Properties

Label 49.4.a.d.1.1
Level $49$
Weight $4$
Character 49.1
Self dual yes
Analytic conductor $2.891$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [49,4,Mod(1,49)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(49, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("49.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.89109359028\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +7.00000 q^{3} -4.00000 q^{4} +7.00000 q^{5} +14.0000 q^{6} -24.0000 q^{8} +22.0000 q^{9} +14.0000 q^{10} -5.00000 q^{11} -28.0000 q^{12} -14.0000 q^{13} +49.0000 q^{15} -16.0000 q^{16} -21.0000 q^{17} +44.0000 q^{18} +49.0000 q^{19} -28.0000 q^{20} -10.0000 q^{22} -159.000 q^{23} -168.000 q^{24} -76.0000 q^{25} -28.0000 q^{26} -35.0000 q^{27} +58.0000 q^{29} +98.0000 q^{30} +147.000 q^{31} +160.000 q^{32} -35.0000 q^{33} -42.0000 q^{34} -88.0000 q^{36} +219.000 q^{37} +98.0000 q^{38} -98.0000 q^{39} -168.000 q^{40} +350.000 q^{41} -124.000 q^{43} +20.0000 q^{44} +154.000 q^{45} -318.000 q^{46} +525.000 q^{47} -112.000 q^{48} -152.000 q^{50} -147.000 q^{51} +56.0000 q^{52} +303.000 q^{53} -70.0000 q^{54} -35.0000 q^{55} +343.000 q^{57} +116.000 q^{58} -105.000 q^{59} -196.000 q^{60} -413.000 q^{61} +294.000 q^{62} +448.000 q^{64} -98.0000 q^{65} -70.0000 q^{66} +415.000 q^{67} +84.0000 q^{68} -1113.00 q^{69} -432.000 q^{71} -528.000 q^{72} -1113.00 q^{73} +438.000 q^{74} -532.000 q^{75} -196.000 q^{76} -196.000 q^{78} -103.000 q^{79} -112.000 q^{80} -839.000 q^{81} +700.000 q^{82} +1092.00 q^{83} -147.000 q^{85} -248.000 q^{86} +406.000 q^{87} +120.000 q^{88} -329.000 q^{89} +308.000 q^{90} +636.000 q^{92} +1029.00 q^{93} +1050.00 q^{94} +343.000 q^{95} +1120.00 q^{96} -882.000 q^{97} -110.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 7.00000 1.34715 0.673575 0.739119i \(-0.264758\pi\)
0.673575 + 0.739119i \(0.264758\pi\)
\(4\) −4.00000 −0.500000
\(5\) 7.00000 0.626099 0.313050 0.949737i \(-0.398649\pi\)
0.313050 + 0.949737i \(0.398649\pi\)
\(6\) 14.0000 0.952579
\(7\) 0 0
\(8\) −24.0000 −1.06066
\(9\) 22.0000 0.814815
\(10\) 14.0000 0.442719
\(11\) −5.00000 −0.137051 −0.0685253 0.997649i \(-0.521829\pi\)
−0.0685253 + 0.997649i \(0.521829\pi\)
\(12\) −28.0000 −0.673575
\(13\) −14.0000 −0.298685 −0.149342 0.988786i \(-0.547716\pi\)
−0.149342 + 0.988786i \(0.547716\pi\)
\(14\) 0 0
\(15\) 49.0000 0.843450
\(16\) −16.0000 −0.250000
\(17\) −21.0000 −0.299603 −0.149801 0.988716i \(-0.547863\pi\)
−0.149801 + 0.988716i \(0.547863\pi\)
\(18\) 44.0000 0.576161
\(19\) 49.0000 0.591651 0.295826 0.955242i \(-0.404405\pi\)
0.295826 + 0.955242i \(0.404405\pi\)
\(20\) −28.0000 −0.313050
\(21\) 0 0
\(22\) −10.0000 −0.0969094
\(23\) −159.000 −1.44147 −0.720735 0.693211i \(-0.756195\pi\)
−0.720735 + 0.693211i \(0.756195\pi\)
\(24\) −168.000 −1.42887
\(25\) −76.0000 −0.608000
\(26\) −28.0000 −0.211202
\(27\) −35.0000 −0.249472
\(28\) 0 0
\(29\) 58.0000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 98.0000 0.596409
\(31\) 147.000 0.851677 0.425838 0.904799i \(-0.359979\pi\)
0.425838 + 0.904799i \(0.359979\pi\)
\(32\) 160.000 0.883883
\(33\) −35.0000 −0.184628
\(34\) −42.0000 −0.211851
\(35\) 0 0
\(36\) −88.0000 −0.407407
\(37\) 219.000 0.973064 0.486532 0.873663i \(-0.338262\pi\)
0.486532 + 0.873663i \(0.338262\pi\)
\(38\) 98.0000 0.418361
\(39\) −98.0000 −0.402373
\(40\) −168.000 −0.664078
\(41\) 350.000 1.33319 0.666595 0.745420i \(-0.267751\pi\)
0.666595 + 0.745420i \(0.267751\pi\)
\(42\) 0 0
\(43\) −124.000 −0.439763 −0.219882 0.975527i \(-0.570567\pi\)
−0.219882 + 0.975527i \(0.570567\pi\)
\(44\) 20.0000 0.0685253
\(45\) 154.000 0.510155
\(46\) −318.000 −1.01927
\(47\) 525.000 1.62934 0.814671 0.579923i \(-0.196917\pi\)
0.814671 + 0.579923i \(0.196917\pi\)
\(48\) −112.000 −0.336788
\(49\) 0 0
\(50\) −152.000 −0.429921
\(51\) −147.000 −0.403610
\(52\) 56.0000 0.149342
\(53\) 303.000 0.785288 0.392644 0.919691i \(-0.371561\pi\)
0.392644 + 0.919691i \(0.371561\pi\)
\(54\) −70.0000 −0.176404
\(55\) −35.0000 −0.0858073
\(56\) 0 0
\(57\) 343.000 0.797043
\(58\) 116.000 0.262613
\(59\) −105.000 −0.231692 −0.115846 0.993267i \(-0.536958\pi\)
−0.115846 + 0.993267i \(0.536958\pi\)
\(60\) −196.000 −0.421725
\(61\) −413.000 −0.866873 −0.433436 0.901184i \(-0.642699\pi\)
−0.433436 + 0.901184i \(0.642699\pi\)
\(62\) 294.000 0.602226
\(63\) 0 0
\(64\) 448.000 0.875000
\(65\) −98.0000 −0.187006
\(66\) −70.0000 −0.130552
\(67\) 415.000 0.756721 0.378361 0.925658i \(-0.376488\pi\)
0.378361 + 0.925658i \(0.376488\pi\)
\(68\) 84.0000 0.149801
\(69\) −1113.00 −1.94188
\(70\) 0 0
\(71\) −432.000 −0.722098 −0.361049 0.932547i \(-0.617581\pi\)
−0.361049 + 0.932547i \(0.617581\pi\)
\(72\) −528.000 −0.864242
\(73\) −1113.00 −1.78448 −0.892238 0.451565i \(-0.850866\pi\)
−0.892238 + 0.451565i \(0.850866\pi\)
\(74\) 438.000 0.688060
\(75\) −532.000 −0.819068
\(76\) −196.000 −0.295826
\(77\) 0 0
\(78\) −196.000 −0.284521
\(79\) −103.000 −0.146689 −0.0733443 0.997307i \(-0.523367\pi\)
