Properties

Label 49.2.g
Level $49$
Weight $2$
Character orbit 49.g
Rep. character $\chi_{49}(2,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $48$
Newform subspaces $1$
Sturm bound $9$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 49.g (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 1 \)
Sturm bound: \(9\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(49, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 48 48 0
Eisenstein series 24 24 0

Trace form

\( 48 q - 13 q^{2} - 14 q^{3} - 9 q^{4} - 14 q^{5} - 14 q^{7} - 20 q^{8} + 6 q^{9} + O(q^{10}) \) \( 48 q - 13 q^{2} - 14 q^{3} - 9 q^{4} - 14 q^{5} - 14 q^{7} - 20 q^{8} + 6 q^{9} - 14 q^{10} - 3 q^{11} + 21 q^{12} - 14 q^{13} + 21 q^{14} - 12 q^{15} - 3 q^{16} - 7 q^{17} + 2 q^{18} + 21 q^{19} + 14 q^{20} - 14 q^{21} - 20 q^{22} + 15 q^{23} + 28 q^{24} - 4 q^{25} + 7 q^{27} + 28 q^{28} + 12 q^{29} + 11 q^{30} + 35 q^{31} + 45 q^{32} - 14 q^{33} + 70 q^{34} - 12 q^{36} + 15 q^{37} - 28 q^{38} - 7 q^{39} - 42 q^{40} - 42 q^{41} + 28 q^{42} - 30 q^{43} - 50 q^{44} + 7 q^{45} - 78 q^{46} + 21 q^{47} - 84 q^{48} - 70 q^{49} + 40 q^{50} - 52 q^{51} - 70 q^{52} + 11 q^{53} - 77 q^{54} - 7 q^{55} - 28 q^{56} - 12 q^{57} + 16 q^{58} - 28 q^{59} + 56 q^{60} + 7 q^{61} - 28 q^{62} + 35 q^{63} - 32 q^{64} + 14 q^{65} + 154 q^{66} + 11 q^{67} + 77 q^{68} + 70 q^{69} + 70 q^{70} + 19 q^{71} + 170 q^{72} + 7 q^{73} + 34 q^{74} + 112 q^{75} + 119 q^{76} + 7 q^{77} + 28 q^{78} + 15 q^{79} + 70 q^{80} + 64 q^{81} - 14 q^{82} - 84 q^{84} - 26 q^{85} - 33 q^{86} - 112 q^{87} - 77 q^{88} - 14 q^{89} - 182 q^{90} + 84 q^{91} - 38 q^{92} - 80 q^{93} + 14 q^{94} - 61 q^{95} - 70 q^{96} - 161 q^{98} - 16 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(49, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
49.2.g.a $48$ $0.391$ None \(-13\) \(-14\) \(-14\) \(-14\)