.0507159i
\(459\) −367.500 + 636.529i −0.0373713 + 0.0647290i
\(460\) 2226.00 + 3855.55i 0.225626 + 0.390795i
\(461\) −9338.00 −0.943414 −0.471707 0.881755i \(-0.656362\pi\)
−0.471707 + 0.881755i \(0.656362\pi\)
\(462\) 0 0
\(463\) −4016.00 −0.403109 −0.201554 0.979477i \(-0.564599\pi\)
−0.201554 + 0.979477i \(0.564599\pi\)
\(464\) 464.000 + 803.672i 0.0464238 + 0.0804084i
\(465\) 3601.50 6237.98i 0.359173 0.622106i
\(466\) −4587.00 + 7944.92i −0.455984 + 0.789788i
\(467\) −2929.50 5074.04i −0.290281 0.502781i 0.683595 0.729861i \(-0.260415\pi\)
−0.973876 + 0.227080i \(0.927082\pi\)
\(468\) −1232.00 −0.121686
\(469\) 0 0
\(470\) 7350.00 0.721341
\(471\) −2376.50 4116.22i −0.232491 0.402687i
\(472\) 1260.00 2182.38i 0.122873 0.212823i
\(473\) −310.000 + 536.936i −0.0301349 + 0.0521952i
\(474\) −721.000 1248.81i −0.0698663 0.121012i
\(475\) 3724.00 0.359724
\(476\) 0 0
\(477\) 6666.00 0.639864
\(478\) −1668.00 2889.06i −0.159608 0.276449i
\(479\) 3251.50 5631.76i 0.310156 0.537206i −0.668240 0.743946i \(-0.732952\pi\)
0.978396 + 0.206740i \(0.0662853\pi\)
\(480\) −3920.00 + 6789.64i −0.372756 + 0.645632i
\(481\) −1533.00 2655.23i −0.145320 0.251701i
\(482\) 6818.00 0.644297
\(483\) 0 0
\(484\) 5224.00 0.490609
\(485\) 3087.00 + 5346.84i 0.289017 + 0.500593i
\(486\) −4928.00 + 8535.55i −0.459956 + 0.796667i
\(487\) 8024.50 13898.8i 0.746663 1.29326i −0.202751 0.979230i \(-0.564988\pi\)
0.949414 0.314028i \(-0.101678\pi\)
\(488\) 4956.00 + 8584.04i 0.459729 + 0.796273i
\(489\) 3269.00 0.302309
\(490\) 0 0
\(491\) 8864.00 0.814718 0.407359 0.913268i \(-0.366450\pi\)
0.407359 + 0.913268i \(0.366450\pi\)
\(492\) 4900.00 + 8487.05i 0.449002 + 0.777695i
\(493\) −609.000 + 1054.82i −0.0556348 + 0.0963624i
\(494\) 686.000 1188.19i 0.0624789 0.108217i
\(495\) −385.000 666.840i −0.0349585 0.0605499i
\(496\) 2352.00 0.212919
\(497\) 0 0
\(498\) 15288.0 1.37565
\(499\) 5105.50 + 8842.99i 0.458023 + 0.793319i 0.998856 0.0478104i \(-0.0152243\pi\)
−0.540833 + 0.841130i \(0.681891\pi\)
\(500\) 2814.00 4873.99i 0.251692 0.435943i
\(501\) −4214.00 + 7298.86i −0.375784 + 0.650876i
\(502\) −4760.00 8244.56i −0.423206 0.733014i
\(503\) 1680.00 0.148921 0.0744607 0.997224i \(-0.476276\pi\)
0.0744607 + 0.997224i \(0.476276\pi\)
\(504\) 0 0
\(505\) 9653.00 0.850600
\(506\) −795.000 1376.98i −0.0698460 0.120977i
\(507\) −7003.50 + 12130.4i −0.613484 + 1.06259i
\(508\) 144.000 249.415i 0.0125767 0.0217835i
\(509\) −4728.50 8190.00i −0.411762 0.713193i 0.583320 0.812242i \(-0.301753\pi\)
−0.995083 + 0.0990489i \(0.968420\pi\)
\(510\) 2058.00 0.178686
\(511\) 0 0
\(512\) −5632.00 −0.486136
\(513\) 857.500 + 1485.23i 0.0738003 + 0.127826i
\(514\) −805.000 + 1394.30i −0.0690798 + 0.119650i
\(515\) 2376.50 4116.22i 0.203342 0.352199i
\(516\) 1736.00 + 3006.84i 0.148107 + 0.256529i
\(517\) 2625.00 0.223302
\(518\) 0 0
\(519\) −19747.0 −1.67013
\(520\) −1176.00 2036.89i −0.0991750 0.171776i
\(521\) −9040.50 + 15658.6i −0.760214 + 1.31673i 0.182526 + 0.983201i \(0.441573\pi\)
−0.942740 + 0.333528i \(0.891761\pi\)
\(522\) −1276.00 + 2210.10i −0.106990 + 0.185313i
\(523\) 10188.5 + 17647.0i 0.851839 + 1.47543i 0.879546 + 0.475813i \(0.157846\pi\)
−0.0277071 + 0.999616i \(0.508821\pi\)
\(524\) 8596.00 0.716637
\(525\) 0 0
\(526\) −514.000 −0.0426073
\(527\) 1543.50 + 2673.42i 0.127582 + 0.220979i
\(528\) 280.000 484.974i 0.0230785 0.0399731i
\(529\) −6557.00 + 11357.1i −0.538917 + 0.933431i