−0.0733443 + 0.997307i \(0.523367\pi\)
\(80\) −112.000 −0.156525
\(81\) −839.000 −1.15089
\(82\) 700.000 0.942708
\(83\) 1092.00 1.44413 0.722064 0.691827i \(-0.243194\pi\)
0.722064 + 0.691827i \(0.243194\pi\)
\(84\) 0 0
\(85\) −147.000 −0.187581
\(86\) −248.000 −0.310960
\(87\) 406.000 0.500319
\(88\) 120.000 0.145364
\(89\) −329.000 −0.391842 −0.195921 0.980620i \(-0.562770\pi\)
−0.195921 + 0.980620i \(0.562770\pi\)
\(90\) 308.000 0.360734
\(91\) 0 0
\(92\) 636.000 0.720735
\(93\) 1029.00 1.14734
\(94\) 1050.00 1.15212
\(95\) 343.000 0.370432
\(96\) 1120.00 1.19072
\(97\) −882.000 −0.923232 −0.461616 0.887080i \(-0.652730\pi\)
−0.461616 + 0.887080i \(0.652730\pi\)
\(98\) 0 0
\(99\) −110.000 −0.111671
\(100\) 304.000 0.304000
\(101\) 1379.00 1.35857 0.679285 0.733874i \(-0.262290\pi\)
0.679285 + 0.733874i \(0.262290\pi\)
\(102\) −294.000 −0.285395
\(103\) −679.000 −0.649552 −0.324776 0.945791i \(-0.605289\pi\)
−0.324776 + 0.945791i \(0.605289\pi\)
\(104\) 336.000 0.316803
\(105\) 0 0
\(106\) 606.000 0.555282
\(107\) 457.000 0.412896 0.206448 0.978458i \(-0.433810\pi\)
0.206448 + 0.978458i \(0.433810\pi\)
\(108\) 140.000 0.124736
\(109\) −1125.00 −0.988582 −0.494291 0.869296i \(-0.664572\pi\)
−0.494291 + 0.869296i \(0.664572\pi\)
\(110\) −70.0000 −0.0606749
\(111\) 1533.00 1.31086
\(112\) 0 0
\(113\) −1538.00 −1.28038 −0.640190 0.768217i \(-0.721144\pi\)
−0.640190 + 0.768217i \(0.721144\pi\)
\(114\) 686.000 0.563595
\(115\) −1113.00 −0.902502
\(116\) −232.000 −0.185695
\(117\) −308.000 −0.243373
\(118\) −210.000 −0.163831
\(119\) 0 0
\(120\) −1176.00 −0.894614
\(121\) −1306.00 −0.981217
\(122\) −826.000 −0.612972
\(123\) 2450.00 1.79601
\(124\) −588.000 −0.425838
\(125\) −1407.00 −1.00677
\(126\) 0 0
\(127\) 72.0000 0.0503068 0.0251534 0.999684i \(-0.491993\pi\)
0.0251534 + 0.999684i \(0.491993\pi\)
\(128\) −384.000 −0.265165
\(129\) −868.000 −0.592427
\(130\) −196.000 −0.132233
\(131\) 2149.00 1.43327 0.716637 0.697446i \(-0.245680\pi\)
0.716637 + 0.697446i \(0.245680\pi\)
\(132\) 140.000 0.0923139
\(133\) 0 0
\(134\) 830.000 0.535083
\(135\) −245.000 −0.156194
\(136\) 504.000 0.317777
\(137\) −1125.00 −0.701571 −0.350786 0.936456i \(-0.614085\pi\)
−0.350786 + 0.936456i \(0.614085\pi\)
\(138\) −2226.00 −1.37311
\(139\) 252.000 0.153772 0.0768862 0.997040i \(-0.475502\pi\)
0.0768862 + 0.997040i \(0.475502\pi\)
\(140\) 0 0
\(141\) 3675.00 2.19497
\(142\) −864.000 −0.510600
\(143\) 70.0000 0.0409349
\(144\) −352.000 −0.203704
\(145\) 406.000 0.232527
\(146\) −2226.00 −1.26182
\(147\) 0 0
\(148\) −876.000 −0.486532
\(149\) −201.000 −0.110514 −0.0552569 0.998472i \(-0.517598\pi\)
−0.0552569 + 0.998472i \(0.517598\pi\)
\(150\) −1064.00 −0.579168
\(151\) 1619.00 0.872532 0.436266 0.899818i \(-0.356301\pi\)
0.436266 + 0.899818i \(0.356301\pi\)
\(152\) −1176.00 −0.627541
\(153\) −462.000 −0.244121
\(154\) 0 0
\(155\) 1029.00 0.533234
\(156\) 392.000 0.201187
\(157\) 679.000 0.345160 0.172580 0.984996i \(-0.444790\pi\)
0.172580 + 0.984996i \(0.444790\pi\)
\(158\) −206.000 −0.103725
\(159\) 2121.00 1.05790
\(160\) 1120.00 0.553399
\(161\) 0 0
\(162\) −1678.00 −0.813803
\(163\) −467.000 −0.224407 −0.112203 0.993685i \(-0.535791\pi\)
−0.112203 + 0.993685i \(0.535791\pi\)
\(164\) −1400.00 −0.666595
\(165\) −245.000 −0.115595
\(166\) 2184.00 1.02115
\(167\) 1204.00 0.557894 0.278947 0.960306i \(-0.410015\pi\)
0.278947 + 0.960306i \(0.410015\pi\)
\(168\) 0 0
\(169\) −2001.00 −0.910787
\(170\) −294.000 −0.132640
\(171\) 1078.00 0.482086
\(172\) 496.000 0.219882
\(173\) −2821.00 −1.23975 −0.619875 0.784701i \(-0.712817\pi\)
−0.619875 + 0.784701i \(0.712817\pi\)
\(174\) 812.000 0.353779
\(175\) 0 0
\(176\) 80.0000 0.0342627
\(177\) −735.000 −0.312124
\(178\) −658.000 −0.277074
\(179\) −3253.00 −1.35833 −0.679164 0.733987i \(-0.737657\pi\)
−0.679164 + 0.733987i \(0.737657\pi\)
\(180\) −616.000 −0.255077
\(181\) 1582.00 0.649664 0.324832 0.945772i \(-0.394692\pi\)
0.324832 + 0.945772i \(0.394692\pi\)
\(182\) 0 0
\(183\) −2891.00 −1.16781
\(184\) 3816.00 1.52891
\(185\) 1533.00 0.609235
\(186\) 2058.00 0.811290
\(187\) 105.000 0.0410608
\(188\) −2100.00 −0.814671
\(189\) 0 0
\(190\) 686.000 0.261935
\(191\) 2557.00 0.968681 0.484340 0.874880i \(-0.339060\pi\)
0.484340 + 0.874880i \(0.339060\pi\)
\(192\) 3136.00 1.17876
\(193\) −397.000 −0.148066 −0.0740329 0.997256i \(-0.523587\pi\)
−0.0740329 + 0.997256i \(0.523587\pi\)
\(194\) −1764.00 −0.652824
\(195\) −686.000 −0.251926
\(196\) 0 0
\(197\) 2914.00 1.05388 0.526939 0.849903i \(-0.323340\pi\)
0.526939 + 0.849903i \(0.323340\pi\)
\(198\) −220.000 −0.0789632
\(199\) 3339.00 1.18942 0.594712 0.803939i \(-0.297266\pi\)
0.594712 + 0.803939i \(0.297266\pi\)
\(200\) 1824.00 0.644881
\(201\) 2905.00 1.01942
\(202\) 2758.00 0.960654
\(203\) 0 0
\(204\) 588.000 0.201805
\(205\) 2450.00 0.834709
\(206\) −1358.00 −0.459303
\(207\) −3498.00 −1.17453
\(208\) 224.000 0.0746712
\(209\) −245.000 −0.0810861
\(210\) 0 0
