Properties

Label 49.12.c.b
Level 49
Weight 12
Character orbit 49.c
Analytic conductor 37.649
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 49 = 7^{2} \)
Weight: \( k \) = \( 12 \)
Character orbit: \([\chi]\) = 49.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(37.6488158474\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 24 \zeta_{6} q^{2} + ( -252 + 252 \zeta_{6} ) q^{3} + ( 1472 - 1472 \zeta_{6} ) q^{4} -4830 \zeta_{6} q^{5} -6048 q^{6} + 84480 q^{8} + 113643 \zeta_{6} q^{9} +O(q^{10})\) \( q + 24 \zeta_{6} q^{2} + ( -252 + 252 \zeta_{6} ) q^{3} + ( 1472 - 1472 \zeta_{6} ) q^{4} -4830 \zeta_{6} q^{5} -6048 q^{6} + 84480 q^{8} + 113643 \zeta_{6} q^{9} + ( 115920 - 115920 \zeta_{6} ) q^{10} + ( -534612 + 534612 \zeta_{6} ) q^{11} + 370944 \zeta_{6} q^{12} -577738 q^{13} + 1217160 q^{15} -987136 \zeta_{6} q^{16} + ( 6905934 - 6905934 \zeta_{6} ) q^{17} + ( -2727432 + 2727432 \zeta_{6} ) q^{18} -10661420 \zeta_{6} q^{19} -7109760 q^{20} -12830688 q^{22} -18643272 \zeta_{6} q^{23} + ( -21288960 + 21288960 \zeta_{6} ) q^{24} + ( 25499225 - 25499225 \zeta_{6} ) q^{25} -13865712 \zeta_{6} q^{26} -73279080 q^{27} + 128406630 q^{29} + 29211840 \zeta_{6} q^{30} + ( 52843168 - 52843168 \zeta_{6} ) q^{31} + ( 196706304 - 196706304 \zeta_{6} ) q^{32} -134722224 \zeta_{6} q^{33} + 165742416 q^{34} + 167282496 q^{36} + 182213314 \zeta_{6} q^{37} + ( 255874080 - 255874080 \zeta_{6} ) q^{38} + ( 145589976 - 145589976 \zeta_{6} ) q^{39} -408038400 \zeta_{6} q^{40} + 308120442 q^{41} -17125708 q^{43} + 786948864 \zeta_{6} q^{44} + ( 548895690 - 548895690 \zeta_{6} ) q^{45} + ( 447438528 - 447438528 \zeta_{6} ) q^{46} -2687348496 \zeta_{6} q^{47} + 248758272 q^{48} + 611981400 q^{50} + 1740295368 \zeta_{6} q^{51} + ( -850430336 + 850430336 \zeta_{6} ) q^{52} + ( 1596055698 - 1596055698 \zeta_{6} ) q^{53} -1758697920 \zeta_{6} q^{54} + 2582175960 q^{55} + 2686677840 q^{57} + 3081759120 \zeta_{6} q^{58} + ( 5189203740 - 5189203740 \zeta_{6} ) q^{59} + ( 1791659520 - 1791659520 \zeta_{6} ) q^{60} -6956478662 \zeta_{6} q^{61} + 1268236032 q^{62} + 2699296768 q^{64} + 2790474540 \zeta_{6} q^{65} + ( 3233333376 - 3233333376 \zeta_{6} ) q^{66} + ( 15481826884 - 15481826884 \zeta_{6} ) q^{67} -10165534848 \zeta_{6} q^{68} + 4698104544 q^{69} + 9791485272 q^{71} + 9600560640 \zeta_{6} q^{72} + ( -1463791322 + 1463791322 \zeta_{6} ) q^{73} + ( -4373119536 + 4373119536 \zeta_{6} ) q^{74} + 6425804700 \zeta_{6} q^{75} -15693610240 q^{76} + 3494159424 q^{78} -38116845680 \zeta_{6} q^{79} + ( -4767866880 + 4767866880 \zeta_{6} ) q^{80} + ( -1665188361 + 1665188361 \zeta_{6} ) q^{81} + 7394890608 \zeta_{6} q^{82} -29335099668 q^{83} -33355661220 q^{85} -411016992 \zeta_{6} q^{86} + ( -32358470760 + 32358470760 \zeta_{6} ) q^{87} + ( -45164021760 + 45164021760 \zeta_{6} ) q^{88} + 24992917110 \zeta_{6} q^{89} + 13173496560 q^{90} -27442896384 q^{92} + 13316478336 \zeta_{6} q^{93} + ( 64496363904 - 64496363904 \zeta_{6} ) q^{94} + ( -51494658600 + 51494658600 \zeta_{6} ) q^{95} + 49569988608 \zeta_{6} q^{96} + 75013568546 q^{97} -60754911516 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 24q^{2} - 252q^{3} + 1472q^{4} - 4830q^{5} - 12096q^{6} + 168960q^{8} + 113643q^{9} + O(q^{10}) \) \( 2q + 24q^{2} - 252q^{3} + 1472q^{4} - 