\(530\) 2121.00 + 3673.68i 0.173831 + 0.301084i
\(531\) 2310.00 0.188786
\(532\) 0 0
\(533\) −4900.00 −0.398204
\(534\) 2303.00 + 3988.91i 0.186630 + 0.323253i
\(535\) 1599.50 2770.42i 0.129257 0.223879i
\(536\) 4980.00 8625.61i 0.401312 0.695093i
\(537\) −11385.5 19720.3i −0.914936 1.58472i
\(538\) −7182.00 −0.575535
\(539\) 0 0
\(540\) 980.000 0.0780972
\(541\) 3096.50 + 5363.30i 0.246079 + 0.426222i 0.962435 0.271514i \(-0.0875243\pi\)
−0.716355 + 0.697736i \(0.754191\pi\)
\(542\) 1393.00 2412.75i 0.110396 0.191211i
\(543\) −5537.00 + 9590.37i −0.437597 + 0.757941i
\(544\) −1680.00 2909.85i −0.132407 0.229336i
\(545\) 7875.00 0.618950
\(546\) 0 0
\(547\) −18464.0 −1.44326 −0.721630 0.692279i \(-0.756607\pi\)
−0.721630 + 0.692279i \(0.756607\pi\)
\(548\) −2250.00 3897.11i −0.175393 0.303789i
\(549\) −4543.00 + 7868.71i −0.353170 + 0.611709i
\(550\) −380.000 + 658.179i −0.0294605 + 0.0510270i
\(551\) 1421.00 + 2461.24i 0.109867 + 0.190295i
\(552\) −26712.0 −2.05967
\(553\) 0 0
\(554\) 830.000 0.0636522
\(555\) −5365.50 9293.32i −0.410365 0.710774i
\(556\) −504.000 + 872.954i −0.0384431 + 0.0665854i
\(557\) 4706.50 8151.90i 0.358027 0.620120i −0.629604 0.776916i \(-0.716783\pi\)
0.987631 + 0.156796i \(0.0501164\pi\)
\(558\) 3234.00 + 5601.45i 0.245351 + 0.424961i
\(559\) −1736.00 −0.131351
\(560\) 0 0
\(561\) 735.000 0.0553150
\(562\) 4954.00 + 8580.58i 0.371836 + 0.644039i
\(563\) 1599.50 2770.42i 0.119735 0.207387i −0.799928 0.600097i \(-0.795129\pi\)
0.919663 + 0.392709i \(0.128462\pi\)
\(564\) 7350.00 12730.6i 0.548743 0.950450i
\(565\) −5383.00 9323.63i −0.400822 0.694244i
\(566\) 8554.00 0.635250
\(567\) 0 0
\(568\) 10368.0 0.765901
\(569\) −10791.5 18691.4i −0.795085 1.37713i −0.922785 0.385314i \(-0.874093\pi\)
0.127701 0.991813i \(-0.459240\pi\)
\(570\) 2401.00 4158.65i 0.176433 0.305591i
\(571\) −10133.5 + 17551.7i −0.742686 + 1.28637i 0.208582 + 0.978005i \(0.433115\pi\)
−0.951268 + 0.308365i \(0.900218\pi\)
\(572\) −140.000 242.487i −0.0102337 0.0177253i
\(573\) −17899.0 −1.30496
\(574\) 0 0
\(575\) 12084.0 0.876413
\(576\) −4928.00 8535.55i −0.356481 0.617444i
\(577\) 6975.50 12081.9i 0.503282 0.871710i −0.496711 0.867916i \(-0.665459\pi\)
0.999993 0.00379418i \(-0.00120773\pi\)
\(578\) 4472.00 7745.73i 0.321818 0.557405i
\(579\) −1389.50 2406.68i −0.0997334 0.172743i
\(580\) 1624.00 0.116264
\(581\) 0 0
\(582\) −12348.0 −0.879452
\(583\) 757.500 + 1312.03i 0.0538121 + 0.0932053i
\(584\) 13356.0 23133.3i 0.946362 1.63915i
\(585\) 1078.00 1867.15i 0.0761877 0.131961i
\(586\) 7742.00 + 13409.5i 0.545766 + 0.945295i
\(587\) 20972.0 1.47463 0.737314 0.675550i \(-0.236094\pi\)
0.737314 + 0.675550i \(0.236094\pi\)
\(588\) 0 0
\(589\) 7203.00 0.503895
\(590\) 735.000 + 1273.06i 0.0512872 + 0.0888321i
\(591\) 10199.0 17665.2i 0.709866 1.22952i
\(592\) 1752.00 3034.55i 0.121633 0.210675i
\(593\) −94.5000 163.679i −0.00654410 0.0113347i 0.862735 0.505657i \(-0.168750\pi\)
−0.869279 + 0.494322i \(0.835416\pi\)
\(594\) −350.000 −0.0241762
\(595\) 0 0
\(596\) 804.000 0.0552569
\(597\) −11686.5 20241.6i −0.801167 1.38766i
\(598\) 2226.00 3855.55i 0.152221 0.263654i
\(599\) 5140.50 8903.61i 0.350643 0.607331i −0.635719 0.771920i \(-0.719296\pi\)
0.986362 + 0.164589i \(0.0526297\pi\)
\(600\) 6384.00 + 11057.4i 0.434376 + 0.752362i
\(601\) 6090.00 0.413338 0.206669 0.978411i \(-0.433738\pi\)
0.206669 + 0.978411i \(0.433738\pi\)
\(602\) 0 0