\(211\) 1780.00 0.580759 0.290380 0.956911i \(-0.406218\pi\)
0.290380 + 0.956911i \(0.406218\pi\)
\(212\) −1212.00 −0.392644
\(213\) −3024.00 −0.972775
\(214\) 914.000 0.291961
\(215\) −868.000 −0.275335
\(216\) 840.000 0.264605
\(217\) 0 0
\(218\) −2250.00 −0.699033
\(219\) −7791.00 −2.40396
\(220\) 140.000 0.0429036
\(221\) 294.000 0.0894868
\(222\) 3066.00 0.926921
\(223\) −1400.00 −0.420408 −0.210204 0.977658i \(-0.567413\pi\)
−0.210204 + 0.977658i \(0.567413\pi\)
\(224\) 0 0
\(225\) −1672.00 −0.495407
\(226\) −3076.00 −0.905365
\(227\) −2205.00 −0.644718 −0.322359 0.946617i \(-0.604476\pi\)
−0.322359 + 0.946617i \(0.604476\pi\)
\(228\) −1372.00 −0.398522
\(229\) 287.000 0.0828188 0.0414094 0.999142i \(-0.486815\pi\)
0.0414094 + 0.999142i \(0.486815\pi\)
\(230\) −2226.00 −0.638166
\(231\) 0 0
\(232\) −1392.00 −0.393919
\(233\) 4587.00 1.28972 0.644859 0.764301i \(-0.276916\pi\)
0.644859 + 0.764301i \(0.276916\pi\)
\(234\) −616.000 −0.172091
\(235\) 3675.00 1.02013
\(236\) 420.000 0.115846
\(237\) −721.000 −0.197612
\(238\) 0 0
\(239\) 1668.00 0.451439 0.225720 0.974192i \(-0.427527\pi\)
0.225720 + 0.974192i \(0.427527\pi\)
\(240\) −784.000 −0.210862
\(241\) −3409.00 −0.911174 −0.455587 0.890191i \(-0.650571\pi\)
−0.455587 + 0.890191i \(0.650571\pi\)
\(242\) −2612.00 −0.693825
\(243\) −4928.00 −1.30095
\(244\) 1652.00 0.433436
\(245\) 0 0
\(246\) 4900.00 1.26997
\(247\) −686.000 −0.176717
\(248\) −3528.00 −0.903340
\(249\) 7644.00 1.94546
\(250\) −2814.00 −0.711892
\(251\) −4760.00 −1.19701 −0.598503 0.801121i \(-0.704238\pi\)
−0.598503 + 0.801121i \(0.704238\pi\)
\(252\) 0 0
\(253\) 795.000 0.197554
\(254\) 144.000 0.0355723
\(255\) −1029.00 −0.252700
\(256\) −4352.00 −1.06250
\(257\) −805.000 −0.195387 −0.0976936 0.995217i \(-0.531147\pi\)
−0.0976936 + 0.995217i \(0.531147\pi\)
\(258\) −1736.00 −0.418909
\(259\) 0 0
\(260\) 392.000 0.0935031
\(261\) 1276.00 0.302615
\(262\) 4298.00 1.01348
\(263\) −257.000 −0.0602559 −0.0301279 0.999546i \(-0.509591\pi\)
−0.0301279 + 0.999546i \(0.509591\pi\)
\(264\) 840.000 0.195827
\(265\) 2121.00 0.491668
\(266\) 0 0
\(267\) −2303.00 −0.527870
\(268\) −1660.00 −0.378361
\(269\) 3591.00 0.813930 0.406965 0.913444i \(-0.366587\pi\)
0.406965 + 0.913444i \(0.366587\pi\)
\(270\) −490.000 −0.110446
\(271\) 1393.00 0.312246 0.156123 0.987738i \(-0.450100\pi\)
0.156123 + 0.987738i \(0.450100\pi\)
\(272\) 336.000 0.0749007
\(273\) 0 0
\(274\) −2250.00 −0.496086
\(275\) 380.000 0.0833268
\(276\) 4452.00 0.970938
\(277\) 415.000 0.0900178 0.0450089 0.998987i \(-0.485668\pi\)
0.0450089 + 0.998987i \(0.485668\pi\)
\(278\) 504.000 0.108733
\(279\) 3234.00 0.693959
\(280\) 0 0
\(281\) −4954.00 −1.05171 −0.525856 0.850574i \(-0.676255\pi\)
−0.525856 + 0.850574i \(0.676255\pi\)
\(282\) 7350.00 1.55208
\(283\) −4277.00 −0.898379 −0.449190 0.893437i \(-0.648287\pi\)
−0.449190 + 0.893437i \(0.648287\pi\)
\(284\) 1728.00 0.361049
\(285\) 2401.00 0.499028
\(286\) 140.000 0.0289454
\(287\) 0 0
\(288\) 3520.00 0.720201
\(289\) −4472.00 −0.910238
\(290\) 812.000 0.164422
\(291\) −6174.00 −1.24373
\(292\) 4452.00 0.892238
\(293\) 7742.00 1.54366 0.771830 0.635829i \(-0.219342\pi\)
0.771830 + 0.635829i \(0.219342\pi\)
\(294\) 0 0
\(295\) −735.000 −0.145062
\(296\) −5256.00 −1.03209
\(297\) 175.000 0.0341903
\(298\) −402.000 −0.0781451
\(299\) 2226.00 0.430545
\(300\) 2128.00 0.409534
\(301\) 0 0
\(302\) 3238.00 0.616973
\(303\) 9653.00 1.83020
\(304\) −784.000 −0.147913
\(305\) −2891.00 −0.542748
\(306\) −924.000 −0.172619
\(307\) −7364.00 −1.36901 −0.684504 0.729009i \(-0.739981\pi\)
−0.684504 + 0.729009i \(0.739981\pi\)
\(308\) 0 0
\(309\) −4753.00 −0.875044
\(310\) 2058.00 0.377053
\(311\) 9975.00 1.81875 0.909374 0.415980i \(-0.136562\pi\)
0.909374 + 0.415980i \(0.136562\pi\)
\(312\) 2352.00 0.426781
\(313\) −4753.00 −0.858324 −0.429162 0.903228i \(-0.641191\pi\)
−0.429162 + 0.903228i \(0.641191\pi\)
\(314\) 1358.00 0.244065
\(315\) 0 0
\(316\) 412.000 0.0733443
\(317\) −3477.00 −0.616050 −0.308025 0.951378i \(-0.599668\pi\)
−0.308025 + 0.951378i \(0.599668\pi\)
\(318\) 4242.00 0.748049
\(319\) −290.000 −0.0508993
\(320\) 3136.00 0.547837
\(321\) 3199.00 0.556233
\(322\) 0 0
\(323\) −1029.00 −0.177260
\(324\) 3356.00 0.575446
\(325\) 1064.00 0.181600
\(326\) −934.000 −0.158679
\(327\) −7875.00 −1.33177
\(328\) −8400.00 −1.41406
\(329\) 0 0
\(330\) −490.000 −0.0817382
\(331\) 3341.00 0.554797 0.277399 0.960755i \(-0.410528\pi\)
0.277399 + 0.960755i \(0.410528\pi\)
\(332\) −4368.00 −0.722064
\(333\) 4818.00 0.792867
\(334\) 2408.00 0.394491
\(335\) 2905.00 0.473782
\(336\) 0 0
\(337\) 7366.00 1.19066 0.595329 0.803482i \(-0.297022\pi\)
0.595329 + 0.803482i \(0.297022\pi\)
\(338\) −4002.00 −0.644024
\(339\) −10766.0 −1.72486
\(340\) 588.000 0.0937905
\(341\) −735.000 −0.116723
\(342\) 2156.00 0.340886
\(343\) 0 0
\(344\) 2976.00 0.466439
\(345\) −7791.00 −1.21581
\(346\) −5642.00 −0.876635
\(347\) 7415.00 1.14714 0.573571 0.819156i \(-0.305558\pi\)