4830q^{5} - 12096q^{6} + 168960q^{8} + 113643q^{9} + 115920q^{10} - 534612q^{11} + 370944q^{12} - 1155476q^{13} + 2434320q^{15} - 987136q^{16} + 6905934q^{17} - 2727432q^{18} - 10661420q^{19} - 14219520q^{20} - 25661376q^{22} - 18643272q^{23} - 21288960q^{24} + 25499225q^{25} - 13865712q^{26} - 146558160q^{27} + 256813260q^{29} + 29211840q^{30} + 52843168q^{31} + 196706304q^{32} - 134722224q^{33} + 331484832q^{34} + 334564992q^{36} + 182213314q^{37} + 255874080q^{38} + 145589976q^{39} - 408038400q^{40} + 616240884q^{41} - 34251416q^{43} + 786948864q^{44} + 548895690q^{45} + 447438528q^{46} - 2687348496q^{47} + 497516544q^{48} + 1223962800q^{50} + 1740295368q^{51} - 850430336q^{52} + 1596055698q^{53} - 1758697920q^{54} + 5164351920q^{55} + 5373355680q^{57} + 3081759120q^{58} + 5189203740q^{59} + 1791659520q^{60} - 6956478662q^{61} + 2536472064q^{62} + 5398593536q^{64} + 2790474540q^{65} + 3233333376q^{66} + 15481826884q^{67} - 10165534848q^{68} + 9396209088q^{69} + 19582970544q^{71} + 9600560640q^{72} - 1463791322q^{73} - 4373119536q^{74} + 6425804700q^{75} - 31387220480q^{76} + 6988318848q^{78} - 38116845680q^{79} - 4767866880q^{80} - 1665188361q^{81} + 7394890608q^{82} - 58670199336q^{83} - 66711322440q^{85} - 411016992q^{86} - 32358470760q^{87} - 45164021760q^{88} + 24992917110q^{89} + 26346993120q^{90} - 54885792768q^{92} + 13316478336q^{93} + 64496363904q^{94} - 51494658600q^{95} + 49569988608q^{96} + 150027137092q^{97} - 121509823032q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
18.1
0.500000 + 0.866025i
0.500000 0.866025i
12.0000 + 20.7846i −126.000 + 218.238i 736.000 1274.79i −2415.00 4182.90i −6048.00 0 84480.0 56821.5 + 98417.7i 57960.0 100390.i
30.1 12.0000 20.7846i −126.000 218.238i 736.000 + 1274.79i −2415.00 + 4182.90i −6048.00 0 84480.0 56821.5 98417.7i 57960.0 + 100390.i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 49.12.c.b 2
7.b odd 2 1 49.12.c.c 2
7.c even 3 1 1.12.a.a 1
7.c even 3 1 inner 49.12.c.b 2
7.d odd 6 1 49.12.a.a 1
7.d odd 6 1 49.12.c.c 2
21.h odd 6 1 9.12.a.b 1
28.g odd 6 1 16.12.a.a 1
35.j even 6 1 25.12.a.b 1
35.l odd 12 2 25.12.b.b 2
56.k odd 6 1 64.12.a.f 1
56.p even 6 1 64.12.a.b 1
63.g even 3 1 81.12.c.d 2
63.h even 3 1 81.12.c.d 2
63.j odd 6 1 81.12.c.b 2
63.n odd 6 1 81.12.c.b 2
77.h odd 6 1 121.12.a.b 1
84.n even 6 1 144.12.a.d 1
91.r even 6 1 169.12.a.a 1
105.o odd 6 1 225.12.a.b 1
105.x even 12 2 225.12.b.d 2
112.u odd 12 2 256.12.b.c 2
112.w even 12 2 256.12.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.12.a.a 1 7.c even 3 1
9.12.a.b 1 21.h odd 6 1
16.12.a.a 1 28.g odd 6 1
25.12.a.b 1 35.j even 6 1
25.12.b.b 2 35.l odd 12 2
49.12.a.a 1 7.d odd 6 1
49.12.c.b 2 1.a even 1 1 trivial
49.12.c.b 2 7.c even 3 1 inner
49.12.c.c 2 7.b odd 2 1
49.12.c.c 2 7.d odd 6 1
64.12.a.b 1 56.p even 6 1
64.12.a.f 1 56.k odd 6 1
81.12.c.b 2 63.j odd 6 1
81.12.c.b 2 63.n odd 6 1
81.12.c.d 2 63.g even 3 1
81.12.c.d 2 63.h even 3 1
121.12.a.b 1 77.h odd 6 1
144.12.a.d 1 84.n even 6 1
169.12.a.a 1 91.r even 6 1
225.12.a.b 1 105.o odd 6 1
225.12.b.d 2 105.x even 12 2
256.12.b.c 2 112.u odd 12 2
256.12.b.e 2 112.w even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{12}^{\mathrm{new}}(49, [\chi])\):

\( T_{2}^{2} - 24 T_{2} + 576 \)
\( T_{3}^{2} + 252 T_{3} + 63504 \)