\(603\) 9130.00 0.616588
\(604\) 3238.00 + 5608.38i 0.218133 + 0.377817i
\(605\) −4571.00 + 7917.20i −0.307170 + 0.532033i
\(606\) −9653.00 + 16719.5i −0.647073 + 1.12076i
\(607\) 2474.50 + 4285.96i 0.165464 + 0.286593i 0.936820 0.349812i \(-0.113754\pi\)
−0.771356 + 0.636404i \(0.780421\pi\)
\(608\) −7840.00 −0.522951
\(609\) 0 0
\(610\) −5782.00 −0.383781
\(611\) 3675.00 + 6365.29i 0.243330 + 0.421460i
\(612\) 924.000 1600.41i 0.0610302 0.105707i
\(613\) 7898.50 13680.6i 0.520420 0.901394i −0.479298 0.877652i \(-0.659109\pi\)
0.999718 0.0237416i \(-0.00755791\pi\)
\(614\) −7364.00 12754.8i −0.484018 0.838343i
\(615\) −17150.0 −1.12448
\(616\) 0 0
\(617\) −9378.00 −0.611903 −0.305951 0.952047i \(-0.598975\pi\)
−0.305951 + 0.952047i \(0.598975\pi\)
\(618\) 4753.00 + 8232.44i 0.309375 + 0.535853i
\(619\) −12176.5 + 21090.3i −0.790654 + 1.36945i 0.134908 + 0.990858i \(0.456926\pi\)
−0.925562 + 0.378595i \(0.876407\pi\)
\(620\) 2058.00 3564.56i 0.133308 0.230897i
\(621\) 2782.50 + 4819.43i 0.179803 + 0.311429i
\(622\) −19950.0 −1.28605
\(623\) 0 0
\(624\) 1568.00 0.100593
\(625\) 174.500 + 302.243i 0.0111680 + 0.0193435i
\(626\) −4753.00 + 8232.44i −0.303463 + 0.525614i
\(627\) 857.500 1485.23i 0.0546176 0.0946005i
\(628\) −1358.00 2352.12i −0.0862900 0.149459i
\(629\) 4599.00 0.291533
\(630\) 0 0
\(631\) −12640.0 −0.797449 −0.398725 0.917071i \(-0.630547\pi\)
−0.398725 + 0.917071i \(0.630547\pi\)
\(632\) −1236.00 2140.81i −0.0777934 0.134742i
\(633\) 6230.00 10790.7i 0.391185 0.677553i
\(634\) 3477.00 6022.34i 0.217806 0.377252i
\(635\) 252.000 + 436.477i 0.0157485 + 0.0272772i
\(636\) 8484.00 0.528950
\(637\) 0 0
\(638\) −580.000 −0.0359913
\(639\) 4752.00 + 8230.71i 0.294188 + 0.509549i
\(640\) −1344.00 + 2327.88i −0.0830098 + 0.143777i
\(641\) 520.500 901.532i 0.0320726 0.0555513i −0.849544 0.527518i \(-0.823123\pi\)
0.881616 + 0.471967i \(0.156456\pi\)
\(642\) 3199.00 + 5540.83i 0.196658 + 0.340622i
\(643\) −9548.00 −0.585593 −0.292797 0.956175i \(-0.594586\pi\)
−0.292797 + 0.956175i \(0.594586\pi\)
\(644\) 0 0
\(645\) −6076.00 −0.370918
\(646\) 1029.00 + 1782.28i 0.0626710 + 0.108549i
\(647\) −1620.50 + 2806.79i −0.0984674 + 0.170551i −0.911050 0.412295i \(-0.864727\pi\)
0.812583 + 0.582845i \(0.198061\pi\)
\(648\) −10068.0 + 17438.3i −0.610352 + 1.05716i
\(649\) 262.500 + 454.663i 0.0158768 + 0.0274994i
\(650\) −2128.00 −0.128411
\(651\) 0 0
\(652\) 1868.00 0.112203
\(653\) 4426.50 + 7666.92i 0.265272 + 0.459464i 0.967635 0.252355i \(-0.0812051\pi\)
−0.702363 + 0.711819i \(0.747872\pi\)
\(654\) −7875.00 + 13639.9i −0.470851 + 0.815539i
\(655\) −7521.50 + 13027.6i −0.448686 + 0.777147i
\(656\) −2800.00 4849.74i −0.166649 0.288644i
\(657\) 24486.0 1.45402
\(658\) 0 0
\(659\) 7044.00 0.416381 0.208191 0.978088i \(-0.433243\pi\)
0.208191 + 0.978088i \(0.433243\pi\)
\(660\) −490.000 848.705i −0.0288988 0.0500542i
\(661\) −6044.50 + 10469.4i −0.355679 + 0.616054i −0.987234 0.159277i \(-0.949084\pi\)
0.631555 + 0.775331i \(0.282417\pi\)
\(662\) −3341.00 + 5786.78i −0.196151 + 0.339743i
\(663\) 1029.00 + 1782.28i 0.0602761 + 0.104401i
\(664\) 26208.0 1.53173
\(665\) 0 0
\(666\) 9636.00 0.560642
\(667\) 4611.00 + 7986.49i 0.267674 + 0.463625i
\(668\) −2408.00 + 4170.78i −0.139474 + 0.241575i
\(669\) 4900.00 8487.05i 0.283176 0.490476i
\(670\) 2905.00 + 5031.61i 0.167507 + 0.290131i
\(671\) −2065.00 −0.118805
\(672\) 0 0