0.573571 + 0.819156i \(0.305558\pi\)
\(348\) −1624.00 −0.250160
\(349\) −3878.00 −0.594798 −0.297399 0.954753i \(-0.596119\pi\)
−0.297399 + 0.954753i \(0.596119\pi\)
\(350\) 0 0
\(351\) 490.000 0.0745136
\(352\) −800.000 −0.121137
\(353\) 1267.00 0.191036 0.0955179 0.995428i \(-0.469549\pi\)
0.0955179 + 0.995428i \(0.469549\pi\)
\(354\) −1470.00 −0.220705
\(355\) −3024.00 −0.452105
\(356\) 1316.00 0.195921
\(357\) 0 0
\(358\) −6506.00 −0.960483
\(359\) 4685.00 0.688760 0.344380 0.938830i \(-0.388089\pi\)
0.344380 + 0.938830i \(0.388089\pi\)
\(360\) −3696.00 −0.541101
\(361\) −4458.00 −0.649949
\(362\) 3164.00 0.459382
\(363\) −9142.00 −1.32185
\(364\) 0 0
\(365\) −7791.00 −1.11726
\(366\) −5782.00 −0.825765
\(367\) −4641.00 −0.660104 −0.330052 0.943963i \(-0.607066\pi\)
−0.330052 + 0.943963i \(0.607066\pi\)
\(368\) 2544.00 0.360367
\(369\) 7700.00 1.08630
\(370\) 3066.00 0.430794
\(371\) 0 0
\(372\) −4116.00 −0.573668
\(373\) −8797.00 −1.22116 −0.610578 0.791956i \(-0.709063\pi\)
−0.610578 + 0.791956i \(0.709063\pi\)
\(374\) 210.000 0.0290343
\(375\) −9849.00 −1.35627
\(376\) −12600.0 −1.72818
\(377\) −812.000 −0.110929
\(378\) 0 0
\(379\) 13680.0 1.85407 0.927037 0.374969i \(-0.122347\pi\)
0.927037 + 0.374969i \(0.122347\pi\)
\(380\) −1372.00 −0.185216
\(381\) 504.000 0.0677709
\(382\) 5114.00 0.684961
\(383\) 9765.00 1.30279 0.651395 0.758739i \(-0.274184\pi\)
0.651395 + 0.758739i \(0.274184\pi\)
\(384\) −2688.00 −0.357217
\(385\) 0 0
\(386\) −794.000 −0.104698
\(387\) −2728.00 −0.358326
\(388\) 3528.00 0.461616
\(389\) 1731.00 0.225617 0.112809 0.993617i \(-0.464015\pi\)
0.112809 + 0.993617i \(0.464015\pi\)
\(390\) −1372.00 −0.178138
\(391\) 3339.00 0.431868
\(392\) 0 0
\(393\) 15043.0 1.93084
\(394\) 5828.00 0.745204
\(395\) −721.000 −0.0918416
\(396\) 440.000 0.0558354
\(397\) 10983.0 1.38847 0.694233 0.719750i \(-0.255744\pi\)
0.694233 + 0.719750i \(0.255744\pi\)
\(398\) 6678.00 0.841050
\(399\) 0 0
\(400\) 1216.00 0.152000
\(401\) 6603.00 0.822289 0.411145 0.911570i \(-0.365129\pi\)
0.411145 + 0.911570i \(0.365129\pi\)
\(402\) 5810.00 0.720837
\(403\) −2058.00 −0.254383
\(404\) −5516.00 −0.679285
\(405\) −5873.00 −0.720572
\(406\) 0 0
\(407\) −1095.00 −0.133359
\(408\) 3528.00 0.428093
\(409\) 10955.0 1.32443 0.662213 0.749316i \(-0.269618\pi\)
0.662213 + 0.749316i \(0.269618\pi\)
\(410\) 4900.00 0.590229
\(411\) −7875.00 −0.945122
\(412\) 2716.00 0.324776
\(413\) 0 0
\(414\) −6996.00 −0.830518
\(415\) 7644.00 0.904167
\(416\) −2240.00 −0.264002
\(417\) 1764.00 0.207155
\(418\) −490.000 −0.0573366
\(419\) 6636.00 0.773723 0.386861 0.922138i \(-0.373559\pi\)
0.386861 + 0.922138i \(0.373559\pi\)
\(420\) 0 0
\(421\) −16630.0 −1.92517 −0.962585 0.270980i \(-0.912652\pi\)
−0.962585 + 0.270980i \(0.912652\pi\)
\(422\) 3560.00 0.410659
\(423\) 11550.0 1.32761
\(424\) −7272.00 −0.832923
\(425\) 1596.00 0.182159
\(426\) −6048.00 −0.687856
\(427\) 0 0
\(428\) −1828.00 −0.206448
\(429\) 490.000 0.0551455
\(430\) −1736.00 −0.194692
\(431\) 4923.00 0.550192 0.275096 0.961417i \(-0.411290\pi\)
0.275096 + 0.961417i \(0.411290\pi\)
\(432\) 560.000 0.0623681
\(433\) 8974.00 0.995988 0.497994 0.867180i \(-0.334070\pi\)
0.497994 + 0.867180i \(0.334070\pi\)
\(434\) 0 0
\(435\) 2842.00 0.313249
\(436\) 4500.00 0.494291
\(437\) −7791.00 −0.852847
\(438\) −15582.0 −1.69986
\(439\) −4179.00 −0.454334 −0.227167 0.973856i \(-0.572946\pi\)
−0.227167 + 0.973856i \(0.572946\pi\)
\(440\) 840.000 0.0910123
\(441\) 0 0
\(442\) 588.000 0.0632767
\(443\) −12927.0 −1.38641 −0.693206 0.720740i \(-0.743802\pi\)
−0.693206 + 0.720740i \(0.743802\pi\)
\(444\) −6132.00 −0.655432
\(445\) −2303.00 −0.245332
\(446\) −2800.00 −0.297273
\(447\) −1407.00 −0.148879
\(448\) 0 0
\(449\) −2826.00 −0.297032 −0.148516 0.988910i \(-0.547450\pi\)
−0.148516 + 0.988910i \(0.547450\pi\)
\(450\) −3344.00 −0.350306
\(451\) −1750.00 −0.182715
\(452\) 6152.00 0.640190
\(453\) 11333.0 1.17543
\(454\) −4410.00 −0.455884
\(455\) 0 0
\(456\) −8232.00 −0.845392
\(457\) 8479.00 0.867901 0.433951 0.900937i \(-0.357119\pi\)
0.433951 + 0.900937i \(0.357119\pi\)
\(458\) 574.000 0.0585617
\(459\) 735.000 0.0747426
\(460\) 4452.00 0.451251
\(461\) 9338.00 0.943414 0.471707 0.881755i \(-0.343638\pi\)
0.471707 + 0.881755i \(0.343638\pi\)
\(462\) 0 0
\(463\) −4016.00 −0.403109 −0.201554 0.979477i \(-0.564599\pi\)
−0.201554 + 0.979477i \(0.564599\pi\)
\(464\) −928.000 −0.0928477
\(465\) 7203.00 0.718347
\(466\) 9174.00 0.911969
\(467\) −5859.00 −0.580561 −0.290281 0.956942i \(-0.593749\pi\)
−0.290281 + 0.956942i \(0.593749\pi\)
\(468\) 1232.00 0.121686
\(469\) 0 0
\(470\) 7350.00 0.721341
\(471\) 4753.00 0.464982
\(472\) 2520.00 0.245747
\(473\) 620.000 0.0602698
\(474\) −1442.00 −0.139733
\(475\) −3724.00 −0.359724
\(476\) 0 0
\(477\) 6666.00 0.639864
\(478\) 3336.00 0.319216
\(479\) 6503.00 0.620312 0.310156 0.950686i \(-0.399619\pi\)
0.310156 + 0.950686i \(0.399619\pi\)
\(480\) 7840.00 0.745511
\(481\) −3066.00 −0.290639
\(482\) −6818.00 −0.644297
\(483\) 0 0
\(484\) 5224.00 0.490609
\(485\) −6174.00 −0.578035
\(486\) −9856.00 −0.919912
\(487\) −16049.0 −1.49333 −0.746663 0.665203i \(-0.768345\pi\)
−0.746663 + 0.665203i \(0.768345\pi\)
\(488\) 9912.00 0.919457
\(489\) −3269.00 −0.302309
\(490\) 0 0
\(491\) 8864.00 0.814718 0.407359 0.913268i \(-0.366450\pi\)
0.407359 + 0.913268i \(0.366450\pi\)
\(492\) −9800.00 −0.898004
\(493\) −1218.00 −0.111270
\(494\) −1372.00 −0.124958
\(495\) −770.000 −0.0699170
\(496\) −2352.00 −0.212919
\(497\) 0 0
\(498\) 15288.0 1.37565
\(499\) −10211.0 −0.916046 −0.458023 0.888940i \(-0.651442\pi\)
−0.458023 + 0.888940i \(0.651442\pi\)
\(500\) 5628.00 0.503384
\(501\) 8428.00 0.751567
\(502\) −9520.00 −0.846411
\(503\) −1680.00 −0.148921 −0.0744607 0.997224i \(-0.523724\pi\)
−0.0744607 + 0.997224i \(0.523724\pi\)
\(504\) 0 0
\(505\) 9653.00 0.850600
\(506\) 1590.00 0.139692
\(507\) −14007.0 −1.22697
\(508\) −288.000 −0.0251534
\(509\) −9457.00 −0.823525 −0.411762 0.911291i \(-0.635087\pi\)
−0.411762 + 0.911291i \(0.635087\pi\)
\(510\) −2058.00 −0.178686
\(511\) 0 0
\(512\) −5632.00 −0.486136
\(513\) −1715.00 −0.147601
\(514\) −1610.00 −0.138160
\(515\) −4753.00 −0.406684
\(516\) 3472.00 0.296214
\(517\) −2625.00 −0.223302
\(518\) 0 0
\(519\) −19747.0 −1.67013
\(520\) 2352.00 0.198350
\(521\) −18081.0 −1.52043 −0.760214 0.649673i \(-0.774906\pi\)
−0.760214 + 0.649673i \(0.774906\pi\)
\(522\) 2552.00 0.213981
\(523\) 20377.0 1.70368 0.851839 0.523803i \(-0.175487\pi\)
0.851839 + 0.523803i \(0.175487\pi\)
\(524\) −8596.00 −0.716637
\(525\) 0 0
\(526\) −514.000 −0.0426073
\(527\) −3087.00 −0.255165
\(528\) 560.000 0.0461570
\(529\) 13114.0 1.07783
\(530\) 4242.00 0.347662
\(531\) −2310.00 −0.188786
\(532\) 0 0
\(533\) −4900.00 −0.398204
\(534\) −4606.00 −0.373261
\(535\) 3199.00 0.258514
\(536\) −9960.00 −0.802624
\(537\) −22771.0 −1.82987
\(538\) 7182.00 0.575535
\(539\) 0 0
\(540\) 980.000 0.0780972
\(541\) −6193.00 −0.492159 −0.246079 0.969250i \(-0.579142\pi\)
−0.246079 + 0.969250i \(0.579142\pi\)
\(542\) 2786.00 0.220791
\(543\) 11074.0 0.875195
\(544\) −3360.00 −0.264814
\(545\) −7875.00 −0.618950
\(546\) 0 0
\(547\) −18464.0 −1.44326 −0.721630 0.692279i \(-0.756607\pi\)
−0.721630 + 0.692279i \(0.756607\pi\)
\(548\) 4500.00 0.350786
\(549\) −9086.00 −0.706341
\(550\) 760.000 0.0589209
\(551\) 2842.00 0.219734
\(552\) 26712.0 2.05967
\(553\) 0 0
\(554\) 830.000 0.0636522
\(555\) 10731.0 0.820731
\(556\) −1008.00 −0.0768862
\(557\) −9413.00 −0.716053 −0.358027 0.933711i \(-0.616550\pi\)
−0.358027 + 0.933711i \(0.616550\pi\)
\(558\) 6468.00 0.490703
\(559\) 1736.00 0.131351
\(560\) 0 0
\(561\) 735.000 0.0553150
\(562\) −9908.00 −0.743672
\(563\) 3199.00 0.239470 0.119735 0.992806i \(-0.461795\pi\)
0.119735 + 0.992806i \(0.461795\pi\)
\(564\) −14700.0 −1.09749
\(565\) −10766.0 −0.801644
\(566\) −8554.00 −0.635250
\(567\) 0 0
\(568\) 10368.0 0.765901
\(569\) 21583.0 1.59017 0.795085 0.606498i \(-0.207426\pi\)
0.795085 + 0.606498i \(0.207426\pi\)
\(570\) 4802.00 0.352866
\(571\) 20267.0 1.48537 0.742686 0.669640i \(-0.233551\pi\)
0.742686 + 0.669640i \(0.233551\pi\)
\(572\) −280.000 −0.0204675
\(573\) 17899.0 1.30496
\(574\) 0 0
\(575\) 12084.0 0.876413
\(576\) 9856.00 0.712963
\(577\) 13951.0 1.00656 0.503282 0.864122i \(-0.332126\pi\)
0.503282 + 0.864122i \(0.332126\pi\)
\(578\) −8944.00 −0.643636
\(579\) −2779.00 −0.199467
\(580\) −1624.00 −0.116264
\(581\) 0 0
\(582\) −12348.0 −0.879452
\(583\) −1515.00 −0.107624
\(584\) 26712.0 1.89272
\(585\) −2156.00 −0.152375
\(586\) 15484.0 1.09153
\(587\) −20972.0 −1.47463 −0.737314 0.675550i \(-0.763906\pi\)
−0.737314 + 0.675550i \(0.763906\pi\)
\(588\) 0 0
\(589\) 7203.00 0.503895
\(590\) −1470.00 −0.102574
\(591\) 20398.0 1.41973
\(592\) −3504.00 −0.243266
\(593\) −189.000 −0.0130882 −0.00654410 0.999979i \(-0.502083\pi\)
−0.00654410 + 0.999979i \(0.502083\pi\)
\(594\) 350.000 0.0241762
\(595\) 0 0
\(596\) 804.000 0.0552569
\(597\) 23373.0 1.60233
\(598\) 4452.00 0.304441
\(599\) −10281.0 −0.701286 −0.350643 0.936509i \(-0.614037\pi\)
−0.350643 + 0.936509i \(0.614037\pi\)
\(600\) 12768.0 0.868752
\(601\) −6090.00 −0.413338 −0.206669 0.978411i \(-0.566262\pi\)
−0.206669 + 0.978411i \(0.566262\pi\)
\(602\) 0 0
\(603\) 9130.00 0.616588
\(604\) −6476.00 −0.436266
\(605\) −9142.00 −0.614339
\(606\) 19306.0 1.29415
\(607\) 4949.00 0.330929 0.165464 0.986216i \(-0.447088\pi\)
0.165464 + 0.986216i \(0.447088\pi\)
\(608\) 7840.00 0.522951
\(609\) 0 0
\(610\) −5782.00 −0.383781
\(611\) −7350.00 −0.486660
\(612\) 1848.00 0.122060
\(613\) −15797.0 −1.04084 −0.520420 0.853910i \(-0.674225\pi\)
−0.520420 + 0.853910i \(0.674225\pi\)
\(614\) −14728.0 −0.968035
\(615\) 17150.0 1.12448
\(616\) 0 0
\(617\) −9378.00 −0.611903 −0.305951 0.952047i \(-0.598975\pi\)
−0.305951 + 0.952047i \(0.598975\pi\)
\(618\) −9506.00 −0.618750
\(619\) −24353.0 −1.58131 −0.790654 0.612263i \(-0.790259\pi\)