\(673\) 982.000 0.0562456 0.0281228 0.999604i \(-0.491047\pi\)
0.0281228 + 0.999604i \(0.491047\pi\)
\(674\) −7366.00 12758.3i −0.420961 0.729126i
\(675\) 1330.00 2303.63i 0.0758396 0.131358i
\(676\) −4002.00 + 6931.67i −0.227697 + 0.394383i
\(677\) −15256.5 26425.0i −0.866108 1.50014i −0.865943 0.500143i \(-0.833281\pi\)
−0.000164659 1.00000i \(-0.500052\pi\)
\(678\) 21532.0 1.21966
\(679\) 0 0
\(680\) 3528.00 0.198960
\(681\) 7717.50 + 13367.1i 0.434266 + 0.752171i
\(682\) −735.000 + 1273.06i −0.0412677 + 0.0714778i
\(683\) −5737.50 + 9937.64i −0.321434 + 0.556740i −0.980784 0.195096i \(-0.937498\pi\)
0.659350 + 0.751836i \(0.270831\pi\)
\(684\) −2156.00 3734.30i −0.120522 0.208749i
\(685\) 7875.00 0.439253
\(686\) 0 0
\(687\) 2009.00 0.111569
\(688\) −992.000 1718.19i −0.0549704 0.0952116i
\(689\) −2121.00 + 3673.68i −0.117277 + 0.203129i
\(690\) 7791.00 13494.4i 0.429853 0.744527i
\(691\) −14157.5 24521.5i −0.779416 1.34999i −0.932279 0.361741i \(-0.882182\pi\)
0.152862 0.988248i \(-0.451151\pi\)
\(692\) −11284.0 −0.619875
\(693\) 0 0
\(694\) 14830.0 0.811151
\(695\) −882.000 1527.67i −0.0481384 0.0833781i
\(696\) −4872.00 + 8438.55i −0.265334 + 0.459573i
\(697\) 3675.00 6365.29i 0.199714 0.345915i
\(698\) −3878.00 6716.89i −0.210293 0.364238i
\(699\) −32109.0 −1.73744
\(700\) 0 0
\(701\) 10614.0 0.571876 0.285938 0.958248i \(-0.407695\pi\)
0.285938 + 0.958248i \(0.407695\pi\)
\(702\) −490.000 848.705i −0.0263445 0.0456301i
\(703\) 5365.50 9293.32i 0.287857 0.498583i
\(704\) 1120.00 1939.90i 0.0599596 0.103853i
\(705\) 12862.5 + 22278.5i 0.687134 + 1.19015i
\(706\) −2534.00 −0.135083
\(707\) 0 0
\(708\) 2940.00 0.156062
\(709\) −5149.50 8919.20i −0.272769 0.472451i 0.696801 0.717265i \(-0.254606\pi\)
−0.969570 + 0.244814i \(0.921273\pi\)
\(710\) −3024.00 + 5237.72i −0.159843 + 0.276857i
\(711\) 1133.00 1962.41i 0.0597621 0.103511i
\(712\) 3948.00 + 6838.14i 0.207806 + 0.359930i
\(713\) 23373.0 1.22767
\(714\) 0 0
\(715\) 490.000 0.0256293
\(716\) −6506.00 11268.7i −0.339582 0.588173i
\(717\) 5838.00 10111.7i 0.304078 0.526679i
\(718\) −4685.00 + 8114.66i −0.243513 + 0.421778i
\(719\) 16264.5 + 28170.9i 0.843621 + 1.46119i 0.886813 + 0.462128i \(0.152914\pi\)
−0.0431924 + 0.999067i \(0.513753\pi\)
\(720\) 2464.00 0.127539
\(721\) 0 0
\(722\) −8916.00 −0.459583
\(723\) 11931.5 + 20666.0i 0.613744 + 1.06304i
\(724\) −3164.00 + 5480.21i −0.162416 + 0.281313i
\(725\) 2204.00 3817.44i 0.112903 0.195553i
\(726\) −9142.00 15834.4i −0.467344 0.809463i
\(727\) −29456.0 −1.50270 −0.751350 0.659904i \(-0.770597\pi\)
−0.751350 + 0.659904i \(0.770597\pi\)
\(728\) 0 0
\(729\) −11843.0 −0.601687
\(730\) 7791.00 + 13494.4i 0.395011 + 0.684179i
\(731\) 1302.00 2255.13i 0.0658772 0.114103i
\(732\) −5782.00 + 10014.7i −0.291952 + 0.505676i
\(733\) 13933.5 + 24133.5i 0.702109 + 1.21609i 0.967725 + 0.252009i \(0.0810912\pi\)
−0.265616 + 0.964079i \(0.585575\pi\)
\(734\) 9282.00 0.466764
\(735\) 0 0
\(736\) −25440.0 −1.27409
\(737\) 1037.50 + 1797.00i 0.0518546 + 0.0898147i
\(738\) 7700.00 13336.8i 0.384066 0.665222i
\(739\) −9769.50 + 16921.3i −0.486302 + 0.842299i −0.999876 0.0157460i \(-0.994988\pi\)
0.513574 + 0.858045i \(0.328321\pi\)
\(740\) −3066.00 5310.47i −0.152309 0.263806i
\(741\) 4802.00 0.238065
\(742\) 0 0
\(743\) 1248.00 0.0616214 0.0308107 0.999525i \(-0.490191\pi\)
0.0308107 + 0.999525i \(0.490191\pi\)
\(744\) 12348.0 + 21387.4i 0.608467 + 1.05390i