−0.790654 + 0.612263i \(0.790259\pi\)
\(620\) −4116.00 −0.266617
\(621\) 5565.00 0.359607
\(622\) 19950.0 1.28605
\(623\) 0 0
\(624\) 1568.00 0.100593
\(625\) −349.000 −0.0223360
\(626\) −9506.00 −0.606927
\(627\) −1715.00 −0.109235
\(628\) −2716.00 −0.172580
\(629\) −4599.00 −0.291533
\(630\) 0 0
\(631\) −12640.0 −0.797449 −0.398725 0.917071i \(-0.630547\pi\)
−0.398725 + 0.917071i \(0.630547\pi\)
\(632\) 2472.00 0.155587
\(633\) 12460.0 0.782371
\(634\) −6954.00 −0.435613
\(635\) 504.000 0.0314971
\(636\) −8484.00 −0.528950
\(637\) 0 0
\(638\) −580.000 −0.0359913
\(639\) −9504.00 −0.588376
\(640\) −2688.00 −0.166020
\(641\) −1041.00 −0.0641451 −0.0320726 0.999486i \(-0.510211\pi\)
−0.0320726 + 0.999486i \(0.510211\pi\)
\(642\) 6398.00 0.393316
\(643\) 9548.00 0.585593 0.292797 0.956175i \(-0.405414\pi\)
0.292797 + 0.956175i \(0.405414\pi\)
\(644\) 0 0
\(645\) −6076.00 −0.370918
\(646\) −2058.00 −0.125342
\(647\) −3241.00 −0.196935 −0.0984674 0.995140i \(-0.531394\pi\)
−0.0984674 + 0.995140i \(0.531394\pi\)
\(648\) 20136.0 1.22070
\(649\) 525.000 0.0317535
\(650\) 2128.00 0.128411
\(651\) 0 0
\(652\) 1868.00 0.112203
\(653\) −8853.00 −0.530543 −0.265272 0.964174i \(-0.585462\pi\)
−0.265272 + 0.964174i \(0.585462\pi\)
\(654\) −15750.0 −0.941703
\(655\) 15043.0 0.897372
\(656\) −5600.00 −0.333298
\(657\) −24486.0 −1.45402
\(658\) 0 0
\(659\) 7044.00 0.416381 0.208191 0.978088i \(-0.433243\pi\)
0.208191 + 0.978088i \(0.433243\pi\)
\(660\) 980.000 0.0577976
\(661\) −12089.0 −0.711358 −0.355679 0.934608i \(-0.615750\pi\)
−0.355679 + 0.934608i \(0.615750\pi\)
\(662\) 6682.00 0.392301
\(663\) 2058.00 0.120552
\(664\) −26208.0 −1.53173
\(665\) 0 0
\(666\) 9636.00 0.560642
\(667\) −9222.00 −0.535348
\(668\) −4816.00 −0.278947
\(669\) −9800.00 −0.566353
\(670\) 5810.00 0.335015
\(671\) 2065.00 0.118805
\(672\) 0 0
\(673\) 982.000 0.0562456 0.0281228 0.999604i \(-0.491047\pi\)
0.0281228 + 0.999604i \(0.491047\pi\)
\(674\) 14732.0 0.841922
\(675\) 2660.00 0.151679
\(676\) 8004.00 0.455394
\(677\) −30513.0 −1.73222 −0.866108 0.499857i \(-0.833386\pi\)
−0.866108 + 0.499857i \(0.833386\pi\)
\(678\) −21532.0 −1.21966
\(679\) 0 0
\(680\) 3528.00 0.198960
\(681\) −15435.0 −0.868532
\(682\) −1470.00 −0.0825355
\(683\) 11475.0 0.642868 0.321434 0.946932i \(-0.395835\pi\)
0.321434 + 0.946932i \(0.395835\pi\)
\(684\) −4312.00 −0.241043
\(685\) −7875.00 −0.439253
\(686\) 0 0
\(687\) 2009.00 0.111569
\(688\) 1984.00 0.109941
\(689\) −4242.00 −0.234553
\(690\) −15582.0 −0.859705
\(691\) −28315.0 −1.55883 −0.779416 0.626506i \(-0.784484\pi\)
−0.779416 + 0.626506i \(0.784484\pi\)
\(692\) 11284.0 0.619875
\(693\) 0 0
\(694\) 14830.0 0.811151
\(695\) 1764.00 0.0962767
\(696\) −9744.00 −0.530669
\(697\) −7350.00 −0.399428
\(698\) −7756.00 −0.420586
\(699\) 32109.0 1.73744
\(700\) 0 0
\(701\) 10614.0 0.571876 0.285938 0.958248i \(-0.407695\pi\)
0.285938 + 0.958248i \(0.407695\pi\)
\(702\) 980.000 0.0526891
\(703\) 10731.0 0.575715
\(704\) −2240.00 −0.119919
\(705\) 25725.0 1.37427
\(706\) 2534.00 0.135083
\(707\) 0 0
\(708\) 2940.00 0.156062
\(709\) 10299.0 0.545539 0.272769 0.962079i \(-0.412060\pi\)
0.272769 + 0.962079i \(0.412060\pi\)
\(710\) −6048.00 −0.319686
\(711\) −2266.00 −0.119524
\(712\) 7896.00 0.415611
\(713\) −23373.0 −1.22767
\(714\) 0 0
\(715\) 490.000 0.0256293
\(716\) 13012.0 0.679164
\(717\) 11676.0 0.608156
\(718\) 9370.00 0.487027
\(719\) 32529.0 1.68724 0.843621 0.536939i \(-0.180420\pi\)
0.843621 + 0.536939i \(0.180420\pi\)
\(720\) −2464.00 −0.127539
\(721\) 0 0
\(722\) −8916.00 −0.459583
\(723\) −23863.0 −1.22749
\(724\) −6328.00 −0.324832
\(725\) −4408.00 −0.225806
\(726\) −18284.0 −0.934687
\(727\) 29456.0 1.50270 0.751350 0.659904i \(-0.229403\pi\)
0.751350 + 0.659904i \(0.229403\pi\)
\(728\) 0 0
\(729\) −11843.0 −0.601687
\(730\) −15582.0 −0.790021
\(731\) 2604.00 0.131754
\(732\) 11564.0 0.583904
\(733\) 27867.0 1.40422 0.702109 0.712070i \(-0.252242\pi\)
0.702109 + 0.712070i \(0.252242\pi\)
\(734\) −9282.00 −0.466764
\(735\) 0 0
\(736\) −25440.0 −1.27409
\(737\) −2075.00 −0.103709
\(738\) 15400.0 0.768133
\(739\) 19539.0 0.972603 0.486302 0.873791i \(-0.338346\pi\)
0.486302 + 0.873791i \(0.338346\pi\)
\(740\) −6132.00 −0.304617
\(741\) −4802.00 −0.238065
\(742\) 0 0
\(743\) 1248.00 0.0616214 0.0308107 0.999525i \(-0.490191\pi\)
0.0308107 + 0.999525i \(0.490191\pi\)
\(744\) −24696.0 −1.21693
\(745\) −1407.00 −0.0691926
\(746\) −17594.0 −0.863488
\(747\) 24024.0 1.17670
\(748\) −420.000 −0.0205304
\(749\) 0 0
\(750\) −19698.0 −0.959026
\(751\) 28093.0 1.36502 0.682509 0.730877i \(-0.260889\pi\)
0.682509 + 0.730877i \(0.260889\pi\)
\(752\) −8400.00 −0.407336
\(753\) −33320.0 −1.61255
\(754\) −1624.00 −0.0784385
\(755\) 11333.0 0.546292
\(756\) 0 0
\(757\) 35954.0 1.72625 0.863124 0.504991i \(-0.168504\pi\)
0.863124 + 0.504991i \(0.168504\pi\)
\(758\) 27360.0 1.31103
\(759\) 5565.00 0.266135
\(760\) −8232.00 −0.392903
\(761\) −861.000 −0.0410134 −0.0205067 0.999790i \(-0.506528\pi\)
−0.0205067 + 0.999790i \(0.506528\pi\)
\(762\) 1008.00 0.0479212
\(763\) 0 0
\(764\) −10228.0 −0.484340
\(765\) −3234.00 −0.152844
\(766\) 19530.0 0.921211
\(767\) 1470.00 0.0692029
\(768\) −30464.0 −1.43135
\(769\) 24710.0 1.15873 0.579366 0.815067i \(-0.303300\pi\)
0.579366 + 0.815067i \(0.303300\pi\)
\(770\) 0 0
\(771\) −5635.00 −0.263216
\(772\) 1588.00 0.0740329
\(773\) 16499.0 0.767694 0.383847 0.923397i \(-0.374599\pi\)
0.383847 + 0.923397i \(0.374599\pi\)
\(774\) −5456.00 −0.253375
\(775\) −11172.0 −0.517819
\(776\) 21168.0 0.979236
\(777\) 0 0
\(778\) 3462.00 0.159536
\(779\) 17150.0 0.788784
\(780\) 2744.00 0.125963
\(781\) 2160.00 0.0989640
\(782\) 6678.00 0.305377
\(783\) −2030.00 −0.0926517
\(784\) 0 0
\(785\) 4753.00 0.216104
\(786\) 30086.0 1.36531
\(787\) 16471.0 0.746033 0.373016 0.927825i \(-0.378324\pi\)
0.373016 + 0.927825i \(0.378324\pi\)
\(788\) −11656.0 −0.526939
\(789\) −1799.00 −0.0811738
\(790\) −1442.00 −0.0649418
\(791\) 0 0
\(792\) 2640.00 0.118445
\(793\) 5782.00 0.258922
\(794\) 21966.0 0.981794
\(795\) 14847.0 0.662351
\(796\) −13356.0 −0.594712
\(797\) −36470.0 −1.62087 −0.810435 0.585828i \(-0.800769\pi\)
−0.810435 + 0.585828i \(0.800769\pi\)
\(798\) 0 0
\(799\) −11025.0 −0.488156
\(800\) −12160.0 −0.537401
\(801\) −7238.00 −0.319279
\(802\) 13206.0 0.581446
\(803\) 5565.00 0.244564
\(804\) −11620.0 −0.509709
\(805\) 0 0
\(806\) −4116.00 −0.179876
\(807\) 25137.0 1.09649
\(808\) −33096.0 −1.44098
\(809\) 35751.0 1.55369 0.776847 0.629690i \(-0.216818\pi\)
0.776847 + 0.629690i \(0.216818\pi\)
\(810\) −11746.0 −0.509521
\(811\) −16492.0 −0.714072 −0.357036 0.934091i \(-0.616213\pi\)
−0.357036 + 0.934091i \(0.616213\pi\)
\(812\) 0 0
\(813\) 9751.00 0.420643
\(814\) −2190.00 −0.0942991
\(815\) −3269.00 −0.140501
\(816\) 2352.00 0.100903
\(817\) −6076.00 −0.260186
\(818\) 21910.0 0.936510
\(819\) 0 0
\(820\) −9800.00 −0.417355
\(821\) −41473.0 −1.76299 −0.881497 0.472190i \(-0.843464\pi\)
−0.881497 + 0.472190i \(0.843464\pi\)
\(822\) −15750.0 −0.668302
\(823\) −25065.0 −1.06162 −0.530809 0.847492i \(-0.678112\pi\)
−0.530809 + 0.847492i \(0.678112\pi\)
\(824\) 16296.0 0.688954
\(825\) 2660.00 0.112254
\(826\) 0 0
\(827\) 9732.00 0.409208 0.204604 0.978845i \(-0.434409\pi\)
0.204604 + 0.978845i \(0.434409\pi\)
\(828\) 13992.0 0.587265
\(829\) 27755.0 1.16281 0.581406 0.813614i \(-0.302503\pi\)
0.581406 + 0.813614i \(0.302503\pi\)
\(830\) 15288.0 0.639342
\(831\) 2905.00 0.121268
\(832\) −6272.00 −0.261349
\(833\) 0 0
\(834\) 3528.00 0.146480
\(835\) 8428.00 0.349297
\(836\) 980.000 0.0405431
\(837\) −5145.00 −0.212470
\(838\) 13272.0 0.547105
\(839\) 21112.0 0.868733 0.434367 0.900736i \(-0.356972\pi\)
0.434367 + 0.900736i \(0.356972\pi\)
\(840\) 0 0
\(841\) −21025.0 −0.862069
\(842\) −33260.0 −1.36130
\(843\) −34678.0 −1.41681
\(844\) −7120.00 −0.290380
\(845\) −14007.0 −0.570243
\(846\) 23100.0 0.938764
\(847\) 0 0
\(848\) −4848.00 −0.196322
\(849\) −29939.0 −1.21025
\(850\) 3192.00 0.128806
\(851\) −34821.0 −1.40264
\(852\) 12096.0 0.486387
\(853\) −21238.0 −0.852492 −0.426246 0.904607i \(-0.640164\pi\)
−0.426246 + 0.904607i \(0.640164\pi\)
\(854\) 0 0
\(855\) 7546.00 0.301834
\(856\) −10968.0 −0.437942
\(857\) −35609.0 −1.41935 −0.709673 0.704531i \(-0.751158\pi\)
−0.709673 + 0.704531i \(0.751158\pi\)
\(858\) 980.000 0.0389938
\(859\) 2177.00 0.0864706 0.0432353 0.999065i \(-0.486233\pi\)
0.0432353 + 0.999065i \(0.486233\pi\)
\(860\) 3472.00 0.137668
\(861\) 0 0
\(862\) 9846.00 0.389044
\(863\) −32247.0 −1.27196 −0.635980 0.771706i \(-0.719404\pi\)
−0.635980 + 0.771706i \(0.719404\pi\)
\(864\) −5600.00 −0.220504
\(865\) −19747.0 −0.776206
\(866\) 17948.0 0.704270
\(867\) −31304.0 −1.22623
\(868\) 0 0
\(869\) 515.000 0.0201038
\(870\) 5684.00 0.221501
\(871\) −5810.00 −0.226021
\(872\) 27000.0 1.04855
\(873\) −19404.0 −0.752263
\(874\) −15582.0 −0.603054
\(875\) 0 0
\(876\) 31164.0 1.20198
\(877\) 27631.0 1.06389 0.531946 0.846779i \(-0.321461\pi\)
0.531946 + 0.846779i \(0.321461\pi\)
\(878\) −8358.00 −0.321263
\(879\) 54194.0 2.07954
\(880\) 560.000 0.0214518
\(881\) 24402.0 0.933172 0.466586 0.884476i \(-0.345484\pi\)
0.466586 + 0.884476i \(0.345484\pi\)
\(882\) 0 0
\(883\) −19612.0 −0.747448 −0.373724 0.927540i \(-0.621919\pi\)
−0.373724 + 0.927540i \(0.621919\pi\)
\(884\) −1176.00 −0.0447434
\(885\) −5145.00 −0.195421
\(886\) −25854.0 −0.980341
\(887\) 2261.00 0.0855884 0.0427942 0.999084i \(-0.486374\pi\)
0.0427942 + 0.999084i \(0.486374\pi\)
\(888\) −36792.0 −1.39038
\(889\) 0 0
\(890\) −4606.00 −0.173476
\(891\) 4195.00 0.157730
\(892\) 5600.00 0.210204
\(893\) 25725.0 0.964003
\(894\) −2814.00 −0.105273
\(895\) −22771.0 −0.850448
\(896\) 0 0
\(897\) 15582.0 0.580009
\(898\) −5652.00 −0.210033
\(899\) 8526.00 0.316305
\(900\) 6688.00 0.247704
\(901\) −6363.00 −0.235274
\(902\) −3500.00 −0.129199
\(903\) 0 0
\(904\) 36912.0 1.35805
\(905\) 11074.0 0.406754
\(906\) 22666.0 0.831156