\(745\) −703.500 + 1218.50i −0.0345963 + 0.0599226i
\(746\) 8797.00 15236.9i 0.431744 0.747803i
\(747\) 12012.0 + 20805.4i 0.588348 + 1.01905i
\(748\) 420.000 0.0205304
\(749\) 0 0
\(750\) −19698.0 −0.959026
\(751\) −14046.5 24329.3i −0.682509 1.18214i −0.974213 0.225631i \(-0.927556\pi\)
0.291704 0.956509i \(-0.405778\pi\)
\(752\) −4200.00 + 7274.61i −0.203668 + 0.352763i
\(753\) 16660.0 28856.0i 0.806274 1.39651i
\(754\) −812.000 1406.43i −0.0392192 0.0679297i
\(755\) −11333.0 −0.546292
\(756\) 0 0
\(757\) 35954.0 1.72625 0.863124 0.504991i \(-0.168504\pi\)
0.863124 + 0.504991i \(0.168504\pi\)
\(758\) −13680.0 23694.5i −0.655514 1.13538i
\(759\) 2782.50 4819.43i 0.133068 0.230480i
\(760\) 4116.00 7129.12i 0.196451 0.340264i
\(761\) −430.500 745.648i −0.0205067 0.0355187i 0.855590 0.517654i \(-0.173195\pi\)
−0.876097 + 0.482136i \(0.839861\pi\)
\(762\) −1008.00 −0.0479212
\(763\) 0 0
\(764\) −10228.0 −0.484340
\(765\) 1617.00 + 2800.73i 0.0764219 + 0.132367i
\(766\) 9765.00 16913.5i 0.460605 0.797792i
\(767\) −735.000 + 1273.06i −0.0346014 + 0.0599315i
\(768\) −15232.0 26382.6i −0.715674 1.23958i
\(769\) −24710.0 −1.15873 −0.579366 0.815067i \(-0.696700\pi\)
−0.579366 + 0.815067i \(0.696700\pi\)
\(770\) 0 0
\(771\) −5635.00 −0.263216
\(772\) −794.000 1375.25i −0.0370164 0.0641143i
\(773\) 8249.50 14288.6i 0.383847 0.664843i −0.607761 0.794120i \(-0.707932\pi\)
0.991609 + 0.129277i \(0.0412656\pi\)
\(774\) 2728.00 4725.03i 0.126687 0.219429i
\(775\) −5586.00 9675.24i −0.258910 0.448445i
\(776\) −21168.0 −0.979236
\(777\) 0 0
\(778\) 3462.00 0.159536
\(779\) −8575.00 14852.3i −0.394392 0.683107i
\(780\) 1372.00 2376.37i 0.0629814 0.109087i
\(781\) −1080.00 + 1870.61i −0.0494820 + 0.0857053i
\(782\) 3339.00 + 5783.32i 0.152688 + 0.264464i
\(783\) 2030.00 0.0926517
\(784\) 0 0
\(785\) 4753.00 0.216104
\(786\) −15043.0 26055.2i −0.682654 1.18239i
\(787\) 8235.50 14264.3i 0.373016 0.646083i −0.617012 0.786954i \(-0.711657\pi\)
0.990028 + 0.140871i \(0.0449902\pi\)
\(788\) 5828.00 10094.4i 0.263469 0.456342i
\(789\) −899.500 1557.98i −0.0405869 0.0702985i
\(790\) 1442.00 0.0649418
\(791\) 0 0
\(792\) 2640.00 0.118445
\(793\) −2891.00 5007.36i −0.129461 0.224233i
\(794\) 10983.0 19023.1i 0.490897 0.850258i
\(795\) −7423.50 + 12857.9i −0.331175 + 0.573613i
\(796\) −6678.00 11566.6i −0.297356 0.515036i
\(797\) 36470.0 1.62087 0.810435 0.585828i \(-0.199231\pi\)
0.810435 + 0.585828i \(0.199231\pi\)
\(798\) 0 0
\(799\) −11025.0 −0.488156
\(800\) 6080.00 + 10530.9i 0.268701 + 0.465403i
\(801\) −3619.00 + 6268.29i −0.159639 + 0.276503i
\(802\) −6603.00 + 11436.7i −0.290723 + 0.503547i
\(803\) 2782.50 + 4819.43i 0.122282 + 0.211798i
\(804\) 11620.0 0.509709
\(805\) 0 0
\(806\) −4116.00 −0.179876
\(807\) −12568.5 21769.3i −0.548243 0.949585i
\(808\) −16548.0 + 28662.0i −0.720491 + 1.24793i
\(809\) −17875.5 + 30961.3i −0.776847 + 1.34554i 0.156904 + 0.987614i \(0.449849\pi\)
−0.933751 + 0.357924i \(0.883485\pi\)
\(810\) −5873.00 10172.3i −0.254761 0.441259i
\(811\) 16492.0 0.714072 0.357036 0.934091i \(-0.383787\pi\)
0.357036 + 0.934091i \(0.383787\pi\)
\(812\) 0 0
\(813\) 9751.00 0.420643
\(814\) 1095.00 + 1896.60i 0.0471495 + 0.0816654i
\(815\) −1634.50 + 2831.04i −0.0702504 + 0.121677i
\(816\) −1176.00 + 2036.89i −0.0504513 + 0.0873842i
\(817\) −3038.00 5261.97i −0.130093 0.225328i
\(818\) −21910.0 −0.936510
\(819\) 0 0
\(820\) −9800.00 −0.417355
\(821\) 20736.5 + 35916.7i 0.881497 + 1.52680i 0.849677 + 0.527304i \(0.176797\pi\)
0.0318198 + 0.999494i \(0.489870\pi\)
\(822\) −7875.00 + 13639.9i −0.334151 + 0.578767i
\(823\) 12532.5 21706.9i 0.530809 0.919387i −0.468545 0.883440i \(-0.655222\pi\)
0.999354 0.0359479i \(-0.0114450\pi\)
\(824\) 8148.00 + 14112.7i 0.344477 + 0.596652i
\(825\) −2660.00 −0.112254
\(826\) 0 0
\(827\) 9732.00 0.409208 0.204604 0.978845i \(-0.434409\pi\)
0.204604 + 0.978845i \(0.434409\pi\)
\(828\) −6996.00 12117.4i −0.293633 0.508587i
\(829\) 13877.5 24036.5i 0.581406 1.00702i −0.413907 0.910319i \(-0.635836\pi\)
0.995313 0.0967055i \(-0.0308305\pi\)
\(830\) −7644.00 + 13239.8i −0.319671 + 0.553687i
\(831\) 1452.50 + 2515.80i 0.0606338 + 0.105021i
\(832\) 6272.00 0.261349
\(833\) 0 0
\(834\) 3528.00 0.146480
\(835\) −4214.00 7298.86i −0.174648 0.302500i
\(836\) 490.000 848.705i 0.0202715 0.0351113i
\(837\) 2572.50 4455.70i 0.106235 0.184004i
\(838\) 6636.00 + 11493.9i 0.273552 + 0.473806i
\(839\) −21112.0 −0.868733 −0.434367 0.900736i \(-0.643028\pi\)
−0.434367 + 0.900736i \(0.643028\pi\)
\(840\) 0 0
\(841\) −21025.0 −0.862069
\(842\) 16630.0 + 28804.0i 0.680650 + 1.17892i
\(843\) −17339.0 + 30032.0i −0.708407 + 1.22700i
\(844\) 3560.00 6166.10i 0.145190 0.251476i
\(845\) −7003.50 12130.4i −0.285122 0.493845i
\(846\) −23100.0 −0.938764
\(847\) 0 0
\(848\) −4848.00 −0.196322
\(849\) 14969.5 + 25927.9i 0.605126 + 1.04811i
\(850\) 1596.00 2764.35i 0.0644028 0.111549i
\(851\) 17410.5 30155.9i 0.701321 1.21472i
\(852\) 6048.00 + 10475.4i 0.243194 + 0.421224i
\(853\) 21238.0 0.852492 0.426246 0.904607i \(-0.359836\pi\)
0.426246 + 0.904607i \(0.359836\pi\)
\(854\) 0 0
\(855\) 7546.00 0.301834
\(856\) 5484.00 + 9498.57i 0.218971 + 0.379269i
\(857\) −17804.5 + 30838.3i −0.709673 + 1.22919i 0.255305 + 0.966861i \(0.417824\pi\)
−0.964978 + 0.262330i \(0.915509\pi\)
\(858\) −490.000 + 848.705i −0.0194969 + 0.0337696i
\(859\) 1088.50 + 1885.34i 0.0432353 + 0.0748858i 0.886833 0.462090i \(-0.152900\pi\)
−0.843598 + 0.536975i \(0.819567\pi\)
\(860\) −3472.00 −0.137668
\(861\) 0 0
\(862\) 9846.00 0.389044
\(863\) 16123.5 + 27926.7i 0.635980 + 1.10155i 0.986307 + 0.164921i \(0.0527371\pi\)
−0.350327 + 0.936627i \(0.613930\pi\)
\(864\) −2800.00 + 4849.74i −0.110252 + 0.190962i
\(865\) 9873.50 17101.4i 0.388103 0.672214i
\(866\) 8974.00 + 15543.4i 0.352135 + 0.609916i
\(867\) 31304.0 1.22623
\(868\) 0 0
\(869\) 515.000 0.0201038
\(870\) −2842.00 4922.49i −0.110750 0.191825i
\(871\) −2905.00 + 5031.61i −0.113011 + 0.195740i
\(872\) −13500.0 + 23382.7i −0.524275 + 0.908071i
\(873\) −9702.00 16804.4i −0.376132 0.651479i
\(874\) 15582.0 0.603054
\(875\) 0 0
\(876\) 31164.0 1.20198
\(877\) −13815.5 23929.1i −0.531946 0.921357i −0.999305 0.0372891i \(-0.988128\pi\)
0.467359 0.884068i \(-0.345206\pi\)
\(878\) −4179.00 + 7238.24i −0.160631 + 0.278222i
\(879\) −27097.0 + 46933.4i −1.03977 + 1.80094i
\(880\) 280.000 + 484.974i 0.0107259 + 0.0185778i
\(881\) −24402.0 −0.933172 −0.466586 0.884476i \(-0.654516\pi\)
−0.466586 + 0.884476i \(0.654516\pi\)
\(882\) 0 0
\(883\) −19612.0 −0.747448 −0.373724 0.927540i \(-0.621919\pi\)
−0.373724 + 0.927540i \(0.621919\pi\)
\(884\) 588.000 + 1018.45i 0.0223717 + 0.0387489i
\(885\) −2572.50 + 4455.70i −0.0977103 + 0.169239i
\(886\) 12927.0 22390.2i 0.490170 0.849000i
\(887\) 1130.50 + 1958.08i 0.0427942 + 0.0741218i 0.886629 0.462481i \(-0.153041\pi\)
−0.843835 + 0.536603i \(0.819707\pi\)