\(907\) −23833.0 −0.872505 −0.436252 0.899824i \(-0.643695\pi\)
−0.436252 + 0.899824i \(0.643695\pi\)
\(908\) 8820.00 0.322359
\(909\) 30338.0 1.10698
\(910\) 0 0
\(911\) 31824.0 1.15738 0.578692 0.815546i \(-0.303563\pi\)
0.578692 + 0.815546i \(0.303563\pi\)
\(912\) −5488.00 −0.199261
\(913\) −5460.00 −0.197919
\(914\) 16958.0 0.613699
\(915\) −20237.0 −0.731163
\(916\) −1148.00 −0.0414094
\(917\) 0 0
\(918\) 1470.00 0.0528510
\(919\) −16819.0 −0.603708 −0.301854 0.953354i \(-0.597606\pi\)
−0.301854 + 0.953354i \(0.597606\pi\)
\(920\) 26712.0 0.957248
\(921\) −51548.0 −1.84426
\(922\) 18676.0 0.667095
\(923\) 6048.00 0.215680
\(924\) 0 0
\(925\) −16644.0 −0.591623
\(926\) −8032.00 −0.285041
\(927\) −14938.0 −0.529265
\(928\) 9280.00 0.328266
\(929\) 1799.00 0.0635342 0.0317671 0.999495i \(-0.489887\pi\)
0.0317671 + 0.999495i \(0.489887\pi\)
\(930\) 14406.0 0.507948
\(931\) 0 0
\(932\) −18348.0 −0.644859
\(933\) 69825.0 2.45013
\(934\) −11718.0 −0.410519
\(935\) 735.000 0.0257081
\(936\) 7392.00 0.258136
\(937\) 14154.0 0.493480 0.246740 0.969082i \(-0.420641\pi\)
0.246740 + 0.969082i \(0.420641\pi\)
\(938\) 0 0
\(939\) −33271.0 −1.15629
\(940\) −14700.0 −0.510065
\(941\) 12047.0 0.417344 0.208672 0.977986i \(-0.433086\pi\)
0.208672 + 0.977986i \(0.433086\pi\)
\(942\) 9506.00 0.328792
\(943\) −55650.0 −1.92175
\(944\) 1680.00 0.0579230
\(945\) 0 0
\(946\) 1240.00 0.0426172
\(947\) −24379.0 −0.836548 −0.418274 0.908321i \(-0.637365\pi\)
−0.418274 + 0.908321i \(0.637365\pi\)
\(948\) 2884.00 0.0988059
\(949\) 15582.0 0.532996
\(950\) −7448.00 −0.254363
\(951\) −24339.0 −0.829912
\(952\) 0 0
\(953\) −52330.0 −1.77874 −0.889368 0.457192i \(-0.848855\pi\)
−0.889368 + 0.457192i \(0.848855\pi\)
\(954\) 13332.0 0.452452
\(955\) 17899.0 0.606490
\(956\) −6672.00 −0.225720
\(957\) −2030.00 −0.0685690
\(958\) 13006.0 0.438627
\(959\) 0 0
\(960\) 21952.0 0.738018
\(961\) −8182.00 −0.274647
\(962\) −6132.00 −0.205513
\(963\) 10054.0 0.336434
\(964\) 13636.0 0.455587
\(965\) −2779.00 −0.0927038
\(966\) 0 0
\(967\) −12416.0 −0.412897 −0.206449 0.978457i \(-0.566191\pi\)
−0.206449 + 0.978457i \(0.566191\pi\)
\(968\) 31344.0 1.04074
\(969\) −7203.00 −0.238796
\(970\) −12348.0 −0.408732
\(971\) 36813.0 1.21667 0.608334 0.793681i \(-0.291838\pi\)
0.608334 + 0.793681i \(0.291838\pi\)
\(972\) 19712.0 0.650476
\(973\) 0 0
\(974\) −32098.0 −1.05594
\(975\) 7448.00 0.244643
\(976\) 6608.00 0.216718
\(977\) 34995.0 1.14595 0.572973 0.819574i \(-0.305790\pi\)
0.572973 + 0.819574i \(0.305790\pi\)
\(978\) −6538.00 −0.213765
\(979\) 1645.00 0.0537022
\(980\) 0 0
\(981\) −24750.0 −0.805511
\(982\) 17728.0 0.576093
\(983\) −14301.0 −0.464019 −0.232010 0.972713i \(-0.574530\pi\)
−0.232010 + 0.972713i \(0.574530\pi\)
\(984\) −58800.0 −1.90495
\(985\) 20398.0 0.659832
\(986\) −2436.00 −0.0786796
\(987\) 0 0
\(988\) 2744.00 0.0883586
\(989\) 19716.0 0.633905
\(990\) −1540.00 −0.0494388
\(991\) −2665.00 −0.0854253 −0.0427127 0.999087i \(-0.513600\pi\)
−0.0427127 + 0.999087i \(0.513600\pi\)
\(992\) 23520.0 0.752783
\(993\) 23387.0 0.747396
\(994\) 0 0
\(995\) 23373.0 0.744697
\(996\) −30576.0 −0.972729
\(997\) 24871.0 0.790043 0.395021 0.918672i \(-0.370737\pi\)
0.395021 + 0.918672i \(0.370737\pi\)
\(998\) −20422.0 −0.647743
\(999\) −7665.00 −0.242753
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.4.a.d.1.1 1
3.2 odd 2 441.4.a.d.1.1 1
4.3 odd 2 784.4.a.b.1.1 1
5.4 even 2 1225.4.a.c.1.1 1
7.2 even 3 7.4.c.a.4.1 yes 2
7.3 odd 6 49.4.c.a.30.1 2
7.4 even 3 7.4.c.a.2.1 2
7.5 odd 6 49.4.c.a.18.1 2
7.6 odd 2 49.4.a.c.1.1 1
21.2 odd 6 63.4.e.b.46.1 2
21.5 even 6 441.4.e.k.361.1 2
21.11 odd 6 63.4.e.b.37.1 2
21.17 even 6 441.4.e.k.226.1 2
21.20 even 2 441.4.a.e.1.1 1
28.11 odd 6 112.4.i.c.65.1 2
28.23 odd 6 112.4.i.c.81.1 2
28.27 even 2 784.4.a.r.1.1 1
35.2 odd 12 175.4.k.a.74.2 4
35.4 even 6 175.4.e.a.51.1 2
35.9 even 6 175.4.e.a.151.1 2
35.18 odd 12 175.4.k.a.149.2 4
35.23 odd 12 175.4.k.a.74.1 4
35.32 odd 12 175.4.k.a.149.1 4
35.34 odd 2 1225.4.a.d.1.1 1
56.11 odd 6 448.4.i.a.65.1 2
56.37 even 6 448.4.i.f.193.1 2
56.51 odd 6 448.4.i.a.193.1 2
56.53 even 6 448.4.i.f.65.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.4.c.a.2.1 2 7.4 even 3
7.4.c.a.4.1 yes 2 7.2 even 3
49.4.a.c.1.1 1 7.6 odd 2
49.4.a.d.1.1 1 1.1 even 1 trivial
49.4.c.a.18.1 2 7.5 odd 6
49.4.c.a.30.1 2 7.3 odd 6
63.4.e.b.37.1 2 21.11 odd 6
63.4.e.b.46.1 2 21.2 odd 6
112.4.i.c.65.1 2 28.11 odd 6
112.4.i.c.81.1 2 28.23 odd 6
175.4.e.a.51.1 2 35.4 even 6
175.4.e.a.151.1 2 35.9 even 6
175.4.k.a.74.1 4 35.23 odd 12
175.4.k.a.74.2 4 35.2 odd 12
175.4.k.a.149.1 4 35.32 odd 12
175.4.k.a.149.2 4 35.18 odd 12
441.4.a.d.1.1 1 3.2 odd 2
441.4.a.e.1.1 1 21.20 even 2
441.4.e.k.226.1 2 21.17 even 6
441.4.e.k.361.1 2 21.5 even 6
448.4.i.a.65.1 2 56.11 odd 6
448.4.i.a.193.1 2 56.51 odd 6
448.4.i.f.65.1 2 56.53 even 6
448.4.i.f.193.1 2 56.37 even 6
784.4.a.b.1.1 1 4.3 odd 2
784.4.a.r.1.1 1 28.27 even 2
1225.4.a.c.1.1 1 5.4 even 2
1225.4.a.d.1.1 1 35.34 odd 2