\(888\) 36792.0 1.39038
\(889\) 0 0
\(890\) −4606.00 −0.173476
\(891\) −2097.50 3632.98i −0.0788652 0.136599i
\(892\) 2800.00 4849.74i 0.105102 0.182042i
\(893\) −12862.5 + 22278.5i −0.482001 + 0.834851i
\(894\) −1407.00 2437.00i −0.0526366 0.0911693i
\(895\) 22771.0 0.850448
\(896\) 0 0
\(897\) 15582.0 0.580009
\(898\) 2826.00 + 4894.78i 0.105017 + 0.181894i
\(899\) 4263.00 7383.73i 0.158152 0.273928i
\(900\) −3344.00 + 5791.98i −0.123852 + 0.214518i
\(901\) −3181.50 5510.52i −0.117637 0.203754i
\(902\) 3500.00 0.129199
\(903\) 0 0
\(904\) 36912.0 1.35805
\(905\) −5537.00 9590.37i −0.203377 0.352259i
\(906\) 11333.0 19629.3i 0.415578 0.719802i
\(907\) 11916.5 20640.0i 0.436252 0.755611i −0.561145 0.827718i \(-0.689639\pi\)
0.997397 + 0.0721066i \(0.0229722\pi\)
\(908\) 4410.00 + 7638.34i 0.161180 + 0.279171i
\(909\) −30338.0 −1.10698
\(910\) 0 0
\(911\) 31824.0 1.15738 0.578692 0.815546i \(-0.303563\pi\)
0.578692 + 0.815546i \(0.303563\pi\)
\(912\) 2744.00 + 4752.75i 0.0996304 + 0.172565i
\(913\) −2730.00 + 4728.50i −0.0989593 + 0.171402i
\(914\) −8479.00 + 14686.1i −0.306849 + 0.531479i
\(915\) −10118.5 17525.8i −0.365582 0.633206i
\(916\) 1148.00 0.0414094
\(917\) 0 0
\(918\) 1470.00 0.0528510
\(919\) 8409.50 + 14565.7i 0.301854 + 0.522826i 0.976556 0.215264i \(-0.0690612\pi\)
−0.674702 + 0.738090i \(0.735728\pi\)
\(920\) 13356.0 23133.3i 0.478624 0.829001i
\(921\) 25774.0 44641.9i 0.922130 1.59718i
\(922\) 9338.00 + 16173.9i 0.333547 + 0.577721i
\(923\) −6048.00 −0.215680
\(924\) 0 0
\(925\) −16644.0 −0.591623
\(926\) 4016.00 + 6955.92i 0.142520 + 0.246853i
\(927\) −7469.00 + 12936.7i −0.264632 + 0.458357i
\(928\) −4640.00 + 8036.72i −0.164133 + 0.284287i
\(929\) 899.500 + 1557.98i 0.0317671 + 0.0550222i 0.881472 0.472237i \(-0.156553\pi\)
−0.849705 + 0.527259i \(0.823220\pi\)
\(930\) −14406.0 −0.507948
\(931\) 0 0
\(932\) −18348.0 −0.644859
\(933\) −34912.5 60470.2i −1.22506 2.12187i
\(934\) −5859.00 + 10148.1i −0.205259 + 0.355520i
\(935\) −367.500 + 636.529i −0.0128540 + 0.0222639i
\(936\) 3696.00 + 6401.66i 0.129068 + 0.223552i
\(937\) −14154.0 −0.493480 −0.246740 0.969082i \(-0.579359\pi\)
−0.246740 + 0.969082i \(0.579359\pi\)
\(938\) 0 0
\(939\) −33271.0 −1.15629
\(940\) 7350.00 + 12730.6i 0.255033 + 0.441729i
\(941\) 6023.50 10433.0i 0.208672 0.361431i −0.742624 0.669708i \(-0.766419\pi\)
0.951296 + 0.308277i \(0.0997525\pi\)
\(942\) −4753.00 + 8232.44i −0.164396 + 0.284742i
\(943\) −27825.0 48194.3i −0.960877 1.66429i
\(944\) −1680.00 −0.0579230
\(945\) 0 0
\(946\) 1240.00 0.0426172
\(947\) 12189.5 + 21112.8i 0.418274 + 0.724472i 0.995766 0.0919245i \(-0.0293018\pi\)
−0.577492 + 0.816396i \(0.695969\pi\)
\(948\) 1442.00 2497.62i 0.0494029 0.0855684i
\(949\) −7791.00 + 13494.4i −0.266498 + 0.461588i
\(950\) −3724.00 6450.16i −0.127182 0.220285i
\(951\) 24339.0 0.829912
\(952\) 0 0
\(953\) −52330.0 −1.77874 −0.889368 0.457192i \(-0.848855\pi\)
−0.889368 + 0.457192i \(0.848855\pi\)
\(954\) −6666.00 11545.9i −0.226226 0.391835i
\(955\) 8949.50 15501.0i 0.303245 0.525236i
\(956\) 3336.00 5778.12i 0.112860 0.195479i
\(957\) −1015.00 1758.03i −0.0342845 0.0593825i
\(958\) −13006.0 −0.438627
\(959\) 0 0
\(960\) 21952.0 0.738018
\(961\) 4091.00 + 7085.82i 0.137323 + 0.237851i
\(962\) −3066.00 + 5310.47i −0.102757 + 0.177980i
\(963\) −5027.00 + 8707.02i −0.168217 + 0.291360i
\(964\) 6818.00 + 11809.1i 0.227794 + 0.394550i
\(965\) 2779.00 0.0927038
\(966\) 0 0
\(967\) −12416.0 −0.412897 −0.206449 0.978457i \(-0.566191\pi\)
−0.206449 + 0.978457i \(0.566191\pi\)
\(968\) −15672.0 27144.7i −0.520369 0.901305i
\(969\) −3601.50 + 6237.98i −0.119398 + 0.206804i
\(970\) 6174.00 10693.7i 0.204366 0.353973i
\(971\) 18406.5 + 31881.0i 0.608334 + 1.05367i 0.991515 + 0.129993i \(0.0414954\pi\)
−0.383181 + 0.923673i \(0.625171\pi\)
\(972\) −19712.0 −0.650476
\(973\) 0 0
\(974\) −32098.0 −1.05594
\(975\) −3724.00 6450.16i −0.122321 0.211867i
\(976\) 3304.00 5722.70i 0.108359 0.187683i
\(977\) −17497.5 + 30306.6i −0.572973 + 0.992418i 0.423286 + 0.905996i \(0.360877\pi\)
−0.996259 + 0.0864221i \(0.972457\pi\)
\(978\) −3269.00 5662.07i −0.106883 0.185126i
\(979\) −1645.00 −0.0537022
\(980\) 0 0
\(981\) −24750.0 −0.805511
\(982\) −8864.00 15352.9i −0.288046 0.498911i
\(983\) −7150.50 + 12385.0i −0.232010 + 0.401853i −0.958399 0.285430i \(-0.907863\pi\)
0.726390 + 0.687283i \(0.241197\pi\)
\(984\) 29400.0 50922.3i 0.952477 1.64974i
\(985\) 10199.0 + 17665.2i 0.329916 + 0.571431i
\(986\) 2436.00 0.0786796
\(987\) 0 0
\(988\) 2744.00 0.0883586
\(989\) −9858.00 17074.6i −0.316953 0.548978i
\(990\) −770.000 + 1333.68i −0.0247194 + 0.0428153i
\(991\) 1332.50 2307.96i 0.0427127 0.0739805i −0.843879 0.536534i \(-0.819733\pi\)
0.886591 + 0.462553i \(0.153067\pi\)
\(992\) 11760.0 + 20368.9i 0.376392 + 0.651929i
\(993\) −23387.0 −0.747396
\(994\) 0 0
\(995\) 23373.0 0.744697
\(996\) 15288.0 + 26479.6i 0.486364 + 0.842408i
\(997\) 12435.5 21538.9i 0.395021 0.684197i −0.598083 0.801434i \(-0.704071\pi\)
0.993104 + 0.117237i \(0.0374039\pi\)
\(998\) 10211.0 17686.0i 0.323871 0.560962i
\(999\) −3832.50 6638.08i −0.121376 0.210230i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.4.c.a.18.1 2
3.2 odd 2 441.4.e.k.361.1 2
7.2 even 3 inner 49.4.c.a.30.1 2
7.3 odd 6 49.4.a.d.1.1 1
7.4 even 3 49.4.a.c.1.1 1
7.5 odd 6 7.4.c.a.2.1 2
7.6 odd 2 7.4.c.a.4.1 yes 2
21.2 odd 6 441.4.e.k.226.1 2
21.5 even 6 63.4.e.b.37.1 2
21.11 odd 6 441.4.a.e.1.1 1
21.17 even 6 441.4.a.d.1.1 1
21.20 even 2 63.4.e.b.46.1 2
28.3 even 6 784.4.a.b.1.1 1
28.11 odd 6 784.4.a.r.1.1 1
28.19 even 6 112.4.i.c.65.1 2
28.27 even 2 112.4.i.c.81.1 2
35.4 even 6 1225.4.a.d.1.1 1
35.12 even 12 175.4.k.a.149.1 4
35.13 even 4 175.4.k.a.74.1 4
35.19 odd 6 175.4.e.a.51.1 2
35.24 odd 6 1225.4.a.c.1.1 1
35.27 even 4 175.4.k.a.74.2 4
35.33 even 12 175.4.k.a.149.2 4
35.34 odd 2 175.4.e.a.151.1 2
56.5 odd 6 448.4.i.f.65.1 2
56.13 odd 2 448.4.i.f.193.1 2
56.19 even 6 448.4.i.a.65.1 2
56.27 even 2 448.4.i.a.193.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.4.c.a.2.1 2 7.5 odd 6
7.4.c.a.4.1 yes 2 7.6 odd 2
49.4.a.c.1.1 1 7.4 even 3
49.4.a.d.1.1 1 7.3 odd 6
49.4.c.a.18.1 2 1.1 even 1 trivial
49.4.c.a.30.1 2 7.2 even 3 inner
63.4.e.b.37.1 2 21.5 even 6
63.4.e.b.46.1 2 21.20 even 2
112.4.i.c.65.1 2 28.19 even 6
112.4.i.c.81.1 2 28.27 even 2
175.4.e.a.51.1 2 35.19 odd 6
175.4.e.a.151.1 2 35.34 odd 2
175.4.k.a.74.1 4 35.13 even 4
175.4.k.a.74.2 4 35.27 even 4
175.4.k.a.149.1 4 35.12 even 12
175.4.k.a.149.2 4 35.33 even 12
441.4.a.d.1.1 1 21.17 even 6
441.4.a.e.1.1 1 21.11 odd 6
441.4.e.k.226.1 2 21.2 odd 6
441.4.e.k.361.1 2 3.2 odd 2
448.4.i.a.65.1 2 56.19 even 6
448.4.i.a.193.1 2 56.27 even 2
448.4.i.f.65.1 2 56.5 odd 6
448.4.i.f.193.1 2 56.13 odd 2
784.4.a.b.1.1 1 28.3 even 6
784.4.a.r.1.1 1 28.11 odd 6
1225.4.a.c.1.1 1 35.24 odd 6
1225.4.a.d.1.1 1 35.4 even 6